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Preface

Numerical and computational methods for solving (multiobjective) optimization,
game theory, and machine learning problems are actively researched in recent
years. During the last decades, various schools of deterministic and stochastic
algorithm research have emerged. In order to solve problems in practice reliably
and efficiently, there is a need for work across methodological boundaries.

This book comprises nine selected works on this topic. The work is by partic-
ipants of the EVOLVE 2013 conference held in July 2013 at Leiden University,
The Netherlands, from various fields of science such as computer science, mathe-
matics, and engineering. This book’s chapters are peer-reviewed by an international
review panel. They provide extended versions of selected papers from the contri-
butions to the conference.

This resulting book includes original work by the authors and covers important
topics in both theory and applications, for instance, the role of diversity in opti-
mization, statistical approaches to combinatorial optimization, computational game
theory, and cell mapping techniques for numerical landscape exploration.
Applications focus on aspects such as robustness, handling multiple objectives, and
complex search spaces in engineering design and computational biology.

We wish our readers interesting insights from this book and inspirations for their
own research and work on problem solving.

On behalf of the editors
Michael Emmerich and André Deutz
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A Survey of Diversity Oriented Optimization:
Problems, Indicators, and Algorithms

Vitor Basto-Fernandes, Iryna Yevseyeva, André Deutz
and Michael Emmerich

Abstract In this chapter it is discussed, how the concept of diversity plays a cru-
cial role in contemporary (multi-objective) optimization algorithms. It is shown that
diversity maintenance can have a different purpose, such as improving global conver-
gence reliability or finding alternative solutions to a (multi-objective) optimization
problem. Moreover, different algorithms are reviewed that put special emphasis on
diversity maintenance, such as multicriteria evolutionary optimization algorithms,
multimodal optimization, artificial immune systems, and techniques from set ori-
ented numerics. Diversity maintenance enters in different search operators and is
used for different reasons in these algorithms. Among them we highlight evolution-
ary, swarm-based, artificial immune system-based, and indicator-based approaches
to diversity optimization. In order to understand indicator-based approaches, we will
review some of the most common diversity indices that can be used to quantitatively
assess diversity. Based on the discussion, ’diversity oriented optimization’ is sug-
gested as a term encompassing optimization techniques that adress diversity main-
tainance as a major ingredient of the search paradigm. To bring order into all these
different approaches, an ontology on diversity oriented optimization is proposed. It
provides a systematic overview of the various concepts, methods, and applications
and it can be extended in future work.
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4 V. Basto-Fernandes et al.

1 Introduction and Motivation

The concept of diversity plays a crucial role in various optimization and search
techniques. Diversity maintenance can help to find a globally optimal solution, but
it might also be the goal of optimization to produce a diversified set. Strategies to
maintain diversity are used in various methods, in particular in population-based
metaheuristics and their variation and selection operators. Moreover, there exists a
multitude of diversity measures, addressing different aspects of what common sense
might tell us what diversity is.

In this chapter, we look at the concept of diversity across several different methods
and try to define ‘diversity oriented optimization’ as an emerging topic in optimiza-
tion methods. Towards this end, we propose an ontology that seeks to provide a
systematic overview, and can be used by the algorithm community to identify essen-
tial similarities and differences between different methods. This can be useful to find
related work across algorithmic sub-disciplines or to identify prevalent trends in the
field.

Before givingmore concrete definitions of diversity, a tentative definition of diver-
sity could be given as follows: Diversity is a property of a multi-set the elements of
which are all members of the same space, say M. The space can be, for instance,
the set of integer numbers, the set of real vectors of dimensions n, or, the set of all
molecular structures. It is demanded thatM is at least equipped with a dissimilarity
measure d : M × M → R

+
0 . Intuitively, we would then say that a subset of M is

more diverse than another subset of M, if

1. it contains more different elements,
2. elements are more different with respect to each other,
3. and more evenly distributed over M.

In the literature a diverse set of diversity measures has been suggested, emphasizing
these or subsets of these three aspects.

Traditionally, formal definitions of diversity have been mainly investigated in
biological statistics in order to measure population diversity, but recently there is a
growing interest in other fields of science and economics, too. Examples are cultural
sciences, innovation management, and financial portfolio theory. Last but not least,
the concept of diversity is a concept of vital importance in contemporary optimization
algorithms. In the following we will focus on this last mentioned topic. Thereby we
will often refer to terminology and diversity measures developed in other fields of
science.

In many optimization techniques it is not even made explicit which diversity
measure is used. Rather it is claimed, that a certain operator or strategy is used to
increase diversity or to maintain diversity, not being explicit what exactly is meant by
diversity. This is however not the case in the so-called indicator-based optimization
methods, which aim for improving a diversity measure that is defined a priori. In this
chapter we will therefore first review methods that use a rather vague definition of
diversity, and then introduce indicator-based methods that refer to exact definitions
of diversity and review these definitions.
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This work is structured in three parts:

• The first part is focused on different optimization problems and how the concept
of diversity is important to solve or define these problems.

• The second part reviews optimizationmethods that emphasize the concept of diver-
sity for various reasons. The section on indicator-based methods also discusses
various measures of diversity.

• Finally, in the third part, an ontology that integrates the different theoretical con-
cepts, methods, and applications is developed. Based on this ontology, common-
alities and essential differences between methods and problem definitions are
discussed.

Figure1 presents an overall perspective of all dimensions of diversity oriented
optimization addressed in this study.

Fig. 1 Diversity oriented optimization. The lists serve as examples but are not exhaustive
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2 Problem Domains in Diversity Oriented Optimization

This section reviews several problem domains, in which diversity is of importance
to increase the performance of optimization methods or in which diversity is aimed
for in the results of optimization methods.

2.1 Generating Alternatives

In engineering problems, when an algorithm provides the decision maker with a
solution of a single objective optimization problem, it might not always correspond
to the decision maker’s preferences. In order to satisfy a demanding decision maker,
or several decision makers, the developers of Evolutionary Algorithm to Generate
Alternatives (EAGAs) [47] suggested an algorithm that searches for several good
(not necessarily optimal) but maximally different solutions.

In complex problem fields and search spaces, such as drug discovery, only by
looking at a solution it can be judged by a domain expert, whether or not that solution
is possibly suitable. The famous chemist Linus Pauling summarized the process of
discovery [25] as follows: “the best way to get a good idea is to get a lot of ideas”.
Indeed, modern computational tools for drug discovery can be described as diversity-
oriented search for generating a set of promising alternatives [42]. A similar view is
taken in the research of Ulrich et al. [38], on finding diversified sets of architectural
bridge designs and hardware configurations.

2.2 Multiobjective Optimization

In multi-objective optimization it is a common practice to compute a diverse set of
Pareto optimal solutions. As opposed to the so-called a priori approach to multicri-
teria decision making, where different objectives are aggregated to a scalar utility
value, the so-called a posteriori approach first computes all Pareto optimal solutions
and presents this set to the decision maker.

As pointed out by Knowles [21], the Pareto optimal set can be viewed as the
set of optimal solutions over all meaningful linear or non-linear scalarizing utility
functions. The knowledge of the Pareto front provides the decision maker with infor-
mation on the trade-offs between different objectives and the availability of solutions
satisfying potential goal vectors. Typically, diversity is measured for the set of non-
dominated objective function vectors, but more recently the importance of decision
space diversity has been stressed in several publications [8, 29, 31, 40]. Here the
idea is, that it can be important to compute different pre-images of the same preferred
point on the Pareto front, given they exist. For instance, a decisionmakermight prefer
some solutions to others for subjective, non-explicit reasons.
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2.3 Innovization

By analyzing diversified sets of good (not necessary optimal) solutions, provided by a
diversity-oriented search algorithm, a designer may learn some important properties
of the decision space. The findings might even be generalizable and lead to the
discovery of some design patterns. It could be that some properties are shared among
high-performing solutions. Early research in this direction was conducted by Ian
Parmee et al. [24] in the field of evolutionary design optimization using so-called
cluster oriented genetic algorithms (COGAs).

Recently, the derivation of design principles from optimization results has been
discussed in the context of multi-objective optimization. The question is here how
a design changes when navigating along the Pareto front and whether solutions on
the Pareto front are distinguished from dominated solutions. Modern data mining
and data analysis techniques are used to discover patterns and rules. Deb et al. call
this process of innovation by optimization ‘innovization’, see e.g. [10–12] and it is
believed that this methodology has a large potential to revolutionize the engineering
design process in industry.

2.4 Novelty and Interestingness

In this context it is also important to consider resistance of decision makers to make
large changes to existing solutions. This resistance is explained by the risk due to the
lack of knowledge about a novel design. In [27], the concepts such as interestingness
and novelty are defined in the context of innovization. It is emphasized that candidate
solutions for new designs must be different to known solutions but still be understood
well enough on the basis of existing models used in the domain.

In the interestingness measure derived by Reehuis et al. [27], diversity is not only
seen as an asset but it also comes with a risk, due to the unknown properties of
novel designs. It is stressed that a certain balance between novelty and sticking to
known andwell-tested designsmust bemaintained, in order tomake solutions appear
interesting to designers. Moreover, interestingness can only be measured relative to
existing designs.

2.5 Finding Peaks in Multimodal Landscapes

When exploringmultimodal landscapes for the global optimum, itmight be beneficial
to explore several attractor basins, or peaks, in parallel. Many optimization strategies
focus, after a transient initial phase, only on a single attractor. This also holds for
population-based algorithms due to several causes of diversity-loss [28]. Diversity
maintenance techniques can be crucial to improve the probability of finding the global
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optimum. Among others, Stoean et al. [36] argue about the need of active diversity
maintenance to be considered in the context of global optimization.

In [12] the need of finding all global optima (multi-global optimization) is termed
multi-global optimization, both in single- and multi-objective optimization. More-
over, algorithms that seek to gain knowledge about the topological structure of mul-
timodal landscapes are recently developed [26]. The goal of these methods is not
only to discover global optimizers but also to find local optimizers and their con-
nectedness.

2.6 Model-Based Diagnostics

A system of cause and effect elements can be modeled as a function from input
variables (causes) to output variables (effects). When performing model-based fault
diagnosis, it is important to find all possible causes to an observed effect. If there
are different possible causes, this indicates that further data is needed to identify
the true cause. This aspect has been discussed in [48]. Here a diversity-oriented
evolutionary algorithm was developed for finding potential contaminant sources in
water distribution networks.

2.7 Dynamic and Robust Optimization

Both, when the goal is to find robust optima or when the positions of optima change
over time, the maintenance of diversity can be a crucial component of the algorithm.
For instance, in [19], it was pointed out that the lack of diversity can lead to stag-
nation of population-based search in suboptimal regions in dynamically changing
environments. The idea that diversity makes a group of individuals more robust to
attacks by, for instance, viruses is a common explanation for the evolutionary bene-
fits of diversity maintenance. When transferred to optimization, such considerations
might play a role when it comes to selection of portfolios or teams, which will be
discussed later in Sect. 5.

2.8 Summary

In this section various motivations for maintaining diversity in optimization were
reviewed. Across these different motivations, it is widely common that diversity is
seen as an asset. It is either useful to maintain diversity in order to find a better result,
or the result itself should include different solutions in order to be more interesting
for the decision maker.
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Negative aspects of diversity are that a too large output set might confuse the
decision maker or that solutions that are too different from existing designs might
not be trusted. In both cases it would be a rather good strategy to use diversity
maintenance in moderation, rather than abandoning it at all.

3 Bio-Inspired Methods for Diversity Oriented
Optimization

Next, it will be discussed how the problem of diversity maintenance is adressed in
optimization algorithms.

Often, the mechanism has been inspired by nature and therefore the first part
of the discussion of the methods will be devoted to nature inspired methods. In
nature inspired methods terminology is often related to metaphors from biology.
This, on the one hand makes it easy to see the analogy, on the other hand it can
make it difficult to compare different bio-inspired methods with each other. Besides
reviewing mechanisms, this section will also reveal commonalities between various
strategies which might be slightly obscured by terminology.

3.1 Evolutionary Algorithms

In Evolutionary Algorithms (EAs), a population (set) of individuals (solution can-
didates) evolves over time to a population with a better average objective function
value among individuals. The process is driven by selection of promising parents,
recombination and mutation.

Using a population of individuals by itself does not guarantee however that diver-
sity is maintained. Even in situations where individuals share the same objective
function value, that is optimization on a plateau function, diversity is quickly lost
due to genetic drift [28]. Those individuals of types that are underrepresented in the
populations tend to reproduce less frequently and the number of individuals of this
type gets even smaller in subsequent generations. This effect can be quantified by
Markov chain models (cf. [28]) and the time to extinction of an individuals tends to
be proportional to the population size.

A common paradigm for maintaining diversity in EA populations is that of nich-
ing. For instance, niching [32] allows selecting only few solutions located within the
same region of the objective or decision space, for parental or environmental selec-
tion. As an example of a global optimization strategy with diversity maintenance the
omni-optimizer [13] will be discussed in more detail.
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3.1.1 Omni-Optimizer

The omni-optimizer [13] was developed to allow both single and multi-objective
optimization by means of a single generic evolutionary algorithm. It is based on the
well-known generational NSGA-II algorithm for finding all Pareto optimal solutions
for problems with multiple, usually conflicting objectives. However, omni-optimizer
can also adapt automatically when simpler cases of multi-objective problems with a
single optimum are detected, or when a single objective optimization problem should
be solved either for finding multiple optima or a single optimum.

When compared to the original NSGA-II, omni-optimizer is improved with
restricted mating selection of similar individuals competing in tournament. For tour-
nament, two pairs of individuals are selected such that for each randomly selected
individual its nearest neighbour in objective space becomes its competitor. Such
restricted parent selection in tournaments limits competition to very similar individ-
uals only, it also preserves possible multiple optima and speeds up convergence to
them or to a single global optimum. A modified environmental selection is com-
puted not only taking into account the phenotype (objective space evaluation as in
NSGA-II), but also the genotype (decision space) of an individual. Moreover, pair-
wise comparison of individuals is based on a modified ε-domination evaluation,
which neglects a small differences on objective function values between two indi-
viduals when deciding which one is the best. In addition, a more disruptive mutation
operator is obtained by modifying the treatment of the original polynomial mutation
at the boundaries of variables. The algorithm’s initial population is based on Latin-
hypercube random uniform sampling, but predefined sampling can also be used.

For the multi-objective case the winner of tournament is selected taking into
account feasibility, constraints violation, dominance and crowding of each individ-
ual evaluated in objective space only. When selecting among two individuals the
following criteria apply: (1) A feasible individual is preferred to an infeasible one;
(2) A feasible non-dominated individual is preferred to a feasible dominated one;
(3) Among two feasible non-dominated individuals the one with higher crowding
distance is preferred (or randomly selected if crowding distance is the same); And
(4) among two infeasible individuals the one with smallest constraint violation is
preferred. When compared to NSGA-II, omni-optimizer evaluates dominance rela-
tion using ε-dominance. The advantage of this type of domination is its tolerance
towards small differences of near non-dominated individuals. Keeping such individ-
uals may be beneficial when diversity is an issue and when several rather than one
solutions should be selected. A penalty for constraints violation is computed as a sum
of violations of all equality and inequality constraints. In case of single objective opti-
mization, the tournament selection degenerates to the above mentioned criteria (1)
and (4), and feasible individualswith smallest objective function values are preferred.

For individuals represented by real-coded variables, SBX crossover (on half of
variables, on average) and a modified polynomial mutation operators are used.When
compared to the original polynomial mutation operator, which has the disadvantage
of having no effect as soon as a variable reaches its boundary, the new polyno-
mial mutation operator assigns non-zero probability of mutation even if one of the
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variables of an individual is on its boundary. For individuals represented by binary
coded variables two-point crossover is applied together with bitwise mutation.

Although omni-optimizer follows a (μ + λ) schema, similar to NSGA-II, the
environmental selection stage is modified. Omni-optimizer considers similar princi-
ples used for parents selection, such as feasibility, constraints violation, domination
and crowding of individuals in objective space, but applies ε-domination similar to
that in mating selection. Moreover, crowding distance is computed as an average
between its two closest neighbours for both objective and decision spaces on all
decision variables and objectives values, respectively. The biggest of the two values,
either its normalized crowding distance in objective space or its normalized crowd-
ing distance in decision space, is taken as a crowding distance of an individual. By
considering decision space, this crowding distance allows differentiating between
two non-dominated individuals with the same/similar evaluation in objective space,
but different structurally (in decision space).

The results of omni-optimizer testing on a number of single uni-optimal and
multi-optimal test problems and multi-objective uni-optimal and multi-optimal test
functions are reported in [13]. They are promising both in terms of quality and
coverage of the Pareto front in multi-objective optimization problems.

However, omni-optimizer reveals poor results of crowding distance in three and
more dimensions and a possible loss of optimal solutions when using ε-domination.
Moreover, the evident advantage of omni-optimizer developed as a generalized solver
to deal with a variety of problems does not exclude the fact that specific problem-
oriented algorithms may be more efficient for specific problems. For instance, omni-
optimizer was not designed to find local optima of multi-modal problems but only
to find global one(s).

3.2 Artificial Immune Systems

Immune Systems have inspired various algorithms, among which are also algo-
rithms in diversity oriented search. These so called Artificial Immune Systems (AIS)
have been proposed by de Castro and Von Zuben [5]. In AISs, adaptation happens
by cumulative variation and selection within cells (cloning and hypermutation): In
the biological counterpart, immunoglobulin nucleotides are randomly inserted and
deleted from recombined immunoglobulin gene segments. In AISs mutation opera-
tors (hypermutation and receptor editing) are applied to vectors that correspond to
lymphocyte clones and might involve exchange or shifts of positions of individual
representation data elements. These AIS operators are of major importance for cell
diversification and affinity enhancement to antigens.

In AISs, diversity is preserved intrinsically by clonal selection theory [4] and
immune network theory [18] principles. In AISs, a population evolves by cloning and
mutation (hypermutation) processes, with genetic variability inversely proportional
to affinity and concentration among individuals in the population. Self-adapting met-
rics, such as affinity among cells guarantee that concentration of similar cells decrease
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in the presence of better neighboring cells: the closer and higher the concentration of
better cells, the higher their influence. Cells without better solutions in their neigh-
borhood increase their concentration proportionally to their fitness.

3.2.1 Artificial Immune Systems versus Evolutionary approaches

Although coming from two different theoretical biology domains, AISs and evo-
lutionary systems inspired by evolution theory, follow some similar fundamental
principles: diversity, natural variation and selection are both present.

In both EAs and AISs, the population evolves by variation of selected cells/
individuals. Genetic crossover and mutation are responsible for population diversity
and fine-tuning. These variation mechanisms are present in both AISs and evolution-
ary approaches. In particular, in EAs, biological evolution happens by cumulative
natural selection among individuals: crossover andmutation generates offspring from
mixing parental genes.

When compared to other nature-inspired algorithms, Artificial Immune Systems
(AIS)s automatically adjust the population size at each iteration depending on the
problem needs and still preserves diversity of the shrinked or enlarged population.
Moreover, they apply hypermutation, which can be seen as a concept that combines
aspects of mutation and recombination.

Both approaches are successfully applied for diversity-oriented search, e.g. in
multi-objective optimization, see e.g., [8, 31].

3.2.2 Omni-aiNet

Omni-aiNet [7]was developed to serve the same purpose as omni-optimizer: for solv-
ing single and multi-objective optimization. However, contrary to omni-optimizer,
omni-aiNet is based not on evolutionary algorithms, but on artificial immune systems.

Omni-aiNet is based on opt-aiNet [9] and several AISs principles, such as clonal
selection principle and immune network theory, and adapts some ways of solving
a common optimization dilemma of driving search towards both exploration and
exploitation of the objective space. The algorithm starts by initializing a randomly
user-predefined number of individuals with a set of real-coded variables. The initial
population enters the generational loop, at each iteration of which the current pop-
ulation goes through cloning, hypermutation, selection and gene duplication stages,
until some stopping criterion is met. At the cloning stage for each individual of the
current population user-predefined number of clones are created and mutated by
polynomial mutation. The probability of mutation is selected inversely proportional
to affinity of a clone with its antigen. This mutation parameter is defined empirically.

From the current population and the population of mutated clones the new pop-
ulation is selected similarly to the parental selection of omni-optimizer (based on
ε-domination and constraints violation principles), except that instead of the crowd-
ing distance principle for selecting among two mutually non-dominating solutions,
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grid-based selection is used, similarly to the one introduced in the Pareto Archived
Evolution Strategy (PAES) [22]. For each objective the interval between its mini-
mal and maximal values is divided into a grid with user defined resolution. After
partitioning the objective space into a grid of cells according to all objectives, only
a user-predefined number of solutions closest to the centre of each cell is selected
(here this number is equal to the number of grids).

3.3 Swarm Intelligence

Swarm Intelligence (SI) is another biological paradigm similar to AISs dynamic
approach to diversity preservation: swarm self-adapts itself to the environment and/or
communication between swarm members-agents when necessary [2]. For instance,
in Artificial Bee Colony (ABC) algorithms, a special type of swarm bee-agents,
called scouts, are activated on the last exploration stage of the algorithm to promote
following diversification. After two exploitation-intensification phases, where the
employed and onlooker bee-agents search for local optima, based on deterministic
and probabilistic selection, respectively, scout bee-agents force abandoning of non-
promising solutions and start exploring new solutions corresponding to new decision
space regions. A similar multi-agent approach for multi-modal search, motivated by
exploration strategies of scouts, is the self-organizing scouts (SOS) algorithm [3].

Biological paradigms are also addressed in spatial population structures as
opposed to panmictic ones. Examples are cellular genetic algorithms [1] and spatial
predator-prey algorithms in multi-objective optimization, which were investigated
first in [23].

Besides biological paradigms, the mathematical programming community has
developed several algorithms for diversity-oriented optimization that exploit mathe-
matical structures of functions expressing diversity [46].

In Table1 we present a summarized comparison of the bio-inspired metaphors
that were described in previous sections.

Table 1 Bio-Inspired Computational Metaphors

Metaphors

EA AIS SI

Rationale Natural selection Clonal selection Social cooperation

Reproduction Recombination Cloning Specialization

Local search Mutation Hypermutation Onlooker individuals

Variation Recombination Cumulative variation Scout individuals

Adaptation Natural selection Immunology principles Multi-agent

Diversity Niching, Various Variable pop. size Locality
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Fig. 2 Principles used in the
definition of diversity.
Individuals with different
gray level are considered to
be of different species. The
more different the gray level,
the more distant are the
species to each other

High diversity Low diversity 

Species count 

Entropy-based 

Distance-based 

Principle 

4 Diversity Measures

When assessing the performance of diversity maintenance mechanisms, it is of cru-
cial importance to apply reliable and well-understood diversity measures. Many of
these measures stem from biostatistics, because in conservational biology it is a
common problem to measure the diversity of species in a population. In diversity
oriented optimization, with species we express the concept of a class of points that is
essentially different from all other points in a population while being similar to each
other. An overview of the underlying principles of diversity measures is provided in
Fig. 2, where points with different colors symbolize different species. Diversity indi-
cators might take into account simply the number of (essentially different) species
in a population, or also measure the eveness of the distribution of species (entropy-
based), or the dissimilarity of species with respect to each other. Next, wewill discuss
important diversity measures and their relation to each other in more detail.

4.1 Diversity Based on the Abundance of Species

The simplest diversity measure is species richness, which is just the total number of
species in a population. This index has the drawback that it does not measure the
relative abundance of a species. In other words, if a population with n species would
almost entirely consist of individuals of the same species, it would have the same
richness as a population with evenly distributed abundance of species. A couple of
diversity indices presented next seek to circumvent this problem:

A classical diversity measure that takes into account the relative abundance of
a species is the Simpson index [33]. For a given population P , the Simpson index
S(P) measures the probability that if we draw a random sample of an individual of a
certain species without replacement, in a second experiment we draw an individual
of a different species. If the distribution of species abundances is more even, this
index has a higher value. Let ni denote the number of individuals of species i , N
denote the total number of individuals, and n the number of species. Then
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S(P) = 1 −
∑n

i=1 ni (ni − 1)

N (N − 1)
.

A disadvantage of the Simpson index is, that it is difficult to interpret for large
populations, because the probabilities tend to get very close to 0. It is difficult for
humans to judge the difference between a probability of, e.g., 0.0099 and of, e.g.,
0.00999.

A similar measure is the Shannon entropy:

S(P) = −
n∑

i=1

ni

N
· log ni

N
.

The Shannon entropy reaches its maximum, if the species are equally abundant and
grows with the number of species. Still the growth is limited by the slow growth of
the logarithm.

The Rich Gini Simpson quadratic index (RGS) [17] obtains values from 0 to
n − 1. The maximum is obtained for an evenly distributed population. It, thus, gives
a good idea about species diversity, and can be compared for populations of different
sizes. It is computed as:

RGS(P) = n
n∑

i=1

ni

N
(1 − ni/N ) = n

(

1 −
n∑

i=1

(ni

N

)2
)

.

The evenness of a distribution of species abundances could also be measured
independently of the population size by the Gini index, which originated from mea-
suring welfare of an economy [6]. It is given by the average absolute deviation from
the mean and tends to zero as the population tends to be evenly distributed over the
species.

G(P) = 1

n − 1

(

n + 1 − 2

(∑n
i=1(n + 1 − i)ni

∑n
i=1 ni

))

.

4.2 Diversity Based on Distances

In the aforementioned methods, the distance between species is not considered. For
instance Weitzman [43] suggested to consider sets with the same number of species
but bigger dissimilarity between species to bemore diverse. In addition, he demanded
that a diversity measure should grow if the number of species increases. Based on
these and a number of additional properties, he suggested a diversity measure that
we will term Weitzman Diversity W (P). It is defined as follows: Given a population
P and a distance matrix di j for members i and j , i = 1, . . . , N , j = 1, . . . , N : Let
d(i, Q) be the distance between i and the closest element (aka neighbor) in Q, for
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some non-empty Q ⊂ P . Moreover, let P \ i define the population with the i-th
individual removed. Then, the Weitzman diversity is recursively defined via

W (P) := max
i∈{1,...,N } (W (P \ i) + d(i, P \ i)) .

The Weitzman diversity has interesting theoretical properties, but it is costly to
compute it in practice for large populations. The running time of the fastest known
algorithm scales with O(2N ).

A simplification of the Weitzman distance would be to compute only the first
iteration of the recursion, which is known as the MAX-MIN diversity [15]:

M(P) := max
i∈{1,...,N }(d(i, P \ i)).

The MAX-MIN diversity is used as a straightforward way to measure diversity
of subsets in operations research. It was shown that the problem of finding a k-
size subset from P of maximal MAX-MIN diversity is NP hard. The MAX-MIN
diversity can be used to compare populations that have the same size. Its maximum
often yields evenly distributed populations, because every point seeks to maximize
the distance to its nearest neighbor. However, in relative comparisons it might be
misleading. Consider for instance a population P1 = {1, 2, 8, 9} and a population
P2 = {1, 2, 3, 4}. Then M(P1) = M(P2), if we consider the absolute deviation as a
distance measure. However, clearly P1 is more widespread than P2.

A proposal for a distance measure that shares most properties of the Weitzman
diversity, but can be computed faster, is the Solow Polasky diversity [35]. It requires,
however, a parameter θ > 0 that needs to be chosen by the user. The definition of
the Solow Polasky diversity S P(P) is as follows: Let ci j = exp(−θdi j ) denote a
correlation between point i and point j . If two points are of the same species the
correlation is one. Let M = C−1, assuming that C is of full rank. Then

S P(P) =
N∑

i=1

N∑

j=1

mi j .

It is easy to show that S P(P) tends to N , if the distance between all species tends
to be very large. Moreover, S P(P) tends to one, if species are very similar with
respect to each other. The parameter θ determines how fast the population tends to
N when the distances increase.

In the literature also other distance-based diversity measures occur. For instance,
the variance V (P) of a population is given by 1T Σ1, where Σ is a problem specific
covariance matrix. The entries of the covariance matrix can also depend on the
dissimilarity. The variance of a population is often used in portfolio theory in order
to measure the variance of the return (or risk) of a portfolio [44].
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Another way to measure diversity is to compute arithmetic or geometric aver-
ages of distances to nearest neighbors. This measure can be computed efficiently
and maximizing it will also lead to evenly spaced populations without duplicates.
These so-called gap measures were discussed in [14] and used in various contexts in
optimization. They, however, can only be used to compare populations of the same
size.

It might be somewhat tempting to use the sum of pairwise distances as a diversity
measure.However,whenmaximizing suchmeasures, often clustering at the boundary
is obtained. For instance, the population {1, 1, 4, 4} has a higher sum of pairwise
distances than {1, 2, 3, 4}. The first population has a sum of pairwise distances of 24
while the second population has a sum of pairwise distances of only 20.

In the next section we will discuss so-called indicator-based algorithms that are
directly oriented towards maximizing these diversity measures.

5 Indicator-Based Optimization Methods

A recent trend is to stress quality performancemeasures in the design of an algorithm.
In the context of metaheuristics, methods that directly seek tomaximize some quality
indicator of a set are called indicator-based optimization algorithms [49]. Originating
from methods that seek to find approximations to Pareto fronts, indicator-based
optimization algorithms are recently also used in other domains.

Quality performance measures targeted to optimization algorithms need to cope
with the fact that, the outcome is not constituted by a single solution, but by a set of
solutions (e.g., in multimodal and multi-objective optimization problems).

Each of the indicators allows comparing algorithms with respect to one of several
properties, among which are the quality of sets of individuals, diversity and distance
to the optimal set (assuming it is known). At the same time, researchers noticed
that optimizing indicators themselves is a good strategy for population evolution in
the framework of an algorithm, and suggested several indicator-based algorithms,
a trend that started in evolutionary multi-objective algorithm research [49]. Due to
the importance of diversity for set-based optimization, recently developed indicator-
based algorithms tend to include diversity, either as a separate indicator, see e.g. [14],
or as an integral part of an indicator, see e.g. [40].

Although there is no consensus on how to best capture and use the concept of diver-
sity in optimization, some robust definitions of diversity andmeasures are pointed out
in [20, 43]. A diversity index measuring the number of different potential solutions
and also the spread of solutions is recommended.

Different diversity indicators were proposed in the context of diversity-oriented
search. Ulrich et al. [41] suggested to chose indicators from bio-diversity. In this
field theWeitzmann diversity [43] and the Solow Polasky indicator [34] are common
diversitymeasures.While theWeitzmann indicator [43] ismotivated by phylogenetic
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trees with maximum parsimony and has exponential time complexity, the Solow
Polasky indicator is motivated by a utilitarian model of species conservation and its
computation can be accomplished in polynomial time. Due to its higher efficiency
the latter indicator is favored by Ulrich et al. [41]. Even faster are indicators based
on simple statistics on gaps between nearest neighbors [14, 26], although they can
only provide comparisons among populations of the same size.

Ulrich et al. [39] emphasized the importance of decision space diversity by sug-
gesting diversity-optimizing single objective (NOAH) and multi-objective (DIOP)
algorithms, see [39, 41], respectively, as well as an algorithm that integrates diversity
within the hypervolume indicator, see DIVA algorithm in [40].

When searching for level set approximations (e.g. for approximating an implicitly
defined manifold), set-proximity indicators are required, which often strongly cor-
relate with diversity indicators. Several diversity-based indicators were compared in
[14], and the Hausdorff distance-based indicator was suggested for level set approx-
imation within the Evolutionary Level Set Approximation (ELSA) algorithm. Indi-
cators for multimodal optimization are discussed in [26].

An alternative approach to balance convergence and diversity in evolutionary
algorithms was proposed in [44]. It stems from portfolio-optimization. It is well-
known in strategic decision making and financial management, and it is based on
the idea of composing portfolios of assets, which have a high potential of high
return in future and are of lowest possible risk of failing (for the same reasons).
The latter is related to how assets differ from each other. Diversity of assets selected
in the same portfolio is shown to reduce potential risk for the portfolio of assets
as a whole. By analogy the population of individuals in evolutionary algorithms
can be selected as a portfolio of diverse, highly performing individuals. It can be
formulated as a bi-objective optimization problem with two objectives: maximizing
potential return of a portfolio as a whole and minimizing risk (or, in other words,
maximizing diversity). These two objectives can also be combined into a single
indicator, e.g. Sharpe ratio. This indicator shows how return compensates the risk
taken. Traditionally, similarity of assets can be measured by covariance of their
individual returns, which could be evaluated in a probabilistic sense taking into
account their current performance. Then individuals with low (preferably negative)
covariance are selected in the portfolio. Such selection can be done at both the
parental and the environmental selection phases of evolutionary algorithms, and
the latter can even be combined with preserving solutions in the archive as in the
Portfolio Optimization Selection Evolutionary Algorithm (POSEA) [44]. Testing the
approach on some benchmarks shows its efficiency when compared to the state-of-
the-art indicator-based evolutionary algorithms and its potential for many objective
optimization application due to the fact that its complexity is independent of the
number of objectives.
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6 Taxonomy and Ontology

In artificial intelligence, ontologies are used to formally represent a knowledge
domain [16]. All instances, attributes and classes in the universum of discourse are
represented as well as relations between these concepts and instances. As opposed to
simple taxonomies or hierarchical descriptions of a field, ontologies allow to model
in parallel different concepts and relate themwith rules. An advantage of representing
the survey of the domain of diversity-oriented optimization by means of an ontology
is that besides the formal representation of classes and relations between them, also
predicate logic rules can be specified that will help the user to classify algorithms
correctly and find related work. Moreover, graphical representations of the ontology
allow for a quick assessment of the research activities within this field and how they
are related with each other.

Preliminary proposals for this taxonomy and ontology are provided in Figs. 3 and
4, respectively, and have been developed with the Protégé ontology editor [37].

Most relevant classes, concepts and relations presented graphically in the ontology
were contextualized and described in detail in the previous sections.

Fig. 3 Diversity oriented optimization taxonomy
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Fig. 4 Diversity oriented optimization ontology

7 Conclusion and Future Research

The overview proposed in this work aimed at capturing the development directions
of diversity-oriented optimization algorithms. To represent the domain of diversity-
oriented search in a systematic way, a diversity-oriented optimization taxonomy
was established following an ontology discussion. In the nearest future, we aim at
extending this ontology with various concepts, definitions and relations of diver-
sity indicators, algorithms, and integrate diversity-related theoretical results into the
survey.

In some application domains, the need for generating diverse solution sets has been
particularly stressed and diversity-oriented optimization was successfully applied,
for instance, in discrete design optimization in the car industry [38], truss bridge
design and optimization [41], drug discovery [42, 45], quantum control [30], and
space mission design [29]. It is expected that this is just the beginning and diversity
oriented optimization will become increasingly important to design high performce
and user friendly designs and search tools.
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Global Multi-objective Optimization
by Means of Cell Mapping Techniques

Carlos Hernández, Oliver Schütze and Jian-Qiao Sun

Abstract Multi-objective optimization problems (MOPs) arise in many fields in
engineering. In this chapter we argue that adaptation of cell mapping techniques,
originally designed for the global analysis of dynamical systems, are well-suited for
the thorough analysis of low-dimensional MOPs. Algorithms of this kind deliver an
approximation of the set of global solutions, the Pareto set, as well as the set of locally
optimal and nearly optimal solutions in one run of the algorithm which may signifi-
cantly improve the underlying decision making process.We underline the statements
on some illustrative examples and present comparisons to other algorithms.

1 Introduction

In many applications the problem arises that several objectives have to be optimized
concurrently. For instance, two important objectives in many space mission design
problems are the time of flight and the cost for a mission to a certain destination [1].
One important characteristic of such a multi-objective optimization problem (MOP)
is that its solution set, the Pareto set, does typically not consist of a singleton but
forms a (k − 1)-dimensional object, where k is the number of objectives involved
in the MOP. The computation of Pareto sets thus represents in general a challenge.
Even more, in certain applications one may be interested in approximate solutions
that may allow the decision maker (DM) to find alternative or backup solutions to
a given problem. As for the above space mission design problem this could be a
trajectory that is slightly more costly and has a slightly longer time of flight than an
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optimal one but offers in turn a different realization of the problem (see [2] for such
examples where the launch date has been considered as influential for the related
decision making process). The set of these approximate solutions even forms an n-
dimensional set, where n is the number of decision variables involved in the model.

There exist so far many techniques for the numerical treatment of MOPs. Most
of these works focus on the detection of one or several optimal solutions, while
the consideration of approximate solutions is relatively scarce, probably due to the
dimension of the solution set. There exists, for instance, a variety of point-wise
iterative search procedures that are capable of generating a sequence of pointsmoving
either toward or along the Pareto set (e.g., [3–7] and references therein). These local
methods, however, are not universally applicable due to the fact that the solution
set is not a singleton as well as some possible characteristics of the model such
as multi-modality and disconnectedness of the domain and/or the set of interest.
A possible alternative is given by set oriented methods that are of global nature
but, in turn, applicable to lower dimensional problems. Among them, specialized
evolutionary strategies have caught the interest of many researchers in the recent
past (e.g., [8–10]) since algorithms of this kind are very robust, applicable to a broad
class of problems, and deliver a finite size approximation of the set of interest in one
single run. Another class of set oriented methods are subdivision techniques [11–
13] that start by considering an n-dimensional box that contains the domain of the
MOP. This box gets subdivided into a set of smaller boxes, and according to certain
conditions it is decidedwhich box could contain a part of the set of interest and is thus
suited for further investigation. The other, unpromising boxes, are discarded from
the collection. This process, subdivision and selection, is performed on the current
box collection until the desired granularity of the boxes is reached. This way, a tight
covering of the Pareto set is obtained.

In this chapter, we argue that cell mapping techniques are in particular advanta-
geous for the thorough investigation of low dimensional problems. Such problems
occur such problems occur, for instance, in optimal control [14–17]. Cell mapping
techniques were first introduced in [18] for global analysis of nonlinear dynamical
systems. They transform classical point-to-point dynamics into a cell-to-cell map-
ping by discretizing both phase space and the integration time. In particular the phase
space discretization bounds the method to a small number of variables that can be
considered (say, n < 10), but this global analysis offers in turn much more infor-
mation than other methods. In the context of multi-objective optimization this is in
particular the extended set of options that can be offered to the DM after analyzing
the model. There are first of all the Pareto set and the set of approximate solutions as
motivated above. In particular if there exist several possibilities to obtain the same
optimal or nearly optimal performance, other methods have problems to detect them
all since the notion of dominance is defined in objective space (and thus, typically
only one of these solutions is detected). Further, the entire set of local optima can be
identified that also serve as potential backup solutions [2] and that are interesting for
landscape analysis [19]. It is important to note that the relevant information about all
these sets of interest is available after one single run of the algorithm (together with
an ex post analysis of the obtained data).
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In this work we will investigate adaptations of the cell mapping techniques to the
context ofmulti-objective optimizationwherewewill concentrate on the computation
of optimal and nearly optimal solutions of a given MOP. A preliminary study of
approximate solutions in the sense of Loridan [20] by means of cell mapping can be
found in [21]. Further, applications of the method to the design of optimal feedback
control are presented in [15, 16].

The remainder of this chapter is organized as follows: in Sect. 2, we state the
notations and some background required for the understanding of the chapter. In
Sect. 3, we state the cell mapping techniques for MOPs. In Sect. 4, we will present
some numerical results. Finally, in Sect. 5, we conclude and will give some paths for
future work.

2 Notations and Background

In the following we consider continuous MOPs

min
x∈Q

F(x), (MOP)

where Q ⊂ R
n is the domain of the problem and F is defined as the vector of the

objective functions F : Q → R
k , F(x) = (f1(x), . . . , fk(x))T , and where each objec-

tive fi : R
n → R is (for simplicity) sufficiently smooth.

The optimality of a MOP is defined by the concept of dominance [22]: a vector
v ∈ R

k is less than w ∈ R
k (v <p w), if vi < wi for all i ∈ 1, . . . , k. The relation ≤p

is defined analogously. Then, a vector y ∈ Q is dominated by a vector x ∈ Q (in
short: x ≺ y) with respect to (MOP) if and only if fi(x) ≤ fi(y), i = 1, . . . , k, and
there exists an index j such that fj(x) < fj(y), else y is non-dominated by x. A point
x ∈ Q is called (Pareto) optimal or a Pareto point if and only if there is no y ∈ Q
which dominates x. The set of all Pareto optimal solutions PQ is called the Pareto set,
and its image F(PQ) the Pareto front. Both sets typically form a (k − 1)-dimensional
object.

To define the set of approximate solutions we need the following definition.

Definition 1 ([20, 23]) Let ε = (ε1, . . . , εk) ∈ R
k+ and x, y ∈ Q.

(a) x is said to ε-dominate y (x ≺ε y) with respect to (MOP) if and only if F(x) −
ε ≤p F(y) and F(x) − ε �= F(y).

(b) x is said to−ε-dominate y (x ≺−ε y) with respect to (MOP) if and only if F(x) +
ε ≤p F(y) and F(x) + ε �= F(y).

The notion of −ε-dominance can be used to define our set of interest.

Definition 2 ([23]) Denote by PQ,ε the set of points in Q ⊂ R
n that are not −ε-

dominated by any other point in Q, i.e.,

PQ,ε := {x ∈ Q|�y ∈ Q : y ≺−ε x} . (1)
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Fig. 1 Two different examples for sets PQ,ε . At the left, we show the case for k = 1 and in para-
meter space with PQ,ε = [a, b] ∪ [c, d]. Note that the image solutions f ([a, b]) are nearly optimal
(measured in objective space), but that the entire interval [a, b] is not ‘near’ to the optimal solution
which is located within [c, d]. At the right, we show an example for k = 2 in image space, F(PQ,ε)

is the approximate Pareto front (taken from [23])

The set PQ,ε contains all ε-efficient solutions, i.e., solutions which are optimal
up to a given (small) value of ε. See Fig. 1 for two examples.

In [23, 24] several archiving techniques were proposed. In this work, we focus
in ArchiveUpdatePQ,ε . The archiver guarantees convergence under certain assump-
tions on the MOP and the generation process (see for more details [23, 24]).
Algorithm 1 show the realization of the archiver.

Algorithm 1 A := ArchiveUpdatePQ,ε (P, A0, ε)

Require: population P, archive A0
Ensure: updated archive A
1: A := A0
2: for all p ∈ P do
3: if �a ∈ A : a ≺−ε p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺−ε a then
8: A := A\{a}
9: end if
10: end for
11: end for

The cell mapping method was originally proposed by Hsu [18, 25] for global
analysis of nonlinear dynamical systems in the state space. The cellmappingmethods
have been extensively studied,which lead to, the simple cellmapping, the generalized
cell mapping [25], the interpolated cell mapping [26], the adjoining cell mapping [27,
28], the hybrid cell mapping [29], among others. The cell mapping methods have
been applied to optimal control problems of deterministic and stochastic dynamical
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systems [14, 17, 30, 31]. In [28], the cell mapping techniques where combined with
dynamical systems theory in order to find all solutions to a system of nonlinear
algebraic equations.

The cell mapping methods transform the point-to-point dynamics into a cell-to-
cell mapping by discretizing both phase space and the integration time. The simple
cell mapping (SCM) offers an effective approach to investigate global response prop-
erties of the system. The cell mapping with a finite number of cells in the compu-
tational domain will eventually lead to closed groups of cells of the period equal to
the number of cells in the group. The periodic cells represent approximate invariant
sets, which can be periodic motion and stable attractors of the system. The rest of the
cells form the domains of attraction of the invariant sets. For more discussions on
the cell mapping methods, their properties and computational algorithms, the reader
is referred to the book by Hsu [25].

3 Global Analysis of Dynamical Systems

In this section, we first define a dynamical system, and further on the solution of
a dynamical system. We also present the concept of the domain of attraction and
finally we look into the simple cell mapping method that was proposed to perform a
global analysis of a given dynamical system.

3.1 Dynamical Systems

Definition 3 (Dynamical System) A dynamical system [25] can be considered to be
a model describing the temporal evolution of a system and it is defined as follows:

ẋ = G(x),

where x is a n-dimensional vector and G : R
n → R

n is, in general, a nonlinear vector
function. The evolution of such a dynamical system can be described by a function
of the form:

xm+1 = G(x(m), μ), (2)

where x is a n-dimensional vector, m denotes the mapping step, μ is a parameter
vector, and G is a general nonlinear vector function. In this case ordinary differen-
tial equations can be used to describe the dynamical systems. These are defined as
follows:

ẋ = F(x, t, μ); x ∈ R
n, t ∈ R, μ ∈ R

l,

where x is a n-dimensional state vector, t is the time variable, μ is a l-dimensional
parameter vector, and F is a vector-valued function of x, t and μ.
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Definition 4 (Fixed point) When the evolution of a dynamical system is made, one
may find a point that satisfies the following:

x∗ = G(x∗, μ).

In this case, x∗ is called a fixed point of Eq. (2).

Definition 5 (Periodic group) A periodic solution of Eq. (2) of period l is a sequence
of l distinct points x∗(j), j = 1, 2, . . . , l such that

x∗(o + 1) = Go(x∗(1), μ), o = 1, 2, . . . , l − 1,

x∗(1) = Gl(x∗(1), μ).
(3)

We say that there exists a periodic solution of period l. Any of the points x∗(j), j =
1, 2, . . . , l, is called a periodic point of period l. One can see that a fixed point is a
periodic solution with l = 1.

Definition 6 (Domain of attraction) We say x∗(j) is an attractor if there exists a
neighborhood U of x∗(j) such that for every open set V ⊃ x∗(j) there is a N ∈ N

such that f j(U) ⊂ V for all j ≥ N . Hence, we can restrict ourselves to the closed
invariant set x∗(j), and in this case we obtain

x∗(j) =
⋂

j∈N

Gj(U).

Thus, we can say that all the points in U are attracted by x∗(j) (under iteration of
G), and U is called basin of attraction of x∗(j). If U = R

n, then x∗(j) is called the
global attractor.

Several kinds of attractors exists, however, only the ones formed by the set of
periodic solutions will be considered in this work.

3.2 Simple Cell Mapping

In this section, we present the simple cell mapping [25], which is useful to compute
global attractors and domains of attraction of a given dynamical system.

SCM does not consider the state space to be continuous but rather as a collection
of state cells, with each cell being taken as a state entity. Because of this, now we
need to introduce some basic concepts regarding the new model.

Definition 7 (Cell state space) A n dimensional cell space S [25] is a space whose
elements are n-tuples of integers, and each element is called a cell vector or simply
a cell, and is denoted by z.

The simplest way to obtain a cell structure over a given Euclidean state space is to
construct a cell structure consisting of rectangular parallelepipeds of uniform size.
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Definition 8 (Cell functions) Let S be the cell state space for a dynamical system
and let the discrete time evolution process of the system be such that each cell in
a region of interest S0 ⊂ S has a single image cell after one mapping step. Such an
evolution process is called simple cell mapping (SCM)

z(n + 1) = C(z(n), μ), z ∈ Z
N , μ ∈ R

l, (4)

where C : Z
N × R

l → Z
N , and μ is a l-dimensional parameter.

Definition 9 (Periodic group) A cell z∗ which satisfies z∗ = C(z∗) is said to be an
equilibriumcell of the system.LetCm denote the cellmappingC appliedm timeswith
C0 understood to be the identity mapping. A sequence of l distinct cells z∗(j), j ∈ l,
which satisfies

z∗(m + 1) = Cm(z∗(1)), m ∈ l − 1, z∗(1) = Cl(z∗(1)), (5)

is said to constitute a periodic group or P-Group of period l and each of its elements
z∗(j) a periodic cell of period l. One can see that an equilibrium cell is a l = 1 periodic
group.

Definition 10 (Domains of attraction) A cell z is said to be r steps away from a
periodic group if r is the minimum positive integer such that Cr(z) = z∗(j), where
z∗(j) is one of the cells of that periodic group.

The set of all cells, which are r steps or less removed from a periodic group is
called the r-step domain of attraction for that periodic group. The total domain of
attraction of a periodic group is its r-step domain of attraction with r → ∞.

The main idea of this method is based on the fact that the representation of the
numbers in a computer is finite. A number does not only represent the number
represented by its digits, but also an infinite neighborhood of numbers given by the
precision of the machine. This does not allow to assume variables to be continuous,
due to rounding errors and for this reason it is possible to consider the space as small
hypercubes whose size is given by the machine precision.

The cell mapping approach [25] proposes to increase this discretization by divid-
ing the state space into bigger hypercubes. The evolution of the dynamical system
is then reduced to a new function, which is not defined in R

n, but rather on the cell
space. In this case we restrict ourselves to functions that are strictly deterministically
defined. For this case, we have the so-called simple cell mapping method, which is
effective to obtain the attractors and basins of attraction of a dynamical system.

The SCM method uses some sets in order to capture the global properties of a
cell, which we describe in the following:

• Group motion number (Gr): the group number uniquely identifies a periodic
motion; it is assigned to every periodic cell of that periodic motion and also to
every cell in the domain of attraction. The group numbers, which are positive
integers, can be assigned sequentially.
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(a) N = 2
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(b) N = 4
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(c) N = 14
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(d) N = 28

Fig. 2 Numerical result of the SCM on Eq. (6) with different grid size, a N = 2; b N = 4;
c N = 14; d N = 28. The white cells represents the optimal solutions. The cells with the same
color belong to the same domain of attraction (for those cells their mapping end in the same cell).
The arrows represent the cell mapping. Finally, the black curve is the graphic representation of the
problem

• Period (Pe): defines the period of each periodic motion.
• Number of steps to a P-group (St): used to indicate howmany steps it takes to map
this cell into a periodic cell.
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According to the previous discussion, the algorithm works as follows: until all
cells are processed, the value of the group motion indicates the state of the current
cell and it also points out the corresponding actions to the cell.

• A value of Gr(cell) = 0 means that the cell has not been processed. Hence, the
state of the cell changes to “under process” and then, we follow the dynamical
system to the next cell.

• A value of Gr(cell) = −1 means that the cell is under process, which means we
have found a periodic group and we can compute the global properties of the
current periodic motion.

• A value Gr(cell) > 0 means that the cell has already been processed. Hence we
found a previous periodic motion along with its global properties which can be
used to complete the information of the cells under process.

The cell mapping methods have been applied to optimal control problems of
deterministic and stochastic dynamic systems [30–32]. Other interesting applications
of the cell mapping methods include optimal space craft momentum unloading [33],
single and multiple manipulators of robots [34], optimum trajectory planning in
robotic systems by [35], and tracking control of the read-write head of computer
hard disks [36].

Now, we present an application of the SCM on a simple example. We consider
the following SOP:

min
x

f = 4x3 − 2x, (6)

where f : R → R and x ∈ R. For this problem, we have two optimal points at
√
2
2 and

−
√
2
2 . Figure2 shows the result for different values of N and Q = [−3, 3]. The figure

shows the mapping from one cell to another one, until it reaches a periodic group.
Further, it shows two different group motions and for N = 14 and N = 28, we can
also see where the domain of attraction of

√
2
2 ends and the domain of attraction of

−
√
2
2 begins.

4 Simple Cell Mapping Techniques for MOPs

The cell mapping methods are so far designed for the global analysis of general
nonlinear dynamical systems. In the following, we will present adaptations to the
SCM in order to handle multi-objective optimization problems.
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4.1 The Algorithm

First, we need an appropriate dynamical system to run SCM. For this, we propose
to utilize descent directions. A descent direction ν at a point x0 ∈ Q is a direction in
which all objectives improve, i.e., it holds

F(x0 + tν) <p F(x0) (7)

for all sufficiently small step sizes t ∈ R+. Such descent directions can be found e.g.,
in [37–40]. For the bi-objective problems presented in this chapter, we have used the
following one.

Theorem 1 ([39]) Let (MOP) be unconstrained and be defined by two differentiable
functions. If ∇fi(x0) �= 0, for i = 1, 2 and for x0 ∈ R

n, then

v(x0) := −
( ∇f1(x0)

||∇f1(x0)|| + ∇f2(x0)

||∇f2(x0)||
)

(8)

is a descent direction at x0 of (MOP).

Using such a descent direction, the following dynamical system

ẋ(t) = v(x(t)) (9)

can now be used since it defines a pressure toward the Pareto set/front of the MOP
at hand: v(x) = 0 for every (locally) optimal point, and for all other points improve-
ments can be found by integrating (9). Thus, the set of locally optimal Pareto points
is contained in the global attractor of (9).

It remains to discretize the time (9), i.e., to define a ‘suitable’ step size t for the
related discrete dynamical system

xi+1 = xi + tν(xi). (10)

This is in general not an easy task as we have two conflicting aims. On the one
hand, wewould like to choose a step size t that lowers all objective functions as much
as possible for a given direction ν. On the other hand, it is desired tomake this decision
as cheap as possible in terms of computing time and number of function evaluations.
One option is to use an inexact step size control as the one proposed in [38].

Here, we can take advantage of the particular setting of the multi-objective SCM.
Most importantly, we have the size h = (ubi − lbi)/Ni for i = 1, . . . , n of the cells
and know that the initial point is the center of a cell. Using this, we already have a
value for sufficient decrease. If there exists a tνi ≥ hi

2 , i = 1, . . . , n, then we ensure
that we leave the current cell, which is required for the SCM in case the cell does
not contain a part of the Pareto set. Now, to decide if the step size t is accepted, we
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Fig. 3 Illustration of the
setting of the step size
control problem for the SCM
method

can use a dominance test. We are left with the choice of the initial step size t0. In the
current context, it is promising to compute the distance to the nearest neighbor cell
given the descent direction ν from the current cell center. Thus, we suggest to take
(compare to Fig. 3):

t0 = max

(
hi

νi

)
+ ε, ∀i|νi �= 0. (11)

We used this approach in the present work, with good computational results.
Alternatively, one could use a more sophisticated method such as the one presented
in [28]. The authors of this work propose an adaptive integration schemewhich either
finds a neighboring cell or stays in the same cell.

In both cases, although a bigger value of t0 may lead to a bigger decrease in the
objective function, this value of t0 is enough to leave the current cell and we have
several advantages. We would lose less information since we would be moving to a
neighbor cell. Also with this step size control we would be in the frontier between
the current cell and its neighbor, thus if the step size t0 is not accepted there is no
need to use backtracking. Given that we would not be able to leave the current cell
and also, since all cells are visited in the SCM method the advantages that bigger
step sizes would have by going to an optimal solution with less function evaluations
would be lost.

Inequality constraints are handled in the following (straightforward) way: if the
center point xi of cell i is violating any constraint, it will be discarded (i.e., mapped
to the sink cell), else, the point will be mapped as described above. The inclusion of
more sophisticated constraint handling techniques including the adequate treatment
of equality constraints is the subject of ongoing study.
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Fig. 4 Iteration of the SCM. The white cells represent the optimal solutions found so far. The
arrows show the path from the starting cell to an optimal solution of the MOP. The darker cells
represent unexplored regions

Algorithm2 shows the pseudo code of the cellmapping technique for the treatment
of MOPs that contains the above discussion. Figure4 gives some insight into the
behavior of the SCM using the MOP CONV2 (see Table1) on a 10 × 10 grid. The
figure shows the result of the SCM after 1, 3, 10 and 50 iterations in cell space. First,
we look at the cell located in (1, 1), which has been taken as the starting cell. Next,
we can follow the mapping from this cell by following its arrow. These arrows are
formed as follows: We take the center point of the current cell, then we apply the
dynamical system (e.g., the descent direction method that we have chosen) on the
center point and finally, with the new solution found, we compute to which cell it
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Table 1 MOPs considered in this work

WITTING

F(x) = (f1(x), f2(x)), where:

f1(x) = 1

2
(

√
1 + (x + y)2 +

√
1 + (x − y)2 + x − y) + λ · e−(x−y)2

f2(x) = 1

2
(

√
1 + (x + y)2 +

√
1 + (x − y)2 − x + y) + λ · e−(x−y)2

− 10 ≤ x1 ≤ 10

− 10 ≤ x2 ≤ 10

CONV2

F(x) = (f1(x), f2(x)), where:

f1(x) = (x1 − 1)4 + (x2 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)2

− 3 ≤ x1 ≤ 3

− 3 ≤ x2 ≤ 3

CONV3

F(x) = (f1(x), f2(x)), where:

f1(x) = (x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2

f2(x) = (x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2

f3(x) = (x1 − 1)2 + (x2 + 1)4 + (x3 − 1)4

− 3 ≤ x1 ≤ 3

− 3 ≤ x2 ≤ 3

− 3 ≤ x3 ≤ 3

RUDOLPH

F(x) = (f1(x), f2(x)), where:

f1(x) = (x1 − t1(c + 2a) + a)2 + (x2 − t2b)2 + δt

f2(x) = (x1 − t1(c + 2a) − a)2 + (x2 − t2b)2 + δt

where

t1 = sgn(x1)min

(⌈ |x1| − a − c/2

2a + c

⌉
, 1

)
,

t2 = sgn(x2)min

(⌈ |x2| − b/2

b

⌉
, 1

)
,

δt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t1 = 0 and t2 = 0

0.01 for t1 = −1 and t2 = 0

0.02 for t1 = 1 and t2 = 0

0.03 for t1 = 0 and t2 = −1

0.04 for t1 = −1 and t2 = −1

0.05 for t1 = 1 and t2 = −1

0.06 for t1 = 0 and t2 = 1

0.07 for t1 = −1 and t2 = 1

0.08 for t1 = 1 and t2 = 1

a = 0.5

b = 5

c = 5

− 10 ≤ x1 ≤ 10

− 10 ≤ x2 ≤ 10

SSW

F(x) = (f1(x), f2(x)), where:

f1(x) =
n∑

j=1

xj,

f2(x) = 1 −
n∏

j=1

(1 − wj(xj)),

wj(z) =
{
0.01 · exp(−( z

20 )2.5) for j = 1, 2

0.01 · exp(− z
15 ) for j > 2

0 ≤ x1 ≤ 40

0 ≤ x2 ≤ 40

0 ≤ x3 ≤ 40

TANAKA

F(x) = (f1(x), f2(x)), where:

f1(x) = x1

f2(x) = x2

0 ≤ x1 ≤ π

0 ≤ x2 ≤ π

g1(x) = −x21 − x22 + 1

+ 0.1 cos(16atan(
x1
x2

))

g2(x) = (x1 − 1

2
)2

+ (x2 − 1

2
)2 − 1/2
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belongs. In our example, the path is formed by the cells (1, 1), (2, 1), (3, 2), (4, 3),
and (5, 4). Cell (5, 4) is an endpoint in this case, since there is not an arrow from
this cell to another cell, which means we have a periodic group of 1. All the cells
processed belong to the same domain of attraction and, therefore, they should have
the same group number. Since, this is the first group motion discovered, we assign
to it the group number 2 (the group number 1 is reserved for those periodic motions
that go to the sink cell). Once we have the global properties of those cells, we have
to choose a new starting cell. Since the cell (2, 1) has already been processed, we
skip it and continue with the cell (3, 1). The mapping of this cell also finishes in the
cell (5, 4). Thus, this cell together with the new path should have the same group
number as before (group number 2).

Then, we choose a new starting cell and continue until we finish processing all
the cells. As we process the cells, we gather more information of the problem. For
this example we have 8 periodic motions with the same number of optimal solutions.

After one run of the SCM the information of the sets of interest can be extracted.
In the following, we will do this for optimal and nearly optimal solutions.

4.2 Computing the Pareto Set

Since the Pareto set of a MOP is contained in the global attractor of the dynamical
system that is derived from a descent direction, all cells with periodic groups are at
first point interesting. That is, such cells can potentially contain a part of the Pareto
set. It is important to note that due to the properties of the dynamical system periodic
groups with size larger than 1 should not appear, however, due to the discretization
both in space and time exactly this happens (i.e., oscillations around Pareto optimal
solutions can be observed leading to such periodic groups). Hence, we also consider
those cells as candidates. The collection of those cells form the candidate set.

This collection can then be further investigated (e.g., via a more fine grain cell
mapping or via subdivision techniques), or an approximation of the Pareto set can be
directly determined via the center points of the boxes (e.g., via a non-dominance test).
Technically speaking, we introduce a set called cPs (see Algorithm 2). Candidate
optimal cells are thus those cells with St = 0 and Gr �= 1. St = 0 means they are
part of a periodic group and Gr �= 1 ensures we do not add cells that map to the sink
cell.
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Algorithm 2 Simple cell mapping for MOPs
Require: MOP F, Dynamical system ν, upper bound ub, lower bound lb, divisions per dimension

N , cell size h = (ubi − lbi)/Ni for i = 1, . . . , n, Total number of cells Nc = N1 × N2 × . . . Ni
for i = 1, . . . , n

Ensure: Set of cells z, image of cells C, group number Gr, period number Pe, step number St,
candidate pareto set cPs

1: current_group ← 1
2: cPs = {}
3: Gr(i) ← 0,∀i ∈ Nc
4: for all pcell ∈ Nc do
5: cell ← pcell
6: i ← 0
7: while newcell = true do
8: xi ← center point of cell
9: if Gr(cell) = 0 then
10: ν ← compute as in Eq. (9)
11: t ← compute as in Eq. (11)
12: pi+1 ← xi + νt
13: ncell ← cell where pi+1 is located
14: C(cell) ← ncell
15: cell ← ncell
16: i ← i + 1
17: end if
18: if Gr(cell) > 0 then
19: Gr(Cj(pcell)) ← Gr(cell), j ← 0, · · · , i
20: Pe(Cj(pcell)) ← Pe(cell), j ← 0, · · · , i
21: St(Cj(pcell)) ← St(cell) + i − j, j ← 0, · · · , i
22: cell ← C(cell)
23: newcell ← false
24: end if
25: if Gr(cell) = −1 then
26: current_group ← current_group + 1
27: Gr(Ck(pcell)) ← current_group, k ← 0, · · · , i
28: j ← ith value when period appears
29: Pe(Ck(pcell)) ← i − j, k ← 0, · · · , i
30: St(Ck(pcell)) ← j − k, k ← 0, · · · , j − 1
31: St(Ck(pcell)) ← 0, k ← j, · · · , i
32: cPs ← cPs ∪ cellk, k ← j, · · · , i
33: cell ← C(cell)
34: newcell ← false
35: end if
36: end while
37: end for
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4.3 Computing the Set of Approximate Solutions

Once the run of the SCM is performed, also the approximate solutions can be detected
by analyzing the given data. For instance, if an approximation of PQ,ε is desired, one
can use the archiving technique ArchiveUpdatePQ,ε presented in [23, 24]. In order
to prevent that all points have to be considered in the archive, one can proceed as
follows:

Once the group number of the current periodic motion is discovered, the idea is to
update the archive first with the periodic group of the current periodic motion and to
continue with the rest of the periodic motion. Once it finds a cell which is not in PQ,ε

it stops the procedure. This can be done since subsequent points are dominated by
the current candidate solution and thus also not a member of PQ,ε. In the worst case,
however, this algorithm visits all the cells and the archive has to be updated by all
candidate solutions. This is the case if the entire domain Q is equal to PQε

. Typically,
this is not the case and the number of center points considered by the archive is much
lower than the total number of cells.

4.4 Error Estimates

Since SCM evaluates the entire discretized search space in one run of the algorithm,
we are able to provide estimations on the maximal error that can occur in the approx-
imation of the set of interest. Since we are particularly interested in errors of the
Pareto front (i.e., errors in objective space) the following estimates are based on
Lipschitz continuity.

Assume in the following that the objective function F is Lipschitz continuous on
each cell, i.e.,

‖F(x) − F(y)‖ ≤ LB(c,r)‖x − y‖, ∀x, y ∈ B(c, r), (12)

where
B(c, r) := {y ∈ R

n : |ci − yi| ≤ ri, i = 1, . . . , n} (13)

is a cell (or generalized box) with center c and radius r, and LB(c,r) is the Lipschitz
constant of F within B(c, r). Since SCM evaluates cells at the center c and since the
maximal distance on the right hand side of (12) is given for vertices of the cell, e.g.,
y = c + r, we can estimate (12) at least for unconstrained problems by

‖F(c) − F(y)‖ ≤ LB(c,r)‖r‖, ∀y ∈ B(c, r). (14)

The above formula might already be used to measure errors in image space. In
the context of multi-objective optimization, however, a potential trouble is that some
objectives may be in completely different ranges (e.g., the model SSW that will be
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considered in the next section. See Fig. 4 for an approximation of the Pareto front).
We suggest hence to consider the error bounds for each objective, that is

‖Fi(c) − Fi(y)‖ ≤ L(i)
B(c,r)‖r‖, ∀y ∈ B(c, r), i = 1, . . . , k, (15)

where L(i)
B(c,r) is the Lipschitz constant for objective fi. If the boxes are small enough,

one may approximate this value by the absolute value of the gradient at the center
point leading to the estimate

E(B(c, r), fi) := |∇fi(c)|‖r‖, ∀y ∈ B(c, r), i = 1, . . . , k, (16)

which we use in this study. As errors for the entire approximation we thus define

Ei := max
E(c,r)∈Q

E(B(c, r), fi), i = 1, . . . , k. (17)

It remains to measure the approximation quality obtained via SCM on a particular
problem after the algorithm has been performed. For this, we think it makes sense
to measure the distance of the Pareto front to the image F(A) of the archive A
of candidate solutions (e.g., the nondominated solutions) obtained by SCM. The
Inverted Generational Distance (IGD, see [41]) is widely used as a performance
indicator in multi-objective optimization, and measures the (averaged) distance of
the Pareto front to F(A) as

IGDp(F(A), PF) =
⎛

⎝ 1

M

M∑

j=1

dist(Fj, F(A))p

⎞

⎠
1/p

, (18)

where PF = {F1, . . . , FM} is a discretization of the Pareto front, F(A) = {y1, . . . ,
yN }, dist(a, B) = minb∈B ‖b − a‖ the distance from point a to set B, and p ∈ N. To
obtain an error bound for the objective space of each objective function fi, one can
modify IGD as follows:

IGD(i)
p (F(A), PF) =

⎛

⎝ 1

M

M∑

j=1

dist(Fj,i, F(A)i)
p

⎞

⎠
1/p

, i = 1, . . . , k, (19)

where Fj,i denotes the i-th entry of Fj, and F(A)i = {y1,i, . . . , yN,i}. Note that a finite
value of p in (19) averages the distances from Fj to F(A). If this is not wanted, one
can choose p = ∞ leading to

IGD(i)
∞(F(A), PF) = max

i=1,...,M
dist(Fj,i, F(A)i), i = 1, . . . , k. (20)

In this study, we will consider p = 1.
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5 Numerical Results

In the following we present some results obtained by the cell mapping techniques
and make some comparisons to other techniques.

First we consider the capability of the SCM to compute approximations of the
global Pareto set. Figure5 shows some results obtained by SCM on four MOPs
(see Table1 for the description of the problems). CONV2 is a convex bi-objective
problem. The Pareto set is a curve connecting the points (−1,−1)T and (1, 1)T . SSW
is a bi-objective problemwhose Pareto set falls into four connected components. Due
to symmetries of the model two of these components (the two outer curves on the
boundary of the domain) map to the same region in the Pareto front. TANAKA is a
bi-objective inequality constrained problem whose Pareto front is disconnected and
has convex and concave parts. Finally, CONV3 is a convex tri-objective problem.
We have used a 1,000 × 1,000 grid to perform the cell mapping for the problems
with n = 2 and a 100 × 100 × 100 grid for CONV3. Figure4 shows the results. In
all cases SCM is able to obtain a fine grained approximation of both Pareto set and
front. Table2 shows the error estimate discussed in the previous section on sixMOPs
including the four ones considered in Fig. 5 on different grid sizes together with their
IGD values. The match of both values (for each objective value) is almost perfect for
WITTING while the IGD values for the other unconstrained problems are (much)
better than the Ei values since these describe the worst case scenario. An exception
is the TANAKA problem where the IGD values are worse. The reason is that this
problem is constrained, and in this case the estimation made in (14) does not have to
hold: it may happen that a cell contains a part of the Pareto set, but its center point is
not feasible and will thus be discarded by SCM. Thus, the IGD values can get larger
than the estimation made in (14) which is the case for TANAKA.

Tables3 and 4 show comparisons of the SCM with NSGA-II [42] and MOEA/D
[43], two state-of-the-art MOEAs. For the comparison we have used a budget of
60,000 function evaluations for all algorithms, and to measure the approximation
qualitywe have used the averagedHausdorff distanceΔ1 [44]which ismore common
for the comparison of different algorithms (in particular, since it gives one value
for each problem). As anticipated, SCM cannot outperform the MOEAs (which
can get similar approximation qualities even for much smaller budgets of function
evaluations). Nevertheless, SCM is competing in the approximation of the Pareto set.

Now, we present a comparison of the SCM with an enumeration algorithm that
generates all solutions with a certain precision and then we keep the nondominated
solutions. The comparisons were made on CONV2 and RUDOLPH. In order to do
this comparison, we use a refinement method on SCM. This can be done due to the
fact that SCM returns a set of boxes and thenwe can use this set and apply subdivision
techniques.
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Table 3 Δ1 values for the distances of the images of the candidate sets to PQ

MOP SCM NSGA-II MOEA/D

WITTING 0.1421 0.2925 3.9561

CONV2 0.1329 0.1297 0.1677

CONV3 0.2814 1.2607 1.7306

RUDOLPH 0.1414 0.0232 0.4970

SSW 2.6533 3.7666 32.8963

Table 4 Δ1 values for the distances of the images of the candidate sets to F(PQ)

MOP SCM NSGA-II MOEA/D

WITTING 0.1984 0.2779 5.5826

CONV2 0.8288 0.1578 2.5493

CONV3 5.5185 16.3426 27.1944

RUDOLPH 0.1649 0.0282 0.7863

SSW 2.4000 0.8969 54.0516

For CONV2 problem, we used a 20 × 20 grid, and 3 subdivision steps using a
2 × 2 grid of test points to evaluate each cell for SCM, which leads to 7,416 function
evaluations. In the case of the grid search, we used a 92 × 92 grid leading to 8,464
function evaluations. The results on terms of Δ1 for parameter space and objective
space are as follows: SCM, 0.1289 and 0.5666; grid search, 0.1529 and 1.3074
respectively. Since for Δ1 smaller numbers represent better approximations, we can
say that SCM outperforms the grid search in this example.

For RUDOLPH problem, we used a 20 × 20 grid, and 3 subdivision steps using
a 3 × 3 grid of test points to evaluate each cell in the case of the SCM, which leads
to 4,128 function evaluations. In the case of the grid search, we used a 65 × 65 grid
leading to 4,225 function evaluations. The results in terms ofΔ1 for parameter space
and objective space are as follows: SCM, 0.0414 and 0.0724; grid search, 5.9615
and 0.1246, respectively.

Figure6 shows the results of the SCM method with subdivision techniques and
Fig. 7 shows the results of the enumeration algorithm. In this case SCM shows a
better performance in both problems, which is underlined by the indicator values.
Also the SCM has advantages if more than ‘just’ the solution set is sought as the
following examples demonstrate.

In some applications, it is desired to have a technique capable of computing both
global and local Pareto solutions. This can be useful in cases where the global criteria
does no account for all decision makers expectations [50–52].
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Fig. 6 Pareto sets (left) and fronts (right) using SCM with subdivision. Above, we can see the
results of CONV2 and below the ones of RUDOLPH

One interesting example in this context is MOP RUDOLPH (see Table1). In its
original version proposed in [47] the Pareto set consists of nine different connected
components, each of them mapping to the same Pareto front. We have modified
this problem here slightly so that the Pareto set consists of one of these connected
components whereas the other eight componentsmap to a slightly higher value (more
precisely, the objective values are shifted by a multiple of 0.01). Since this change in
objective space is just slight, all nine components are hence potentially interesting for
the decision maker if he/she is willing to accept this deterioration. Figure8 shows the
result of the SCM on this problem on a 1,000 × 1,000 grid. Note that the algorithm
is capable of detecting all nine connected components, and that each component is
approximated with the same quality.
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Fig. 7 Pareto sets (left) and fronts (right) using grid search on the problems CONV2 (above) and
RUDOLPH (below)

Following this idea of solving multimodal problems, we now compare the SCM
method with a simple multi start algorithm that uses the same descent direction than
SCM. We used a 20 × 20 grid, a subdivision of 3 × 3 for each optimal cell and
with 3 levels of subdivision in the case of the SCM, which leads to 12,120 function
evaluations. For the multi start algorithm, we used 130 starting points leading to
12,785 function evaluations. Figure9 shows the results of the SCM and the multi
start algorithm on MOP RUDOLPH with a budget of 12,500 function evaluations.
The results show that SCM is able to compute evenly spread solutionswhile the result
of the multi start approach reveals some gaps in the fronts. The results in terms ofΔ1

for parameter space and objective space are as follows: SCM, 0.1775 and 0.3362;
multi start, 0.4112 and 0.5631, respectively.
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Fig. 8 Numerical result of the SCM for MOP RUDOLPH on a 1,000 × 1,000 grid

Next we address the problem to approximate the set of nearly optimal solutions.
Figure10 shows the result of the SCM on four MOPs resulting from a consideration
of a 1,000 × 1,000 grid. As mentioned above, the investigation of the entire set
of approximate solutions is scarce. So far, archiving techniques exist that aim for
the approximation of PQ,ε [24], but efficient algorithms for their computations are
still missing. We stress that so far many heuristics exist that utilize the concept of ε-
dominance (e.g., [53–57]), however, all of them use this concept to obtain a finite size
approximation of the Pareto front and not to obtain the set of approximate solutions.
That is these works use it as a mean to improve diversity and thus get better a better
approximation of the Pareto front.

In order to obtain a comparison, we have coupledNSGA-II andMOEA/Dwith the
archiver ArchiveUpdatePQ,ε [24]. The coupling can thus be viewed as an algorithm
for the computation of PQ,ε, but since bothMOEAs are elitist algorithms their search
naturally focuses on PQ and not on the nearly optimal solutions. Further improve-
ments of the evolutionary strategies can thus be obtained via further modifications of
the selection operators which are, however, neither straightforward nor in the scope
of this chapter. Figure11 shows numerical results obtained by the NSGA-II variant
on the same MOPs, and Tables5 and 6 show averaged Δ1 values of the approxima-
tion qualities in parameter and objective space, respectively. For the latter we have
chosen a budget of 10,000 function calls for each algorithm. As it can be seen, SCM
offers the best performance in particular for the approximation of the set of interest
in decision space (which is of great interest for the decision maker as motivated in
Sect. 1).
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Fig. 9 Comparison of the SCM method (above) and multi start (below) on RUDOLPH

We would like to stress that PQ,ε is one way to define approximate solutions, but
there exist other ways depending on the given situation, and that the data obtained
by SCM is sufficient to comply with all of them. Figure12 shows the approximate
solutions obtained by SCM for different sets of approximate solutions. Next to PQ,ε

we have selected the notion of Tanaka [58] and Bonnel [59].
As a hypothetical decision making problem we reconsider MOP RUDOLPH.

Assume for this purpose that the DM is interested in the performance
Z = [0.17, 0.37]T (measured in objective space) and further that he/she is will-
ing to accept a deterioration of ε = [0.1, 0.1]. Then, for instance the representatives
of the cells whose images are within the target regions can be presented to the DM
leading here to 23 candidate solutions (i.e., the ‘optimal’ one plus another 22 nearly
optimal ones) that are shown in Fig. 13. The solutions are well-spread and come in
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Table 5 Δ1 values for the distances of the candidate solution set to PQ,ε , the best solutions in
boldface

MOP MOEA/D NSGA-II SCM

CONV2 0.5141 0.4628 0.0849

RUDOLPH 7.2438 8.0552 0.2102

SSW 10.8365 10.9384 0.8660

TANAKA 0.1462 0.1371 0.0248

Table 6 Δ1 values for the distances of the images of the candidate sets toF(PQ,ε), the best solutions
in boldface

MOP MOEA/D NSGA-II SCM

CONV2 7.8902 8.0027 2.4250

RUDOLPH 0.5090 0.7390 0.2186

SSW 5.8152 2.6852 1.5000

TANAKA 0.1462 0.1371 0.0248
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this case from all nine components of PQ,ε. Since these components are located in
different regions of the parameter space, the DM is hence given a large variety for
the realization of his/her project.

6 Conclusions and Future Work

In this chapter, we have investigated cell mapping techniques for the numerical
treatment of multi-objective optimization problems. Cell mapping techniques have
been designed for the global analysis of dynamical systems and replace the common
point-to-point by a cell-to-cell mapping via a discretization of both space and time.
We have adapted the cell mapping techniques to the given context via considering
dynamical systems derived from descent methods and have argued that the resulting
algorithm is in particular beneficial for the thorough investigation of small problems.
That is, the newalgorithm is capable of detecting the global Pareto set in one run of the
algorithm which is of course important for the related decision making process. For
the latter, however, also other points are of potential interest such as locally optimal
solutions and approximate solutions which can serve as backup solutions for the
DM in case he/she is willing to accept a certain deterioration measured in objective
space. The cell mapping techniques are capable of delivering all the sets after the
same run of the algorithm in the same approximation quality as the computed Pareto
set. While satisfactory algorithms for the computation of the Pareto set exist, such as
specialized evolutionary algorithms, this does not hold for the local and approximate
solutions. The cell mapping techniques presented in this work offer hence a surplus
in the design of small dimensional problems by providing a thorough analysis of the
problem at hand.

Though the results presented in thiswork are very promising, there are somepoints
that have to be addressed in order to make the algorithm applicable to a broader class
of problems. First of all, the main drawback of the cell mapping techniques is that
they are restricted to small dimensional problems since the number of cells grows
exponentially with the number of dimensions. Note, however, that the algorithm is
highly parallelizable since the core of the algorithm is themapping of each cell which
can be realized with small effort. We expect thus that the use of massive parallelism
realized e.g., via GPUs will lead to an applicability to higher dimensional problems.
Further, the constraint handling techniques may be improved so that also equality
constrained problems can be treated adequately. Another interesting path of future
research would be to use SCM to detect a possible bias in the descent method toward
the set of interest or, if possible, to design a bias free method. This could be done by
considering the volumes of the basins of attractions similar as done in [60] for general
dynamical systems. Bias free methods are highly wanted for memetic strategies
where the aim is to get an approximation of the entire solution set. Finally, it is
expected that the change from simple cell mapping techniques as used in this chapter
to generalized cell mapping will offer more information to thoroughly analyze the
given model.
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Percentile via Polynomial Chaos Expansion:
Bridging Robust Optimization
with Reliability

Mariapia Marchi, Enrico Rigoni, Rosario Russo and Alberto Clarich

Abstract We revise a method recently introduced by the authors for the estimation
of robustness and reliability in design optimization problems with uncertainties in
the input variable space. Percentile values of system output properties are estimated
by means of polynomial chaos expansions used as stochastic response surfaces. The
percentiles can be used as objectives or constraints in multiobjective optimization
problems.Weclarify the theoretical background andmotivations of our approach, and
we show benchmark results, as well as applications of multiobjective optimization
problems solved with evolutionary algorithms. The advantages of the method are
also presented.

1 Introduction

The treatment of uncertainties is a very important task in engineering design opti-
mization. In fact, in most real-world application fields of optimization problems,
design variables and problem parameters are affected by uncertainties arising from
different sources such as, for instance, variations in material properties or loading
conditions,measurement ormanufacturing precision, or evenmodeling assumptions.
The following questions naturally arise: What is the impact of this uncertainty on the
outcome of an optimization process? Is the best solution found with a deterministic
approach still the best (in terms of reliability and robustness)? By reliability, we
mean the probability that a certain design will not fail to meet a predefined criterion
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or performance function, called limit state function (LSF). Since an optimal solution
often lies at the boundary of the feasible region, determined by the problem con-
straints, if uncertainties affect design parameters, there will be a certain probability
of the optimum found to violate one or more constraints, thus compromising its reli-
ability. By robustness, we mean the stability of optimization outcomes against input
parameter variations, i.e., robust solutions are not very sensitive to input statistical
fluctuations.

Different types of uncertainties can be considered, such as probabilistic or epis-
temic (see, e.g., Refs. [1, 2]). We shall focus on the former. Probabilistic uncertain
input parameters aremodeled by random input variables following certain probability
density functions (PDFs), which represent the probability that a certain event occurs.
Because of the input stochasticity, the system response is also stochastic, but its PDF
is not known a priori. Since objectives and constraints in optimization problems are
often defined in terms of output variables, the uncertainty quantification (UQ), which
aims at assessing the statistical properties of random variables as precisely as possi-
ble, acquires a fundamental role. Distribution moments, such as mean and variance,
can be estimated with many techniques, e.g., Monte Carlo (MC) or Latin Hypercube
Sampling (LHS) [3], or the more efficient Polynomial Chaos [4] (PC). The latter
is accurate while usually requiring a smaller number of function evaluations than
sampling techniques. This is a crucial advantage, since computational time is one of
the major bottlenecks in common design optimization processes.

References [1, 2] provide two interesting surveys about computational optimiza-
tion under uncertainties and the concepts of reliability and robustness. Though inti-
mately connected, too often these concepts are considered separately in optimization
disciplines. There are two major classes of non-deterministic methods for handling
uncertainties in engineering design optimization: reliability-based design optimiza-
tion (RBDO) (e.g., Refs. [5–8]) and robust design optimization (RDO) (e.g., Refs. [9–
12]). The deterministic optimization problem is modified, by introducing reliability
indexes or robustness measures as objectives or constraints. Basic RBDO techniques
seek to reduce the failure probability of a certain goal by reducing the PDF area that
lies outside the feasible region boundaries, or equivalently by shifting themean value
away from constraint limits (the shape of the probability density function is assumed
to remain invariant in this shift). To reach this target, probabilistic or chance con-
straints are added to the optimization problem. On the other hand, RDO usually aims
at optimizing the mean performance while minimizing its variance. This way, the
optimization problem naturally becomesmultiobjective and can be directly solved by
means of evolutionary and genetic algorithms, which exploit mechanisms inspired
by biological evolution, such as selection, crossover, and mutation to find a set of
optimal solutions in an iterative evolution process, starting from an initial set of
candidate solutions (initial population) (see, e.g., [13] and references therein).
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In some cases, it is not only necessary to know expectation values or variances,
but also the full PDF, or its tails, in order to fully tackle the design optimization
problem. Cumulative distribution functions (CDFs) or percentile values should be
accurately estimated. For instance, distribution tails matter in reliability analysis,
while in crash safety analyses, a prescribed percentage of designs should satisfy
particular constraints due to safety norms or standards. The authors have recently
developed a robust design optimization approach, which goes beyond the first two
moments of output response probability density functions and can also be used to
assess reliability of optimization results [14–16]. Given a function of stochastic
input variables, our method aims at determining its cumulative distribution function
(CDF) and percentile values by means of polynomial chaos expansion techniques.
The PCE is used as a response surface model (RSM) to evaluate random samples in
order to determine the CDF and the desired percentiles. Accurate estimates can be
obtained with very few calls to computationally expensive simulation software. The
so-determined percentiles can be used as objectives or constraints in optimization
problems. Reference [14] introduces the technique and tests it on the RBDO of a
single-objective problem and on a multiobjective optimization with both robustness
and reliability measures. Reference [15] presents benchmarks on exact test functions
and the multiobjective robust and reliability-based optimization of an H-beam under
a stochastic vertical load. Reference [16] focuses on reliability aspects and shows
further benchmarks before applying the method to a sizing optimization problem in
structural engineering. This chapter reviews the methodology and further extends
the examples of Ref. [15].

Stochastic RSMs are used to assess reliability in Geotechnics [17]. We have
applied them to the context of robust multiobjective design optimization. A some-
what similar approach is described in Ref. [18], which also reviews multiobjective
optimization techniques under uncertainty. PCE is also employed in stochastic finite
element analysis to approximate the LSF for reliability calculations or to estimate
the full probabilistic content of a system response (see, e.g., Refs. [19, 20]). By using
the polynomial chaos, a key resource in RDO (as shown for instance in Ref. [21]), for
the determination of properties pertinent to RBDO, a bridge is established between
the two disciplines.

In Sect. 2 we summarize the basic concepts of reliability analysis and RBDO,
because they are useful for understanding the following sections. We then illustrate
the principles of the PCE and its application to UQ, our approach for the deter-
mination of percentile values by using the PCE as a stochastic RSM, and finally
the scheme for multiobjective optimization problems. In Sect. 3, we benchmark our
method by computing the PCE and percentile in the case of mathematical functions
with exactly known PDFs; then, we consider its performance for the computation
of failure probabilities in two classic test cases. In Sect. 4, we apply the percentile
calculation to the case of multiobjective optimization problems.
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2 Methods

2.1 Reliability-Based Design Optimization in Brief

The goal of reliability analysis is to find the probability of any mechanical or struc-
tural component or system of not violating certain criteria or performance functions.
Given a performance function g(X), where X = (X1, . . . , Xd) is a tuple of d sto-
chastic variables, the safe domain is usually defined by g(X) > 0, while the failure
domain by g(X) ≤ 0. The boundary g(X) = 0 is the limit state function. The system
reliability is the probability R = P(g(X) > 0). In most applications, its complement,
i.e., the failure probability Pf = 1 − R = P(g(X) ≤ 0), is usually computed. Pf can
be written as the integral

Pf =
∫

g(X)≤0
fX(X) dX , (1)

where fX(X) denotes the joint PDF of the stochastic variable vector.
Solving the integral in Eq. (1) is a difficult task in real-world applications. Sam-

pling techniques, like MC, become too demanding if the probability to be found
is very small. First- or second-order reliability methods (respectively FORM and
SORM) (see, e.g., Ref. [22]) recur to various approximations. The integration domain
is simplified by transforming the original input variables to independent standard nor-
mal variables, by means of Nataf transforms [23] for instance. In the transformed
space, the PDF contours have spherical symmetry. Then, the integration function
itself is approximated. For instance, in FORM, it is linearized around the LSF point
that has the minimum distance

||u|| = β (2)

(reliability index) from the origin in the transformedU-variable space (||.|| indicates
the norm). This yields the FORM approximation for the failure probability

Pf ,FORM = Φ(−β) (3)

where Φ(−β) stands for the standard normal CDF. In SORM, second-order contri-
butions are taken into account. Generalizations to the case of multiple linear state
functions are possible.

The basic reliability problem can be stated as a single-objective constrained opti-
mization problem:

{
minu ||u|| ,

s.t. g(u ≤ 0) ,
(4)
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(direct reliability problem) or

{
minu g(u) ,

s.t. ||u|| = βr ,
(5)

(inverse reliability problem).
The latter is very important for reliability-based design optimization, where prob-

abilistic (or chance) constraints are optimized according to a given reliability thresh-
old βr in the so-called performance measure approach (PMA). The direct problem
is instead at the basis of the reliability index approach (RIA), more expensive than
the other, but capable of directly optimizing the reliability value. For a brief survey
of these methods, as well as the several ways they can be integrated into an opti-
mization process, see, e.g., Ref. [8]. Reference [8] presents the advantages of using
evolutionary algorithms in RBDO, instead of classic double-loop, single-loop, or
decoupled methods. In single-objective optimization problems, evolutionary algo-
rithms are capable of reaching global reliable optima, while in multiobjective prob-
lems, a reliable approximation of the global Pareto front can be found to provide
insight on the regions which are more sensitive to a desired reliability index.

2.2 Uncertainty Quantification Through Polynomial Chaos
Expansions

Under specific conditions [24], a stochastic process can be expressed as a spectral
expansion (generalized polynomial chaos expansion) based on suitable orthogonal
polynomial bases, with weights associated to particular PDFs. Such expansions can
be applied also if Y is a function f of a vector of d stochastic input variables X =
(X1, . . . , Xd). We have then

Y = f (X) =
∞∑

i=0

aiψi(X) , (6)

with ψi the orthogonal polynomial basis and ai the expansion coefficients. If Y
is also dependent on deterministic variables, this dependency is accounted for by
the coefficients ai, whereas the dependency on the stochastic variables is entirely
accounted for by the polynomials.

The orthogonality condition reads

〈ψiψj〉 = ||ψi||2δij , (7)

with δij the Kronecker symbol and ||.||2 the squared norm associated to a scalar
product
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Table 1 Wiener–Askey scheme

Distribution Weight function Orthogonal
polynomials

Support

Gaussian e−x2/2 Hermite (−∞,∞)

Uniform 1 Legendre (−1, 1)

Exponential e−x Laguerre (0,∞)

Gamma e−xxα Generalized Laguerre (0,∞)

Beta (x − a)α(b − x)β Jacobi (a, b)

〈g(X)h(X)〉 =
∫

g(X)h(X)w(X)dX . (8)

According to the Wiener–Askey scheme [25], polynomials in each specific set
are orthogonal w.r.t. the weighting functions w(X), which are proportional to cer-
tain PDFs (see Table1). It was proven [24] that by choosing a PCE with weights
corresponding to the input variable distributions, the expansion convergence rate is
optimal (exponential).

For independent input variables, the PCE reduces to a tensorial product of one-
dimensional orthogonal polynomials.

In computational applications, the PCE is truncated to a finite chaos order or
polynomial degree k, i.e.,

Y = f (X) �
k∑

i=0

aiψi(X) . (9)

Thanks to the orthogonality condition, the mean and variance of Y are, respectively,
given by

μY = a0, (10)

σ 2
Y =

k∑
i=1

a2
i ||ψi||2 . (11)

This way, the problem of UQ is shifted to finding the PCE expansion coefficients ai

of Eq. (9). In the literature, different methods exist (like intrusive or non-intrusive
Galerkin projections, collocation methods, etc., see, e.g., Ref. [26]). We determine
them via a regression procedure, as in Ref. [12], by minimizing the differences
between the PCE predictions (for given chaos order k) on N sampling points and
the sample real output values. The sample can be arbitrarily chosen, except for a
required minimum number of points

N ≥ Nmin = (k + d)!
k!d! (12)

(d is the stochastic input variable space dimension) necessary to fully determine
the ai.
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The accuracy of the PCE estimates of the statistical moments scales as exp(−N),
where N is the number of sampling points. This is a great advantage with respect to
pure sampling techniques, such as MC or LHS, where the accuracy scales, respec-
tively, as 1/

√
N and 1/N .

2.3 Percentile Calculations

Once the PCE coefficients have been determined, we can use the truncated poly-
nomial chaos expansion of Eq. (9) as a stochastic response surface to approximate
the function Y in order to get its CDF and determine percentile values. The CDF is
obtained by evaluating (and sorting) the PCE responses on a LHS set of size Nperc.
This size depends on the accuracy required for the CDF as we show in Sect. 3.2.

With respect to a pure sampling approach, where the CDF is determined by com-
puting the true output function on the sample points, this is in principle much faster.
In fact, the use of the PCE allows escaping calls to solvers, which might be very
demanding from a computational point of view especially in real-world applications.

2.4 Approach for Multiobjective Optimization

The methods illustrated in Sects. 2.2 and 2.3 have been implemented within the
modeFRONTIER [27] multidisciplinary and multiobjective optimization software.
The uncertainty quantification flow is nested into an optimization process. At each
optimization step, we can compute the PCE and determine the statistical properties
(mean, variance, percentile values), which can be used as objectives or constraints
in the main optimization flow.

The scheme proposed is shown in Fig. 1. In the UQ flow, two samples are gener-
ated: one for the PCE coefficient determination and one for the CDF and percentile
computation. The first one has the smallest possible size N as the PCE coefficient
determination requires real function evaluations, which are usually computation-
ally demanding. However, we recommend using N > Nmin (strictly greater) to avoid
overfitting problems. The second sample, as already mentioned in Sect. 2.3, has a
bigger size Nperc and is used for non-expensive virtual evaluations via PCE. The last
two steps of the UQ flow of Fig. 1 can be skipped if only mean and variance are
needed.

The procedure illustrated does not depend on the optimization algorithm, which
can be chosen on the basis of the optimization problem and other requirements.
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Fig. 1 Scheme of percentile determination with a polynomial chaos expansion (uncertainty quan-
tification flow) nested into an optimization algorithm (optimization flow)

3 Benchmarks

We have performed a few benchmarks on analytic mathematical functions to deter-
mine the accuracy of the percentile calculations for various parameter settings. We
have considered several chaos orders k = 2, 3, 4, 5 and percentile sample sizes
Nperc = 100, 1000, 2000, 5000, 10000, 100000. Given that in Ref. [12], it was
shown that accurate estimates for means and standard deviations can already be
obtained with PCEs calculated on small samples, we have considered N = 2 · Nmin

points in the following examples.
In order to quantify the errors on the PCE estimate of the true output values

and on percentile values, we have repeated the last two steps of the UQ flow of
Fig. 1 Nrep = 100 times. To be specific, for each PCE order k and each Nperc, we
have generated 100 samples and computed the root-mean-square relative errors of
the PCE output function Δrel(f ) and of the computed percentile value Δrel(perc),
respectively, given by:

Δrel(f ) =

√√√√√ 1

Nrep · Nperc

Nrep∑
i=1

Nperc∑
j=1

(y(xj) − ỹi(xj)

y(xj)

)2
, (13)

Δrel(perc) =
√√√√ 1

Nrep

Nrep∑
i=1

(yp
exact − ỹp

yp
exact

)2
, (14)
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where y(xj) denotes the value of the real output function y relative to the input variable
vector xj, ỹ(xj) stands for the PCE evaluation of the vector xj, while yp

exact and ỹp

represent, respectively, the true pth percentile value and its PCE approximation on
the LHS sample. Δrel(f ) is an indicator of the accuracy of the PCE as stochastic
response surface model of the true output function, while Δrel(perc) indicates the
accuracy of the percentile estimate.

In the tests shown below, we have considered the 95th percentile, but the conclu-
sions drawn do not depend on this particular choice.

Other indicators of the PCE accuracy (as an uncertainty quantification method)
are the absolute value of the relative difference between the exact values for the
output mean μ and standard deviation σ , and the PCE estimates, i.e., δμ,rel and δσ,rel,
respectively, given by

δμ,rel =
∣∣∣μPCE − μexact

μexact

∣∣∣, (15)

δσ,rel =
∣∣∣σPCE − σexact

σexact

∣∣∣. (16)

We have also analyzed the average times necessary to generate the LHS percentile
sample (tsample), evaluate outputs with the PCE (teval), and sort the outputs in order
to build the CDF and extract the percentile info (tsort).

3.1 Exponential Function of a Standard Normal Input
Variable

We have considered the exponential function y = ex of a standard normal input
variable x, with zero mean and unit standard deviation. The output function is log-
normally distributed; thus, its statistical properties are known exactly. The function
y has been expanded in a basis of orthogonal Hermite polynomials.

In Table2, we show the PCE accuracy indicators δμ,rel and δσ,rel of Eqs. (15)–(16)
and the root-mean-square relative errors Δrel(f ), Δrel(perc) of Eqs. (13)–(14) for the
various k, N , and Nperc considered. Four trends can be observed: Trend one: every
indicator, except for Δrel(f ) (which we will discuss in the second trend), assumes
smaller values for increasing polynomial chaos degree k. This fact is reasonable,
since an improved quality of the PCE approximation of an exponential function
is expected for bigger k values. Trend two: Δrel(f ) has an oscillating behavior for
increasing k. This could be due to the difficulty of approximating an exponential
functionwith a polynomial expansion. Trend three:Δrel(f ) is approximately constant
(apparently it oscillates around a value) for increasing sizes Nperc. This also sounds
reasonable. Indeed, Δrel(f ) indicates the quality of the PCE as a surrogate model of
the real output function, and we do not expect the PCE prediction accuracy to be
dependent on Nperc, unless some points belong to regions where the approximation
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Table 2 Exponential function of a standard normal input variable. From left to right: polynomial
chaos order k, number ofPCEsample pointsN , PCEaccuracy indicators δμ,rel and δσ,rel ofEqs. (15)–
(16), percentile sample size Nperc, and root-mean-square relative errors Δrel(f ) and Δrel(perc) of
Eqs. (13)–(14)

k N δμ,rel δσ,rel Nperc Δrel(f ) Δrel(perc)

2 6 0.156 0.387 100 0.773 0.22666

1000 1.144 0.22722

2000 1.231 0.22730

5000 1.238 0.22727

10000 1.231 0.22727

100000 1.368 0.22726

3 8 0.042 0.178 100 1.72 0.03514

1000 3.40 0.03482

2000 3.20 0.03490

5000 3.30 0.03491

10000 3.77 0.03494

100000 3.90 0.03494

4 10 0.018 0.092 100 1.45 0.01912

1000 1.70 0.00723

2000 1.40 0.00698

5000 2.13 0.00696

10000 1.56 0.00697

100000 2.10 0.00697

5 12 0.0067 0.0216 100 2.206 0.02159

1000 2.814 0.00274

2000 3.275 0.00191

5000 4.060 0.00167

10000 4.197 0.00167

100000 4.192 0.00164

is particularly poor. Trend four: Δrel(perc) has approximately constant values for
increasingNperc values for k = 2, 3,while they decrease until saturation for k = 4, 5.
This could be due to a competition between the PCE approximation accuracy as a
RSM and the improvements in the CDF for increasing percentile sample sizes Nperc.
For small k values, the effects of the PCE accuracy prevail and no advantage is
found by increasing the sample size Nperc. At first, for bigger k values, the percentile
computation becomes more accurate (thanks to the improved CDF derived from a
bigger sample). Subsequently, this effect saturates for Nperc > 1 000.

The effects of k on the CDF accuracy are shown in Fig. 2, where the approximate
CDF obtained by a PCE evaluation of Nperc = 1 000 sample points (with k = 2 or
k = 3) is compared to the true CDF. In this, as well as in other examples, we have
found that at least k = 3 should be used, in order to get a decent approximation.
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Fig. 2 CDF of the exponential function of a standard normal input variable: comparison of the
exact CDF (solid line) and PCE estimates (empty circles) for k = 2 (left panel) and k = 3 (right
panel)

Fig. 3 Average times (in
seconds), tsample (solid
circles), teval (solid squares),
and tsort (solid triangles)
versus percentile sample size
Nperc for the k = 3 PCE
percentile computation of the
exponential function of a
standard normal variable.
Logarithmic scales have been
used for both axes. Lines are
included as a visual aid
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In Fig. 3, we show how the average sample generation, evaluation, and sorting
times scale with the number of sampling points Nperc. The example provided is for
the case k = 3. The most expensive process is the percentile sample generation. The
least expensive process is the value sorting for the construction of the sample CDF.
The sample evaluation time lies in between the others, and we do expect this trend
to be confirmed also in real-world applications since this is the time for the virtual
function evaluation by means of the PCE.
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3.2 Ratio of Two Lognormal Input Variables

As a second test case, we have considered a two-dimensional problem (d = 2):
the ratio of two lognormally distributed input variables. The expectation value and
standard deviation of the logarithm of each input variable are 1 and 0.5 for both
variables. The output function has also a lognormal distribution, corresponding to a
normal variable with zero mean and

√
2/2 standard deviation.

Lognormal random variables can be straightforwardly transformed, by means
of a nonlinear variable transform, into standard normal variables. Indeed, if x is a

lognormal random variable with probability density function fX = 1√
2πV x

e− (ln x−M)2

2V ,
where M and V denote the expectation value and variance of the associated normal
variable, then z = ln x−M√

V
is a standard normal variable. This way, it is possible to

apply the Wiener–Askey scheme and expand the considered function in a basis of
Hermite polynomials in the transformed input variable space.

In Table3, we report the test results. In this benchmark, all the indicators appear to
assume smaller values for increasing k, although the differences found between the
k = 3 and k = 4 cases are not very big.As found inTable2,Δrel(f )has approximately
constant values for given k and increasing percentile sample sizes. For Δrel(perc), at
variancewith the exponential function benchmark, we can observe a greater accuracy
of the PCE estimates for increasing Nperc values, until a saturation effect (found only
for k = 2 and k = 3).

In Fig. 4, we show the effects of the sample size Nperc on the CDF were found
with our method. In the four panels, we compare the exact CDF and the approximate
CDF obtained with a k = 3 PCE and Nperc = 100, 1 000, 10 000, 100 000 (from
left to right, top to bottom). As expected, we can observe an increasing smoothness
and accuracy of the approximate CDF for increasing values of Nperc. Starting from
Nperc = 1 000, the exact and approximate CDFs almost coincide, except for small
deviations in the lower range of probability.

In regard to average times for the sample generation, evaluation, and value sorting,
we have found no significant difference from the case of Sect. 3.1.

3.3 Failure Probability for a Mechanical Component
and a Cantilever Beam

We have investigated two classic examples of reliability analysis, also considered
in Ref. [28], with the aim of benchmarking the performances of our method for the
estimation of failure probabilities. In the following, the two examples will be referred
to as “case 1” and “case 2.” In both, the stochastic input space dimension is d = 2
and the input variables are normally distributed.
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Table 3 Results for the ratio of two lognormal input variables. From left to right: polynomial chaos
order k, number of PCE sample points N , PCE accuracy indicators δμ,rel and δσ,rel of Eqs. (15)–
(16), percentile sample size Nperc, and root-mean-square relative errors Δrel(f ) and Δrel(perc) of
Eqs. (13)–(14)

k N δμ,rel δσ,rel Nperc Δrel(f ) Δrel(perc)

2 12 0.003 0.101 100 0.743 0.07972

1000 0.749 0.03245

2000 0.778 0.03012

5000 0.901 0.02449

10000 0.868 0.02307

100000 0.810 0.02166

3 20 0.0013 0.021 100 0.531 0.09064

1000 0.857 0.03047

2000 0.697 0.02751

5000 0.620 0.01653

10000 0.617 0.01397

100000 0.631 0.01015

4 30 0.0011 0.014 100 0.333 0.09697

1000 0.607 0.03329

2000 0.675 0.02041

5000 0.491 0.01475

10000 0.517 0.00964

100000 0.469 0.00301

5 42 2.58E-4 0.003 100 0.178 0.10823

1000 0.077 0.03459

2000 0.156 0.02316

5000 0.163 0.01414

10000 0.132 0.00944

100000 0.125 0.00341

Case 1 concerns a mechanical component. As a limit state function g(X), we have
taken the difference between the strength X1 ∼ N(200, 20)MPa and the maximum
stress X2 ∼ N(150, 10)MPa. N(μ, σ ) denotes a normal distribution with mean μ

and standard deviation σ . The LSF reads

g(X) = X1 − X2 . (17)

Case 2 deals with a cantilever beam with rectangular section. As a LSF, we have
taken the difference between a maximum allowable displacement value “D0 = 3”
and the tip displacement, i.e.,

g(X) = D0 − 4L3

Ewt

√(X2

t2

)2 +
( X1

w2

)2
, (18)



70 M. Marchi et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  2  4  6  8

C
D

F

y

Nperc=100
Exact CDF

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  2  4  6  8  10  12  14

C
D

F

y

Nperc=1000
Exact CDF

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  2  4  6  8  10  12

C
D

F

y

Nperc=10000
Exact CDF

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  2  4  6  8  10  12  14

C
D

F

y

Nperc=100000
Exact CDF

Fig. 4 CDF of the ratio of two lognormal variables: comparison of the exact CDF (dashed line,
blue online) and a PCE estimate (solid line, red online) for k = 3 and different values of Nperc as
indicated in the labels

with elasticity module E = 30 · 106 psi, beam length “L = 100,” and beam section
dimensions “w = 2” and “t = 4.” X1 ∼ N(500, 100) lb and X2 ∼ N(1 000, 100) lb
are vertical and lateral external normal forces applied to the beam.

In both cases, failure modes correspond to g(X) ≤ 0. Sample estimates of the
failure probabilities Pf are determined with the formula:

Pf = nf

Ntot
, (19)

where nf corresponds to the number of failure events (i.e., the number of sample
points for which g(X) ≤ 0) and Ntot represents the total number of events, i.e., the
sample size.

We have determined the PCE expansions of the LSFs and performed tests as in
Sects. 3.1 and 3.2.

Since the LSF of Eq. (17) is a linear combination of two normally distributed
variables, itsmeanvalue, standard deviation, percentiles, andCDFare exactly known.
The same is not true for case 2. Thus, in order to benchmark our results, we have
also generated a target LHS of 1 million points and computed sample estimates of
the desired quantities.
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Table 4 Maximum stress limit state function: relative errors δμ,rel , see Eq. (15), and δσ,rel , see
Eq. (16). For comparison, target values computed on a target LHS sample of 1 million points are
provided in the last row

k N δμ,rel δσ,rel

2 12 1.97E-8 4.97E-8

3 20 6.49E-10 5.39E-9

4 30 6.95E-8 9.02E-8

5 42 2.24E-8 1.70E-7

Target LHS 7.77E-9 1.91E-4

Table4 reports mean value and standard deviation errors with respect to the exact
values for case 1, see Eqs. (15)–(16), as well as the deviations found in the target
LHS sample of 1 million points. The mean value accuracy of the PCE estimates is
very high and oscillates around the value of the target LHS one, whereas the standard
deviation estimate through the PCE seems to be much more accurate than the target
sample estimate.

Table5 reports the root-mean-square relative errors Δrel(f ) and Δrel(perc) of
Eqs. (13)–(14), as well as the failure probabilities Pf and LHS Pf . Both failure prob-
abilities are derived from the sample size Nperc by using Eq. (19). Pf is obtained by
evaluating the sample points with the PCE approximation, whereas LHS Pf indicates
the failure probability found with the true LSF evaluation.

In this simple case (linear LSF, function of two independent normal random
variables), the PCEapproximates the trueLSFverywell, as shownby the small values
obtained for Δrel(f ) in Table5. As a consequence, the error on the 95th percentile
Δrel(perc) is also very small even for k = 2. Moreover, the failure probabilities
computed with the PCE approximation (Pf ) and with the true function evaluation on
the same Nperc sample (LHS Pf ) have identical values. The failure probability values
must be compared with the target LHS calculation estimate Pf = 0.01263 and the
first-order reliability method (FORM) [28] (which is exact for a linear LSF) value
Pf = 0.0127. The relative error between the target LHS failure probability and the
exact one is ∼ 0.6%, while the estimates provided by the PCE used as a stochastic
response surface yields relative errors of at most ∼ 3% for k > 2 and Nperc ≥ 1 000.
The relative error becomes comparable to the target LHS as Nperc increases.

Since for case 2 exact values are not known, the only comparison possible is
with the target LHS outcomes. Thus, Table6 reports directly the mean value μ and
standard deviation σ estimated with the PCE. The target LHS estimates are shown
in the last row. The agreement between PCE outcomes and target LHS is good.

Table7 shows the root-mean-square relative error on the functionΔrel(f ), the 95th
percentile value of the LSF (f 0.95), as well as the failure probabilities Pf and LHS Pf

(same notation as in Table5). Although the errors on the PCE function estimate are
three to five magnitude orders greater than magnitude orders in case 1, the percentile
values found differ from the target LHS results by only a small percent (the relative
difference, being ∼ 10−4). Also the relative agreement between Pf and the LHS Pf
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Table 5 Mechanical component: maximum stress limit state function. From left to right PCE order
k, the number of PCE sample points N , percentile sample size Nperc, root-mean-square relative
errors on the function estimate Δrel(f ) and on the percentile Δrel(perc), see Eqs. (13)–(14), failure
probability computed on the sample of Nperc points with the PCE approximation of the LSF (Pf )
and with the true function evaluation (LHS Pf ). For comparison, the target LHS results on a sample
of 1 million points are Δrel(perc) = 6.32E-4 and Pf = 0.01263

k N Nperc Δrel(f ) Δrel(perc) Pf LHS Pf

2 12 100 7.713E-6 0.02782 0.0111 0.0111

1000 1.32E-5 0.00991 0.01179 0.01179

2000 1.14E-5 0.00739 0.012295 0.012295

5000 5.08E-5 0.00515 0.012856 0.012856

10000 1.90E-4 0.00363 0.012661 0.012661

100000 4.19E-4 0.00112 0.0126708 0.0126709

3 20 100 1.97E-6 0.03239 0.0106 0.0106

1000 3.67E-6 0.00973 0.01232 0.01232

2000 1.37E-5 0.00724 0.01277 0.01277

5000 8.33E-5 0.00453 0.01227 0.01227

10000 1.42E-5 0.00352 0.012629 0.012629

100000 1.00E-4 0.00108 0.012695 0.012695

4 30 100 3.17E-5 0.03063 0.0128 0.0128

1000 4.28E-5 0.01110 0.01281 0.01281

2000 1.11E-4 0.00743 0.01278 0.01278

5000 2.35E-4 0.00484 0.012786 0.012786

10000 2.06E-4 0.00392 0.012615 0.012615

100000 0.00138 0.00119 0.0126999 0.0127

5 42 100 1.13E-4 0.03388 0.0136 0.0136

1000 3.46E-5 0.01104 0.01269 0.01269

2000 1.11E-4 0.00842 0.01277 0.01277

5000 6.35E-5 0.00842 0.012934 0.012934

10000 4.53E-4 0.00404 0.012741 0.012741

100000 6.47E-4 0.00110 0.0126768 0.0126768

Table 6 Cantilever beam limit state function: mean value μ and standard deviation σ estimated
with a PCE approximation of the LSF. For comparison, target values computed on a LHS sample
of 1 million points are provided in the last row

k N μ σ

2 12 0.6613652863493148 0.37416866059775356

3 20 0.6610289197443749 0.37193471743269313

4 30 0.6609597977068523 0.37200793971216195

5 42 0.6608838533734408 0.37191515245843537

Target LHS 0.660877783494823 0.37191038371188223
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Table 7 Cantilever beam: tip displacement limit state function. From left to right PCE order k, the
number of PCE sample pointsN , percentile sample sizeNperc, root-mean-square relative error on the
function estimate Δrel(f ), see Eq. (13), 95th percentile value of the LSF (f 0.95), failure probability
computed on the sample of Nperc points with the PCE approximation of the LSF (Pf ) and with the
true function evaluation (LHS Pf ). For comparison, the target LHS computation on a sample of 1
million points yields f 0.95 = 1.2617203229641354 and Pf = 0.040894

k N Nperc Δrel(f ) f 0.95 Pf LHS Pf

2 12 100 0.11371 1.26186 0.0417 0.0411

1000 0.79136 1.26487 0.04143 0.04099

2000 9.08047 1.26566 0.04171 0.041115

5000 1.53963 1.26546 0.041464 0.040942

10000 4.54342 1.26493 0.041522 0.040974

100000 3.21347 1.26555 0.0415129 0.0409903

3 20 100 0.02679 1.26241 0.0406 0.0407

1000 0.06632 1.26085 0.04091 0.04098

2000 0.66060 1.26091 0.040825 0.040865

5000 0.07576 1.26106 0.040962 0.040984

10000 0.32231 1.26097 0.04105 0.041104

100000 0.82031 1.26106 0.0409503 0.0409975

4 30 100 0.01741 1.26081 0.04 0.0401

1000 0.19688 1.26167 0.04083 0.04086

2000 0.28078 1.26232 0.041015 0.04113

5000 0.06368 1.26109 0.040878 0.040968

10000 0.10976 1.26115 0.040828 0.040924

100000 1.75674 1.26136 0.040946 0.041027

5 42 100 0.00641 1.26436 0.0411 0.0411

1000 0.06967 1.26043 0.04144 0.0414

2000 0.02962 1.26211 0.04128 0.04125

5000 0.12767 1.26111 0.041066 0.041052

10000 0.09531 1.26123 0.041092 0.041078

100000 0.19915 1.26106 0.0410295 0.0410132

is quite good (in the worst cases, it is ∼10−2), and the accord with the target failure
probability (0.040894) is also satisfactory. To be noted is that FORM and SORM
results [28] are Pf = 0.04054 and Pf = 0.04098.

Figure5 shows the CDF of the LSFs of case 1 and case 2. In both panels, we
compare the PCE results obtained with k = 3, N = 20, and Nperc = 100 000 (empty
circles) with a target CDF obtained with real function evaluations on the target LHS
of 1 million points (solid lines). In the left panel, the exact PDF of the LSF is also
shown (dashed line). The agreement between the PCE prediction and the exact CDF
is good, except for small deviations (emphasized by the use of a logarithmic scale
(basis 10) on the CDF axis) occurring at small probability values. The agreement
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Fig. 5 CDF of the limit state function for the maximum stress of a mechanical component (left
panel) and a cantilever beam tip displacement (right panel). PCE estimates (obtained with k = 3,
N = 20, and Nperc = 100 000), denoted by empty circles, are compared to LHS target results (solid
line) and, for the mechanical component case, also to the exact CDF value (dashed line, left panel)

between the target CDF obtained with true function evaluations and the PCE (k = 3)
approximation obtained with only 20 real function evaluations is good in both cases.

4 Multiobjective Optimization of an H-Beam

In this section, we show an example of multiobjective RDO, in which percentiles are
used as objectives and constraints during the optimization. When reliability aspects
are considered in multiobjective optimization problems, the reliable front may be
different from the deterministic Pareto front. In particular, by requiring more reliable
solutions, the front is expected to move further inside the feasible objective space,
as shown in Ref. [8] by comparing outcomes of a deterministic run on the “CON-
STR” problem of Ref. [29] with RBDO results obtained by introducing probabilistic
constraints and requiring a given reliability to be respected. The same trends were
observed in Ref. [16] by performing a RDO on the same problem and considering
percentile values of the constraints, with a probability threshold corresponding to
the desired reliability. The complementary issue of the robustness of the Pareto front
in RDO problems is addressed for instance in Ref. [21], where the sensitivity of
solutions w.r.t. input perturbations is investigated.

For this chapter, we have considered an H-beam with three input variables,
i.e., the H section dimensions (Web thickness a ∈ [1, 10]mm, flange width b ∈
[50, 150]mm, and flange depth c ∈ [50, 250]mm, see left panel of Fig. 6), and one
input parameter, i.e., the external load F = 2 000N (vertically applied in the middle
of the beam, see right panel of Fig. 6). The Young’s modulus E = 2 · 105MPa, the
beam density ρ = 8 000Kg/m3, and the beam length L = 3m are constant parame-
ters.

The output variables of the problem are the maximum stress
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Fig. 6 H-beam: section (left panel) and load (right panel)

σ = FL

4I

(
a + c

2

)
, (20)

the beam deflection

δ = FL3

48EI
, (21)

and the beam weight
W = (2ab + ca)Lρ , (22)

where

I = ac3

12
+ 2

[
ba3

12
+ ab

(a

2
+ c

2

)2
]

(23)

represents the beam section moment of inertia of the plane area.
We have considered a two-objective optimization problem (minimization of the

weight and of the maximum deflection) subject to two constraints (a maximum
allowedweight and amaximumallowed stress). The deterministic optimization prob-
lem reads: ⎧⎨

⎩
min {W , δ}
s.t. W ≤ 20Kg,

σ ≤ 100MPa .

(24)

We have also considered a stochastic optimization problem, where we have
imputed all the uncertainty to be due to the applied load and the variable a rep-
resenting the Web thickness of the beam. We have assumed both F and a to be
normally distributed. For F, we have taken a standard deviation σF = 100N, while
for a, we have taken a constant standard deviation corresponding to ∼1% of the
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central value of the range of values allowed for a. The stochastic optimization prob-
lem reads: ⎧⎨

⎩
min {W , δ99.999}
s.t. W ≤ 20Kg ,

σ 99.999 ≤ 100MPa ,

(25)

where δ99.999 and σ 99.999, respectively, denote the 99.999th percentile value of the
maximum beam deflection δ and the maximum stress σ . Taking the 99.999th per-
centile of the maximum deflection δ instead of δ’s mean value enhances the mini-
mization condition. In fact, only one in a hundred thousand designs will fail to have
a deflection value smaller than the allowed 99.999th percentile deflection value.

For the multiobjective optimization, we have used the genetic algorithmNSGA-II
[29] with an initial population of 50 random individuals (created by a random DOE
node) for 60 generations, with crossover and mutation probabilities equal to 0.9 and
0.05, respectively, a distribution index of 2, and an automatic scaling for mutation
probability. First, we have performed the deterministic run. Then, we have performed
a robust design optimization. For the PCE, we have used k = 3 and N = 20 and we
have chosen Nperc = 100 000 for the percentile computation. In Fig. 7, we show a
modeFRONTIER workflow for the optimization problem of Eq. (25).

In Fig. 8, we compare the deterministic (circles) and the stochastic Pareto fronts
(squares) (weight values are plotted on the y-axis, while deflection values are plotted
on the x-axis). As expected, the stochastic Pareto front is pushed away from the
infeasible region in the objective space.

Fig. 7 H-beam: optimization workflow. From top to bottom: input variables (a, b, c, F), DOE,
optimizer and calculator nodes, output variablesσ , δ,W (respectively denoted by stress, def, weight),
constraints onσ 99.999 andW (const_stress, const_weight), and objectives on δ99.999 andW (min_def,
min_weight)
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Fig. 8 H-beam: comparison
of deterministic (circles) and
stochastic (squares) Pareto
fronts (weight versus beam
deflection)
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In order to compare the reliability of solutions found with the deterministic and
stochastic run, we have picked up the minimum weight Pareto front design of each
simulation (represented by the rightmost circle and square in Fig. 8) and we have
evaluated (with the real function) a LHS sample of 2000 designs drawn around each
solution by considering the distribution of F. In Fig. 9, we compare the probability
distribution functions of the deterministic and stochastic deflection (min_def). The

Fig. 9 H-beam: comparison of deterministic (right) and stochastic (left) empirical probability
distribution functions sampled around the minimum weight solution of the deterministic and sto-
chastic run of Fig. 8. The light-colored (orange online) histograms indicate a violation of the stress
constraint
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histograms representing the PDF based on the RDOoptimization lie on the left, while
the PDF from the deterministic optimization is on the right. We can observe that
approximately one-half of the designs distributed around the deterministic solution
breaks the stress constraint (as indicated by the light-colored histograms, orange
online), while the probability density function sampled around the stochastic solution
is pushed away from the failure region, as expected, and no design in this sample
violates the stress constraint.

5 Conclusions

We have reviewed a method which combines reliability and robustness, in multiob-
jective design optimization, by means of polynomial chaos expansions. The PCE is
used as a stochastic response surface model to estimate desired percentile values of
output functions of random input variables. This technique has been benchmarked
on mathematical test functions both for the computation of percentile values and for
the prediction of accurate failure probabilities.

The use of the PCE as a stochastic metamodel yields a high accuracy in the
evaluation of the statistical properties, while decreasing the number of real function
evaluations necessary to determine the full probability content of a system response
w.r.t. pure sampling approaches. This represents an important advantage in real-
world applications, where computationally demanding engineering software is usu-
ally needed for real function evaluations.

The calculation of percentiles can be nested into a robust design optimization
process. The overall optimization problem can be solved in terms of percentile quan-
tities, thus guaranteeing that objectives and constraints meet predefined probability
thresholds. Thus, reliability and robustness measures can be considered at the same
time in a single optimization run. The method can be naturally used with multiple
objectives. As an application, we have shown the multiobjective optimization of an
H-beam. However, this approach is also applicable to more complex engineering
systems.

Acknowledgements The authors would like to thank Cristina Belli (ESTECO S.p.A.) for the
manuscript revision.

References

1. Schuëller, G.I., Jensen,H.A.: Computationalmethods in optimization considering uncertainties
- an overview. Comput. Methods Appl. Mech. Eng. 198, 2–13 (2008)

2. Beyer, H.-G., Sendhoff, B.: Robust optimization - a comprehensive survey. Comput. Methods
Appl. Mech. Eng. 196(33–34), 3190–3218 (2007)



Percentile via Polynomial Chaos Expansion … 79

3. McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics 21,
239–245 (1979)

4. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)
5. Youn, B.D., Choi, K.K.: An investigation of nonlinearity of reliability-based optimization

approaches. J. Mech. Design 126, 403–411 (2004)
6. Deb, K., Padmanabhan, D., Gupta, S., Mall, A.K.: Handling uncertainties through reliability–

based optimization using evolutionary algorithms. In: Fourth International Conference on Evo-
lutionary Multi–Criterion Optimization (EMO 2007), LNCS, vol. 4403, pp. 66–88 (2007)

7. Daum, D. A., Deb, K., Branke, J.: Reliability–based optimization for multiple constraints with
evolutionary algorithms. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007),
pp. 911–918 (2007)

8. Deb, K., Gupta, S., Daum, D., Branke, J., Mall, A.K., Padmanabhan, D.: Reliability-based
design optimization. IEEE Trans. Evol. Comput. 13, 1054–1074 (2009)

9. Branke, J.: Creating robust solutions by means of an evolutionary algorithm. In: Eiben, A.E.,
Bäck, T., Schoenhauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature, vol.
1498, pp. 119–128. Springer, New York (1998)

10. Matton, C.A., Messac, A.: Pareto frontier based concept selection under uncertainty, with
visualization. Optim. Eng. 6, 85–115 (2005)

11. Deb, K., Gupta, H.: Introducing robustness in multi-objective optimization. Evol. Comput. 14,
463–494 (2006)

12. Poles, S., Lovison, A.: A polynomial chaos approach to multiobjective optimization. In:
Dagstuhl Seminar Proceedings 09041, Hybrid and Robust Approaches to Multiobjective Opti-
mization (2009). http://drops.dagstuhl.de/opus/volltexte/2009/2000

13. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.
Struct. Multidisc. Optim. 26, 369–395 (2004)

14. Clarich, A., Russo, R., Marchi, M., Rigoni, E.: Reliability–based design optimization applying
polynomial chaos expansion: theory and applications. In: 10th World Congress on Structural
and Multidisciplinary Optimization, Orlando, Florida, USA, 19–24 May (2013)

15. Marchi, M., Rigoni, E., Russo, R., Clarich, A.: Percentile via polynomial chaos expansion:
bridging robust optimization and reliability. In: International Conference on EVOLVE 2013, A
Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation, Extended
Abstract Proceedings, Leiden, NL, 10–13 July 2013. ISBN 978-2-87971-118-8, ISSN 2222-
9434

16. Marchi,M., Rizzian, L., Rigoni, E., Russo,R., Clarich,A.: Combining robustness and reliability
with polynomial chaos techniques in multiobjective optimization problems: use of percentiles.
In: Cunha, A., Caetano, E., Ribeiro, P., Müller G. (eds.) Proceedings of the 9th International
Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June–2 July 2014

17. Li, D., Chen, Y., Lu, W., Zhou, C.: Stochastic response surface method for reliability analysis
of rock slopes involving correlated non-normal variables. Comput. Geotech. 38, 58–68 (2011)

18. Filomeno Coelho, R., Bouillard, P.: Multi-objective reliability-based optimization with sto-
chastic metamodels. Evol. Comput. 19, 525–560 (2011)

19. Sudret, B., Der Kiureghian, A.: Comparison of finite element reliability methods. Probab. Eng.
Mech. 17, 337–348 (2002)

20. Sudret, B., Berveiller, M., Lemaire, M.: A stochastic finite element procedure for moment
and reliability analysis. Eur. J. Comput. Mech./Rev. Européenne de Mécanique Numér. 15,
825–866 (2006)

21. Molina-Cristobal, A., Parks, G.T., Clarkson, P.J.: Finding robust solutions to multi-objective
optimisation problems using polynomial chaos. In: Proceedings of the 6th ASMOUK/ISSMO
Conference on Engineering Design Optimization Oxford, UK, 3–4 July 2006

22. Ditlevsen, O.,Madsen, H.O.: Structural ReliabilityMethods.Wiley, Chichester (1996). internet
edition v. 2.3.7, June–September 2007

23. Nataf, A.: Détermination des distribution dont les marges sont données. C. R. de l’Académie
des Sci. 225, 42–43 (1962)

http://drops.dagstuhl.de/opus/volltexte/2009/2000


80 M. Marchi et al.

24. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential
equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

25. Askey, R., Wilson, J.: Some basic hypergeometric polynomials that generalize Jacobi polyno-
mials. Mem. Amer. Math. Soc. AMS 54(319), 121–142 (1985)

26. Loeven, G.J.A., Witteveen, J.A.S., Bijl, H.: Probabilistic collocation: an efficient non–intrusive
approach for arbitrarily distributed parametric uncertainties. In: 45th AIAA Areospace and
Sciences Metting and Exhibit, AIAA paper 2007–317, Reno, Nevada (2007)

27. http://www.esteco.com
28. Du, X.: First order and second reliability methods. In: Probabilistic Engineering Design, Mis-

souri S&T, ME 360 (2009)
29. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

http://www.esteco.com


Part II
Evolutionary Methods in Computational

Game Theory



Evolutionary Equilibrium Detection
in Multicriteria Games

Réka Nagy and D. Dumitrescu

Abstract Since most real life decisions are multiobjective, multicriteria games offer
a more realistic modeling of real-life interactions. Although several equilibrium con-
cepts have been proposed for solving multicriteria games, equilibria detection has
not received much attention. Generative relations are proposed to characterize multi-
criteria equilibria. An evolutionary method based on generative relations is proposed
for detecting various multicriteria equilibria: Nash-Pareto, Ideal Nash and Pareto
equilibria. Numerical experiments on discrete and continuous games indicate the
potential of the proposed approach.

1 Introduction

In standard non-cooperative games players are agents whose only goal is to maximize
their own payoffs. This is an overly simplified model of reality. Real life players
usually make decisions considering more than one, often conflicting, criteria. These
criteria in most of the cases are not measured by the same unit, they can not be just
aggregated into one single criterion.

Games with multiple criteria offer more accurate real life models. Several multicri-
teria equilibrium concepts have been proposed [11, 14] and vast research addressed
their existence [2, 3, 15, 16] but the detection of these equilibria did not receive
much attention.

Detecting the Nash equilibrium is a computationally hard problem [4]. Equilib-
rium detection in standard games can be viewed as a multiobjective optimization
problem, where the payoff of each player is to be maximized. Since evolutionary
algorithms are powerful tools for solving multiobjective optimization problems, they
can also be applied for finding game equilibria [5, 6]. In an equilibrium detection
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problem the payoff functions are the objective functions. Thus in the corresponding
optimization problem the number of variables is equal to the number of objectives
and are given by the number of players in the game.

Most equilibrium types can be characterized by generative relations [6]. These
are algebraic tools that allow the comparison of two strategy profiles with respect
to a certain equilibrium. Generative relations guide the search towards the certain
equilibrium.

Our goal is to propose generative relations for multicriteria equilibrium types and
develop an evolutionary method for detecting equilibria in multicriteria games.

2 Non-cooperative Games

Non-cooperative games, also called strategic games, model simple forms of interac-
tions between rational players. In non-cooperative games the goal of each player is
to maximize her payoff. The value of the payoff function depends on the decisions
taken simultaneously by all players [9].

Definition 1 A finite non-cooperative game is defined as a system

Γ = (N, Si, ui, i = 1, . . . , n),

where:

• N represents a set of n players, N = {1, . . . , n};
• for each player i ∈ N , Si represents the set of actions available to her, Si =

{si1 , si2 , . . . , sim};
S = S1 × S2 × · · · × Sn

is the set of all possible situations of the game;
• an element of S is called a strategy profile;
• for each player i ∈ N , ui : S → R represents the payoff function.

We denote by (sij , s∗
−i) the strategy profile obtained from s∗ by replacing the

strategy of player i with sij i.e.

(sij , s∗
−i) = (s∗

1, s∗
2, . . . , s∗

i−1, sij , s∗
i+1, . . . , s∗

n).

In standard Computational Game Theory the following propositions are assumed:

• Players choose their strategies simultaneously, without collaborating with each
other. The profit of each player is affected by the strategies chosen by the other
players as well.

• All players are rational, meaning that the objective of each player is to maximize
her payoff.
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• Players have common knowledge of the game and the rationality of the other
players.

2.1 Nash Equilibrium

The central solution concept in Computational Game Theory is Nash equilibrium,
introduced in [8]. Nash equilibrium captures a state in which individual players act
according to their incentives, maximizing their own payoff. A strategy profile is
a Nash equilibrium if no player has the incentive to unilaterally deviate from her
strategy. Once all players are playing Nash equilibrium, it is in interest of every
player to stick to her strategy [1, 7].

Definition 2 The strategy s∗ is a Nash equilibrium if and only if the inequality

ui(si, s∗
−i) − ui(s

∗) ≤ 0, ∀si ∈ Si,∀i ∈ N

holds.

2.2 Pareto Equilibrium

The concept of Pareto equilibrium is inspired from the solution of Multiobjective
Optimization problems. Pareto equilibrium consists of the Pareto-optimal outcomes
of the game, and is based on the Pareto dominance relation.

2.2.1 Pareto Dominance:

Let x′ and x′′ be two m-dimensional real vectors.

x′ weakly Pareto-dominates x′′, and we write, x′ �P x′′, if:

x′ �P x′′ ⇔ x′
i ≥ x′′

i ,∀i ∈ {1, . . . , m}.

x′ Pareto-dominates the solution x′′, and we write, x′ �p x′′, if:

x′ �P x′′ ⇔ x′ �P x′′ and ∃j ∈ {1, . . . , m} : x′
j > x′′

j .

Definition 3 A strategy profile s Pareto dominates the strategy profile s∗ if and only
if

s �P s∗ ⇔ ui(s) �P ui(s
∗)
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Remark 1 By an abuse of notation we use the same notation, �P and �P, for the
weak and strong Pareto domination between strategy profiles and real vectors.

Definition 4 A strategy profile s∗ is Pareto non-dominated, or Pareto-efficient, if
there exists no s ∈ S such that s �P s∗. In other words, a strategy profile is Pareto
non-dominated if no player can increase her payoff without decreasing the payoff of
other players.

Definition 5 The Pareto equilibrium of the game is the set of Pareto non-dominated
strategy profiles.

Thus, the Pareto-equilibrium of the game consists of the optimal outcomes. Very
often this is an infinite set of solutions.

3 Multicriteria Games - Games with Vector Payoffs

Multicriteria games (or games with vector payoffs) are natural extensions of standard
non-cooperative games and offer a more realistic model for real life situations.

Definition 6 A finite strategic multicriteria game is a non-cooperative game with
vector payoff functions. For each player i ∈ N

ui : S → Rr(i)

represents the multicriteria payoff function, where r(i) ∈ N is the number of criteria
for player i.

We consider multicriteria games where each player has the same number of cri-
teria, i.e.

r1 = · · · = rn = r

If all players have only one criterion (ri = 1,∀i ∈ N) then we have a standard non-
cooperative game.

Any multicriteria game G with r criteria is composed of r standard non-
cooperative games: G1, . . . , Gr .

4 Equilibria in Multicriteria Games

Equilibrium concepts in multicriteria games and their existence has been widely
studied [2, 3, 11, 15, 16].

The first and most popular equilibrium concept proposed for multicriteria games
is the Pareto-Nash equilibrium [11], but other solution concepts such as Perfect
equilibrium [3] or Ideal Nash equilibrium [14], etc., have also been introduced.
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4.1 Pareto-Nash Equilibrium

The most studied multicriteria equilibrium concept is the Pareto-Nash equilibrium
introduced in [11]. The Pareto-Nash equilibrium concept is an extension of the Nash
equilibrium for standard games and is based on Pareto dominance (Sect. 2.2.1).

Since the multicriteria Pareto-Nash equilibrium is based on the Pareto dominance
relation, we can distinguish weak and strong Pareto-Nash equilibria.

Definition 7 A strategy profile s∗ ∈ S is a weak Pareto-Nash equilibrium if and only
if the following condition holds

ui(s
∗) �P ui((si, s∗

−i)), ∀si ∈ Si,∀i ∈ N .

Definition 8 A strategy profile s∗ ∈ S is a strong Pareto-Nash equilibrium if and
only if the following condition holds

ui(s
∗) �P ui((si, s∗

−i)), ∀si ∈ Si,∀i ∈ N .

Remark 2 If not stated otherwise, by multicriteria Pareto-Nash equilibrium we refer
to the strong Pareto-Nash equilibrium.

4.2 Ideal Nash Equilibrium

The Ideal Nash equilibrium is introduced in [14] and is also studied in [10]. Mul-
ticriteria games are often viewed as strategic interactions between organizations.
Each player i corresponds to an organization with r members and each criterion
corresponds to the concerns of a different member of the organization.

The concept of Ideal Nash equilibrium captures the following reasoning: a choice
of strategy of the organization i is supposed to be taken by common agreement of
all the r members with the objective to maximize the payoff for each member of
the organization. The goal of each member is to maximize its own profit. Also, the
payoffs of the members depend on the strategy choices of other organizations as
well.

The Ideal Nash equilibrium of a multicriteria game G consists of those solutions
that are Nash equilibria in the single-criterion games, that constitute the multicriteria
game G.

Definition 9 Let s∗ ∈ S be a strategy profile of a multicriteria game. A strategy
profile s∗ is an ideal Nash equilibrium if and only if the following condition holds:

uj
i(s

∗) > uj
i((si, s∗

−i))∀si ∈ Si,∀i ∈ N,∀j ∈ 1, . . . r.

The idea of viewing players as organizations is realistic, since in many real life
situations decisions are influenced by several individuals with different objectives.
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4.3 Multicriteria Pareto Equilibrium

The Pareto equilibrium of a standard game consists of the Pareto-optimal solutions.
The Multicriteria Pareto Equilibrium is a generalization of this concept.

Definition 10 A strategy profile s∗ is a multicriteria Pareto equilibrium if for all
players the outcomes generated by a strategy profile Pareto-dominate the outcomes
generated by any other strategy profile. More formally:

∀s ∈ S,∀i = 1, . . . , n : ui(s
∗) �P ui(s)

holds.

5 Evolutionary Equilibrium Detection in Multicriteria
Games

Vast research addresses the existence of equilibria in multicriteria games, but the
detection of equilibria has not received much attention. Various game equilibria may
be characterized by generative relations on the set of game strategies [6]. The idea
is that the non-dominated strategies with respect to the generative relation equal (or
approximate) the equilibrium set.

5.1 Generative Relations

Let us consider a relation R over S × S.
A strategy x is non dominated with respect to relation R if

�y ∈ S : (x, y) ∈ R.

Let us denote by NDR the set of non-dominated strategies with respect to relation
R. A subset S′ ⊂ S is non-dominated with respect to R if and only if

∀s ∈ S′, s ∈ NDR.

Definition 11 Relation R is said to be a generative relation of an equilibrium type
if and only if the set of non-dominated strategies with respect to R equals the set of
equilibria.
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5.2 Generative Relation for Pareto-Nash Equilibrium

Let s∗, s ∈ S be two strategy profiles. Let kPN (s∗, s) denote the number of players
which by deviating from s∗ towards s can increase a payoff for a criterion without
decreasing the payoffs for the other criteria:

kPN (s∗, s) = card{i ∈ N, ui((si, s∗
−i)) �P ui(s

∗), s∗
i �= si}.

The value k(s∗, s)PN is a relative quality measure of s and s∗ - with respect to the
multicriteria Pareto-Nash equilibrium.

Definition 12 The strategy profile s∗ is better than the strategy profile s with respect
to the multicriteria Pareto-Nash equilibrium, and we write s∗ �PN s if the inequality

kPN (s∗, s) < kPN (s, s∗)

holds.

Definition 13 The strategy profile s∗ is called Pareto-Nash non-dominated if there
exists no strategy profile s such that

s �PN s∗.

Proposition 1 Let s∗ be a strategy profile. s∗ is a multicriteria Pareto-Nash equi-
librium if and only if the quality measure kPN (s∗, s) is zero for any strategy profile
s ∈ S. More formally:

s∗ is a Pareto-Nash equilibrium ⇔ kPN (s∗, s) = 0,∀s ∈ S.

Proof Let the strategy profile s∗ ∈ S be a multicriteria Pareto-Nash equilibrium.
Suppose that there exists a strategy profile s ∈ S such that kPN (s∗, s) = w where w ∈
1 . . . , n. This means that there exists a player i, i ∈ N such that: ui((si, s∗

−i)) �P ui(s∗)
and si �= s∗

i . This means that the strategy profile s∗ is not a multicriteria Pareto-Nash
equilibrium, which is a contradiction.

Let s∗ ∈ S be a strategy profile. Suppose that ∀s ∈ S kPN (s∗, s) = 0. This means
that ∀i ∈ N,∀sij ∈ Si : ui(s∗) �P ui((sij , s∗

−i)), so s∗ is a multicriteria Pareto-Nash
equilibrium.

Proposition 2 All non-dominated solutions with respect to relation �PN are multi-
criteria Pareto-Nash equilibria.

Proof Let s∗ ∈ S be a non-dominated solution with respect to the relation �PN and
not a multicriteria Pareto-Nash equilibrium. This means that ∃s ∈ S, ∃i : ui((si, s∗

−i))�P ui(s∗). Let the strategy profile q = (si, s∗
−i). So k(s∗, q) ≥ 1. But in the same time

k(q, s∗) = 0. This means that q �PN s∗, which is a contradiction.
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Proposition 3 All the multicriteria Pareto-Nash equilibria are non-dominated with
respect to the relation �PN .

Proof Let the strategy profile s∗ ∈ S be a multicriteria Pareto-Nash equilibrium.
Suppose that ∃s : s �PN s∗ such that kPN (s, s∗) < kPN (s∗, s). But since s∗ is a mul-
ticriteria Pareto-Nash equilibrium, kPN (s∗, s) = 0. So, kPN (s, s∗) < 0, which is not
possible.

Proposition 4 Let s∗ be a strategy profile. s∗ is a multicriteria Pareto-Nash equilib-
rium if and only if it is non-dominated with respect to the relation �PN .

The relation ≺PN can be considered as the generative relation of the multicriteria
Pareto-Nash equilibrium.

5.3 Generative Relation for Ideal Nash Equilibrium

Let s∗, s ∈ S be two strategy profiles. Let kiN (s∗, s) denote the number of players
which by deviating from s∗ towards s can increase their payoff for any criterion:

kiN (s∗, s) = card{i ∈ N, ∃j ∈ 1, .., r : uj
i((si, s∗

−i)) > uj
i(s

∗), s∗
i �= si}.

The value kiN (s∗, s) is a relative quality measure of s and s∗ - with respect to the
ideal Nash equilibrium.

Definition 14 The strategy profile s∗ is better than the strategy profile s with respect
to the ideal Nash equilibrium, and we write s∗ �iN s, if the inequality

kiN (s∗, s) < kiN (s, s∗)

holds.

Definition 15 The strategy profile s∗ is called ideal Nash non-dominated if there
exists no strategy profile s such that

s �iN s∗.

Proposition 5 Let s∗ be a strategy profile. s∗ is an ideal Nash equilibrium if and only
if the quality measure kiN (s∗, s) is zero for any strategy profile s ∈ S. More formally:

s∗ is an ideal Nash equilibrium ⇔ kiN (s∗, s) = 0,∀s ∈ S.

Proof Let the strategy profile s∗ ∈ S be an ideal Nash equilibrium. Suppose that
there exists a strategy profile s ∈ S such that kiN (s∗, s) = w where w ∈ 1 . . . , n. This
means that there exists a player i, i ∈ N such that: ∃j : uj

i((si, s∗
−i)) ≥ uj

i(s
∗) and
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si �= s∗
i . This means that the strategy profile s∗ is not an ideal Nash equilibrium,

which is a contradiction.

Let s∗ ∈ S be a strategy profile. Suppose that ∀s ∈ S kiN (s∗, s) = 0. This means
that ∀i ∈ N,∀sij ,∀l ∈ Si : ul

i(s
∗) > ul

i((sij , s∗
−i)), so s∗ is an ideal Nash equilibrium.

Proposition 6 All non-dominated solutions with respect to relation �iN are ideal
Nash equilibria.

Proof Let s∗ ∈ S be a non-dominated solution with respect to the relation �iN and not
an ideal Nash equilibrium. This means that ∃s ∈ S, ∃i, j : uj

i((si, s∗
−i)) ≥ uj

i(s
∗). Let

the strategy profile q = (si, s∗
−i). So kiN (s∗, q) ≥ 1. But in the same time kiN (q, s∗) =

0. This means that q �iN s∗, which is a contradiction.

Proposition 7 All the multicriteria ideal Nash equilibria are non-dominated with
respect to the relation �iN .

Proof Let the strategy profile s∗ ∈ S be an ideal Nash equilibrium. Suppose that ∃s :
s �iN s∗ such that kiN (s, s∗) < kiN (s∗, s). But since s∗ is an ideal Nash equilibrium,
kiN (s∗, s) = 0. So, kiN (s, s∗) < 0, which is not possible.

Proposition 8 Let s∗ be a strategy profile. s∗ is an ideal Nash equilibrium if and
only if it is non-dominated with respect to the relation �iN .

The relation ≺iN can be considered as the generative relation of the ideal Nash
equilibrium.

5.4 Generative Relation for Multicriteria Pareto Equilibrium

Let s∗, s ∈ S be two strategy profiles.

Definition 16 The strategy profile s∗ is better than s with respect to the multicriteria
Pareto equilibrium, and we write s∗ �mP s if:

∀i ∈ 1, .., n ui(s
∗) �P ui(s).

Definition 17 The strategy profile s∗ is non-dominated with respect to the relation
�mP, if and only if there is no strategy profile s ∈ S such that s �mP s∗.

The relation �mP can be considered as the generative relation for multicriteria
Pareto equilibrium. In other words the non-dominated strategy profiles with respect
to the relation �mP induce the multicriteria Pareto equilibrium.
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5.5 Evolutionary Equilibrium Detection in Multicriteria
Games

Games can be viewed as multiobjective optimization problems, where the payoffs of
the participating players are to be maximized. All of the objectives to be optimized
are uniform and equally important.

An appealing technique is the use of generative relations and evolutionary algo-
rithms for detecting equilibrium strategies. The payoff of each player is treated as
an objective and the generative relation induces an appropriate dominance concept,
which is used for fitness assignment purpose. Evolutionary multiobjective algorithms
are thus suitable tools for detecting game equilibria.

A population of strategy profiles is evolved. A chromosome is an n-dimensional
vector representing a strategy profile s ∈ S. The payoff for each player i is an r
dimensional vector.

The strategy profiles are compared with the help of generative relations. The non-
dominated individuals from the population of strategy profiles at iteration t may be
regarded as the current equilibrium approximation. Subsequent application of the
search operators is guided by a specific selection operator induced by the generative
relation. Successive populations produce new approximations of the equilibrium
front, which hopefully are better than the previous ones. The process will finally
converge to the multicriteria equilibrium induced by the generative relation.

Remark 3 For evolutionary equilibria detection any state of the art evolutionary
multiobjective algorithm can be used. Our goal is to focus on the detected equilibrium
types and not on the algorithm used for their detection.

5.6 Crowding Differential Algorithm

Differential Evolution (DE), proposed in [12], is an evolutionary algorithm inspired
by simplex methods. DE has been proposed to solve real-parameter optimization
problems on continuous domains. The advantage of DE consists in its simplicity and
efficiency.

The structure of a DE algorithm is similar to the structure of a genetic algorithm. A
randomly initialized population is improved using selection, mutation and crossover
operations.

At each generation for each individual a so-called trial vector is created. The trial
vector is constructed by adding the differences between randomly selected elements
of the population to another element. The most common variant for creating a trial
vector v = (v1, . . . , vn) from parent xi is referred as strategy rand/1/bin and is given
by:

vj =
{

xr3j
+ F(xr1j

− xr2j
), with probability CR,

xij , with probability 1 − CR
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where r1, r2 and r3 are distinct random indices from {1, 2, . . . N}, F ∈ [0, 2] is a
scaling factor, CR ∈ [0, 1] is the crossover probability, and N is the size of the
population.

If the trial vector has a better fitness value than the parent, the parent is replaced
in the population. This way the average fitness of the population is never worsened.

The Crowding based Differential Evolution (CDE) algorithm [13] is a multiobjec-
tive algorithm that enhances the standard DE algorithm with a crowding mechanism.
The only difference from the standard DE algorithm is that an offspring, instead of
the parent, is compared to the most similar element from the population.

The CDE algorithm is summarized in Algorithm 1. The relation R stands for the
generative relation of the desired equilibrium.

Algorithm 1 CDE for evolutionary equilibrium detection.
initialize population P
repeat

for all i ∈ {1, 2, . . . , pop_size} do
create candidate v

find the element w most similar to v in the design space
if w R v then

replace v with w
end if

end for
until a stopping condition is met

6 Numerical Experiments

In our numerical experiments we consider a simple two player discrete game and
a more complex continuous game. For equilibria detection we use the Crowding
Differential Evolution algorithm (Sect. 5.6) with the following parameter settings:
CR = 0.3, F = 0.5, pop_size = 100.

6.1 Discrete Games

Let us consider a two-player two-criteria discrete game: game D. Each player has
two strategies, S1 and S2 and the payoff matrix for the game is represented in Table 1.

The game D is composed of two unicriterial games D1 and the D2. The payoff
matrices of the unicriterial games are depicted in Table 2. The Nash equilibrium for
the game D1 consists of two strategy profiles (S1, S1) and (S2, S2) with payoff values
of (10, 10) and (7, 7) respectively. The game D1 has only one Nash equilibrium the
strategy profile (S1, S1) with payoff values of (5, 5).
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Table 1 Payoff matrix for
the two player two-criteria
game D

Player2
S1 S2

Player1
S1 [(10,5);(10,5)] [(0,8);(7,0)]
S2 [(7,0);(0,8)] [(7,1);(7,1)]

Table 2 The payoff matrix
for the D1 and D2 unicriterial
games

Player2
S1 S2

Player1
S1 (10,10) (0,7)
S2 (7,0) (7,7)

(a) Game D1

Player2
S1 S2

Player1
S1 (5,5) (8,0)
S2 (0,8) (1,1)

(b) Game D2

Table 3 The detected Pareto,
Nash-Pareto and Ideal Nash
equilibria for the multicriteria
game D

Equilibrium Strategies Payoffs

Pareto (S1, S1) [(10,5);(10,5)]

Nash-Pareto (S1, S1) [(10,5);(10,5)]

(S2, S2) [(7,1);(7,1)]

Ideal Nash (S1, S1) [(10,5);(10,5)]

The detected multicriteria equilibria of the multicriteria game D are summarized
in Table 3. The Pareto equilibrium of the multicriteria game is the strategy profile
(S1, S1). This is the optimal solution of the game, the outcome consists of the most
preferred payoffs for both players in both criteria. The Pareto-Nash equilibrium of
game D consists of two strategy profiles: (S1, S1) and (S2, S2). Note that the Pareto-
Nash equilibrium corresponds to the Nash equilibrium of the unicriterial component
D1. The Ideal Nash equilibrium by definition consists of those solutions that are Nash
equilibria in all the unicriterial components of the game. In this case we have one
such strategy profile: (S1, S1).

We can conclude that the Pareto-Nash and Ideal Nash equilibria do not always
correspond. The Ideal Nash equilibrium is a refinement of the Pareto-Nash equilib-
rium, and in most cases provides more optimal solutions (given that the game has an
Ideal Nash equilibrium).

6.2 Continuous Games

Consider a continuous two-player two-criteria game: game G [10]:

G = ({1, 2}, (Si)i∈{1,2}, (ui)i∈{1,2}),

where
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S1 = (−1, 1),
S2 = [0, 1],
u1(x, y) = (−x2 + y2, y cos( π

2 x)),
u2(x, y) = (u21(x, y), u22(x, y)), where

u21(x, y) =
{

2x2y, if y ∈ [0, 1
2 ],

−2(y − 1)x2, if y ∈ ( 1
2 , 1]

u22(x, y) = (x + 1) sin(πy).

The multicriteria game G has a single ideal Nash equilibrium in the point (0, 0.5)

with the corresponding payoffs of (0.25, 0) [10].
The G game is composed by two unicriterial games: G1 and G2, where

G1 = ({1, 2}, (Si)i∈{1,2}, (u11 , u21))

and
G2 = ({1, 2}, (Si)i∈{1,2}, (u12 , u22)).

Figure 1 depicts the detected strategies and payoffs for the Nash and Pareto equi-
libria for the single criterion game G1. The Nash equilibrium consists of the solution
(0, 0.5) with payoffs of (0.5, 1). The Nash equilibrium does not assure the highest
payoffs, the Pareto equilibrium lies above the Nash equilibrium and spreads between
(0, 2) and (1, 0).

Figure 2 depicts the detected strategies and payoffs for Nash and Pareto equilibria
for the single-criteria game G2. Similarly to the G1 game, the Nash equilibrium
consists of the solution (0, 0.5) with payoffs of (0.25, 0). Also, the Pareto equilibrium
lies above the Nash equilibrium and spreads between (0, 1) and (1, 0).

The ideal Nash and multicriteria Pareto equilibria for the multicriteria game G is
depicted in Fig. 3. The detected multicriteria Pareto-Nash and the ideal Nash equilib-
ria are identical for the G game: the strategy profile (0, 0.5) with a payoff of (0.5, 1)
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Fig. 1 The strategies and payoffs for the evolutionary detected Nash and Pareto equilibria for the
G1 game
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Fig. 2 The strategies and payoffs for the evolutionary detected Nash and Pareto equilibria for the
G2 game
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Fig. 3 The strategies and payoffs for the evolutionary detected Ideal Nash and multicriteria Pareto
equilibria for the multicriteria game G

for the first criteria and (0.25, 0) for the second criteria respectively. Note that the
Pareto-Nash and the Ideal Nash equilibrium for G is the identical with the Nash
equilibrium of the G1 and G2 games. The multicriteria Pareto equilibrium for game
G is different than the Pareto equilibria for G1 and G2.

7 Conclusions

Standard Game Theory models players as rational agents whose only goal is to
maximize their own payoffs. This is an unrealistic assumption since real-life players
in most cases base their decisions on more then one, usually conflicting, criteria.
Multicriteria games are extensions of standard non-cooperative games that allow
vector payoffs. Thus multicriteria games model real-life situations more accurately.
Surprisingly, multicriteria games have been neglected; several equilibria types have
been defined but their detection did not receive much attention.
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Inspired from multicriteria optimization we propose an evolutionary method for
detecting equilibria in multicriteria games. This method is based on generative rela-
tions, that are efficient tools for comparing two strategy profiles. Most standard game
equilibria can be characterized by generative relations [5, 6]. We define new gen-
erative relations for several multicriteria equilibria: Nash-Pareto equilibrium, Ideal
Nash equilibrium and Pareto equilibrium. With the use of generative relations and
evolutionary multiobjective optimization algorithms various multicriteria equilibria
can be detected. For this purpose any state of the art multiobjective algorithm can be
used.

In our numerical experiments we illustrate our method in case of discrete and
continuous games. The results indicate the potential of the proposed approach.

We consider that the study of multicriteria games offers many challenging future
possibilities. Based on multicriteria games new more realistic game theoretic models
can be built in the area of economics, psychology, social sciences, etc. Future research
direction is the extension of the proposed method for the detection of mixed strate-
gies in multicriteria games. Also, future work involves the study of more complex
multicriteria games with many players (n > 3).
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A New Estimation of Distribution Algorithm
for Nash Equilibria Detection

Tudor Dan Mihoc

Abstract One of the most popular solutions proposed for a noncooperative game is
the concept ofNash equilibrium.An estimation of distribution algorithm is adapted to
this problems’ particularities in order to detect a sample of Nash equilibria for games
in normal form. A generative relation is used to select the new strategy profiles that
will generate the offspring. Several numerical experiments are conducted to validate
the method for games with different numbers and types of equilibria.

1 Introduction

Computational game theory (GT) – extensively used in economics, social sciences,
biology, engineering, computer science, and as well in philosophy – is the attempt to
capture the agents’ behavior in strategic situations, in which an individual’s success
in making choices depends on the choices of others [1].

Mathematical games are useful tools for modelling conflicting situations. A game
is an unit formed by a set of players, a set of actions available to each player, and a
set of payoff functions that each player aims to maximize.

Initially developed for zero sum games (competitions in which one individual
does better at another’s expense), GT has been extended to treat a much more wider
class of interactions.

Game equilibria are the most common solutions proposed in GT. In order to
provide adequate solutions,many equilibriumconcepts have been developed.Among
these proposed solutions, probably the most famous one is the Nash equilibrium [2].

Detecting game equilibria is a fundamental computational problem within non-
cooperative game theory, having connections with multi-criteria optimization.

Finding optimum methods of computing Nash equilibria is still one of the main
aims in Computational game theory (CGT). There are many attempts to solve this
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problem, each having its own advantages but a general method that solve fast and
reliably any game has not been developed yet.

The close relation between the estimation of distribution algorithms (EDA) and
distributions of probabilities makes them natural tools for detecting Nash equilibria
in mixed strategies profiles.

The paper is organized in five sections: First is the Introduction, the second
presents some notions from game theory, and the third introduces the new method
derived from the EDAs. Some numerical results are presented in the fourth section,
and the fifth part contains the conclusions.

2 Prerequisites of Game Theory

In order to present the new method for equilibria detection, basic notions from game
theory are presented in this section such as noncooperative games in normal form,
pure strategies, mixed strategies, payoffs, utility functions, and strategy profiles. Also
a generative relation will be applied in order to guide the EDA’s algorithm type.

With respect to the relationship between the players’ points of view, game theory
(GT) can be divided in twomajor parts: cooperative game theory and noncooperative
game theory. We will consider here the noncooperative game theory with mixed
strategies solutions.

The players will also be rational, and they will have complete information on
the game. This means that each player makes the best rational decision in order to
achieve his/her goal (maximize the profit for example) and that every player has
complete knowledge of the other players strategies, options, and payoffs.

A player’s strategy space is the set of all strategies available to him. The set of
strategies available to a player can be discrete (e.g., in Prisoners dilemma game) or
continuous (like in the oligopolies of Cournot type).

A strategy profile (or simple “a strategy”) is a complete plan of action for every
stage of the game, regardless whether that stage actually arises in the play or not.

The payoff function for a player is a mapping from the cross product of players’
strategy spaces to the player’s set of payoffs, i.e., the payoff function of a player takes
as its input a strategy profile and yields a representation of payoff as its output.

The games will be represented in normal form as a matrix for discrete strategies
sets.

2.1 Game Definition

Following [1, 3], a game consists of a set of players (agents), and each player has a
set of strategies available to her as well as a payoff function.

Definition 1 We consider a finite strategic game defined by Γ = ((N , Si , ui ), i =
1, . . . , n) where

1. N = {1, . . . , n} the set of players, n is the number of players;
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2. for each player i ∈ N , Si represents the set of strategies available to him,

Si = {si1, si2, . . . , simi }

where mi represents the number of strategies available to player i and

S = S1 × S2 × · · · × Sn

is the set of all possible situations of the game and

(s1, s2, . . . , sn) ∈ S

is a pure strategy profile;
3. for each player i ∈ N , ui : S → R represents the payoff function.

We consider Pi be the set of real-valued functions on Si . For the elements pi ∈ Pi ,
we use the notation pi j = pi (si j ). Let

P =
∏

i∈N
Pi

and let
m =

∑

i∈N
mi .

We denote the points in P by p = (p1, . . . , pn), where pi = (pi1, . . . , pimi ) ∈ Pi .
In a mixed strategy profile p, an agent plays her available pure strategies with

certain probabilities. The payoffs for the players that follow a mixed strategy profile
is similar to the expected utility concept from decision theory:

ui (p) =
∑

s∈Si
ui (s)p(s)

where
p(s) =

∏

j∈N
p j (s j )

2.2 Solution Concepts

The most basic premise of (noncooperative) game theory is that players are egoistic
and rational [1]. This means that each player is primarily concerned about achieving
his/her best possible payoff and assumes the same behavior on the part of all other
players.
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Each player’s behavior is described by a strategy. Therefore, a player’s strategy
specifies what a player will do for each possible development of the game, not just
the likely or rational ones. What a player will do, however, may involve probabilistic
statements. There are three possibilities:

1. A pure strategy is the choice of one possible move at each of a given player’s
information sets with certainty. They are the sole choices that appear in the normal
form;

2. Amixed strategy is a probability distribution over a player’s pure strategies.Mixed
strategies are usually involved in normal form game solutions;

3. A behavioral strategy is the specification of a probability distribution over the
moves available at each information set of a given player.

Once each player has adopted a strategy, the resulting strategy profile determines
the state of the game.

The basic solution concept of game theory is that of strategic equilibrium.
JohnVonNeumann, in 1928, [4] proposed thefirstmodern definition and existence

proof of strategic equilibrium in the case of zero-sum games. John Nash, in 1950,
generalized the ideas to the nonzero-sum case and obtained an existence proof for
what is now known as a Nash equilibrium [2].

A (mixed) strategy profile for the game Γ represents a Nash equilibrium if no
player will increase her payoff by changing her own strategy while the others do not
modify theirs.

John F. Nash proved that every game has amixed strategies equilibrium. However,
the proof is an existence proof (and uses a fixed point theorem), it does not give an
explicit method to construct the equilibrium solution.

We also denote by (si j , s
∗
−i ) the strategy profile obtained from s∗ by replacing the

strategy of player i with si j i.e.,

(si j , s
∗
−i ) = (s∗

1 , s
∗
2 , . . . , s

∗
i−1, si j , s

∗
i+1, . . . , s

∗
1 ).

2.3 Nash Ascendancy Relation

In order to detect an equilibrium for a certain game Γ using evolutionary tech-
niques, the search can be guided similarly to the detection of the Pareto set for
a multi-objective optimisation problem. There are many similarities between the
multi-objective optimisation problems and solving games.

A particularity of the games is, if we look from a multi-objective problem point
of view, that the number of players equals the number of variables and the number
of objectives.

A fitness solution for Nash equilibria detection using evolutionary techniques has
been developed in [3].

Let us consider two pure strategy profiles s and s ′ from S. Let k : S × S → N be
an operator that associates the cardinality of the set [5]
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k(s, s ′) = |({i ∈ {1, . . . , n}|ui (s ′
i , s−i ) ≥ ui (s), s

′
i �= si }|

to the pair (s, s ′).
This set is composed by the players i that would benefit if given the strategy

profile s would change their strategy from si to s ′
i , i.e.,

ui (s
′
i , s−i ) ≥ ui (s).

Let s, s ′ ∈ S. The strategy profile s Nash ascends the strategy profile s ′ and we
write s ≺ s ′ if the inequality

k(s, s ′) < k(s ′, s)

holds.
Thus, a strategy profile s ascends strategy profile s ′ if there are less players that

can increase their payoffs by switching their strategy from si to s ′
i than vice versa.

Remark 1 Two strategy profiles s, s ′ ∈ S may have the following relation:

1. either s dominates s ′, s ≺ s ′ (k(s, s ′) < k(s ′, s))
2. or s ′ dominates s, s ′ ≺ s (k(s, s ′) > k(s ′, s))
3. or k(s, s ′) = k(s ′, s) and s and s ′ are considered indifferent aka incomparable

(neither s dominates s ′ nor s ′ dominates s).

This relation can be used as a relative measure of how “close” of Nash is a pure
strategy profile in comparison with another one [6].

Proposition 1 ≺ is the generative relation of the Nash equilibrium, i.e., nondomi-
nated strategies with respect to ≺ are the Nash equilibria of the game.

Remark 2 The Nash-ascendancy generative relation in general is not transitive.

3 Estimation of Distribution Algorithm

An estimation of distribution algorithm (EDA) is an optimization technique that
searches for potential solutions by sampling explicit probabilistic models of promis-
ing candidate solutions. It uses a population of potential solutions to the problem,
starting with a random-generated population from all admissible solutions.

Using a fitness function, the population is evaluated and a numerical ranking is
assigned to each individual. A subset of the most promising solutions are selected
by a selection operator from this ranked population.

From this subset of selected, well-performing solutions, we estimate the proba-
bility distribution that characterizes it. Then, new solutions are sampled from this
probability distribution and replace the previous population.

We repeat the process until some termination criteria are met (e.g., when the
number of iterations reaches some threshold).
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An EDA, in general, follows the next steps [7]:

1: procedure EDA
2: Generate initial sample population of size M
3: while termination criteria is not fulfilled do
4: Select Q promising solutions where Q ≤ M
5: Calculate joint probability distribution of selected individuals
6: Generate offspring according to the calculated probability distribution and

replace parent.
7: end while
8: end procedure

The similarities between EDAs and the mixed strategy concept from GT suggest
a similar method for detecting Nash equilibria for noncooperative games. The main
goal is to detect a n-tuple of distributions of probabilities (a Nash equilibria sample)
using the fact that a mixed strategy profile is a solution that represents basically a set
of pure strategy profiles.

We will adapt this algorithm to the specific requirements of our problem.
Instead of one discrete distribution of probability, we will have a vector of n

distributions since a mixed strategy profile is composed of n such distributions.
A member of the population at this point will be naturally composed of n pure

strategies, i.e., a pure strategy profile. Each player’s strategy will be sampled accord-
ing to his mixed strategy (his own distribution of probability).

In order to select the samples that will be used to compute the new mixed strategy
profile, we use the generative relation for Nash equilibria. If a strategy profile domi-
nates another, then this profile will be selected in the set that will be used to compute
the new joint new mixed strategy profile. If the two strategy profiles are neutral with
respect to each other, then both will be selected.

For each player, a joint probability distributionwill be calculated using the selected
strategies profiles. The result will be his mix strategy profile in the new iteration.

The modified algorithm will be

1: procedure modified EDA
2: Random generate the initial mixed strategy profile p
3: while termination criteria is not fulfilled do
4: Generate the sample population of pure strategy profiles, of size M accord-

ing with the probability distributions from p
5: Select Q promising pure strategy profiles using the generative relation,

where Q ≤ M
6: Calculate for each player the joint probability distribution of selected indi-

viduals
7: Generate from these distributions the new mixed strategy profile p′.
8: end while
9: end procedure

The algorithm will end after a number of iterations established a priori.
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4 Numerical Experiments

For the numerical experiments, we consider several noncooperative games in nor-
mal form that have different numbers and types of equilibria (in pure and mixed
strategies).

In all depicted cases, a Nash equilibrium is detected. For each example, 30 runs
with different seeds for the pseudo-randomgeneratorwere conducted. The number of
pure strategies samples in the population is 100 for all experiments, and the number
of iterations will be also 100.

4.1 The Matching Pennies Game

There are two players, each having a coin in the hand. Each player has two options:
to put the coin down with the head or tail up. If both players put the coin with the
same face down, the first player takes the two coins if not the second one will gain
them.

For this game, there is no pure strategy Nash equilibrium. The only solution
(equilibrium) in mix strategies ((0.5; 0.5)(0.5; 0.5)) is detected with accuracy, in 30
runs with different random seeds, with a standard deviation of 0.0.

4.2 Rock-Paper-Scissors Game

Another famous game with one single solution in mixed strategies is Rock–paper–
scissors (Table1). In 30 runs of the algorithm, the average of the detected solutions
is ((1/3; 1/3; 1/3)(1/3; 1/3; 1/3)) with a standard deviation of 0.03.

4.3 Game with only Pure Strategies

Let us consider the game presented in Table2. This game has two pure Nash equi-
libria, and the algorithm detects them.

Table 1 The payoffs for the
Rock-paper-scissors game

R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0
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Table 2 The payoffs for a
game with two Nash
equilibria in pure strategies

1 2

1 1, 0 3, 0

2 0, 2 0, 1

At each run, the algorithm is biased towards the most close solution to the initial
random-generated mixed strategy profile.

5 Conclusions and Further Work

Different equilibria, considered solutions in GT, can be characterised by genera-
tive relations between game strategy profiles. Binary generative relations for Nash
equilibria are considered.

A newmethod for detecting a sample of Nash equilibria onmixed strategies based
on the estimation of distribution algorithms has been proposed.

The EDA algorithm is modified to detect a good approximation of a vector of
discrete distributions of probabilities using as candidate solutions profiles of pure
strategies.

The selection operator is based on Nash equilibria domination relation that can
be used as a quality measure for a strategy profile.

The numerical experiments that are conducted underline the potential of this
method. Further work will imply a more robust algorithm, capable of detecting more
than one equilibria sample.
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Multi-objective Optimisation
by Self-adaptive Evolutionary Algorithm

John M. Oliver, Timoleon Kipouros and A. Mark Savill

Abstract Evolutionary algorithms (EAs) have been used to tackle non-linear multi-
objective optimisation (MOO) problems successfully, but their success is governed
by key parameters which have been shown to be sensitive to the nature of the particu-
lar problem, incorporating concerns such as the numbers of objectives and variables,
and the size and topology of the search space, making it hard to determine the best
settings in advance. This work describes a real-encoded multi-objective optimising
EA (MOOEA) that uses self-adaptive mutation and crossover, and which is applied
to optimisation of an airfoil, for minimisation of drag and maximisation of lift coef-
ficients. The MOOEA is integrated with a Free-Form Deformation tool to manage
the section geometry, and XFoil which evaluates each airfoil in terms of its aero-
dynamic efficiency. The performance is compared with those of the heuristic MOO
algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that
this GA achieves better convergence.

1 Introduction

Genetic Algorithms (GA) are a class of evolutionary algorithm (EA) originally pro-
posed by Holland [20] and expanded upon by Goldberg [18] and Schaffer [32], that
are heuristic, stochastic methods of searching very large non-linear problem spaces.
EAs are used in particular for global optimisation problems upon which classical
optimisation methods do not perform well, in order to attempt to obtain optimal or
near optimal solutions [23].

GAs are characterised by populations of potential solutions that converge towards
local or global optima through evolution by algorithmic selection as inspired by neo-
Darwinian [7] evolutionary processes. An initial population of random solutions is
created and through the evaluation of their fitnesses for selection for reproduction,
and by the introduction of variation throughmutation and recombination (crossover),

J.M. Oliver (B) · T. Kipouros · A.M. Savill
School of Engineering, Cranfield University, College Rd, Cranfield MK43 0AL, UK
e-mail: j.m.oliver@cranfield.ac.uk

© Springer International Publishing AG 2017
M. Emmerich et al. (eds.), EVOLVE – A Bridge Between Probability,
Set Oriented Numerics and Evolutionary Computation VII,
Studies in Computational Intelligence 662, DOI 10.1007/978-3-319-49325-1_6

111



112 J.M. Oliver et al.

the solutions are able to evolve towards the optima. It should be noted thatGAs are not
attempting to mimic evolution as it occurs in the biological domain, since evolution
is directionless in the absolute sense, and optimisation is by definition seeking a
goal, rather they are using simplified mechanisms which have been shown to work
in optimising processes.

Research into EAs over more recent years by Fleming [16], Fonseca [17], Deb
[8], Zitzler [46] and others, has extended their use to multi-objective optimisation
problems (hence MOOEA), in which two or more conflicting objectives, each with
their own criteria, are optimised simultaneously, with the goal of yielding a Pareto-
optimal attainment surface fromwhich a trade-off solution can be chosen by a higher-
level decision maker.

GA performance on a given problem has been shown, since De Jong [24], to be
extremely sensitive to the settings of its parameters, these being the probabilities
of mutation and crossover occurring, the population size and the number of players
in a tournament selection (when this selection method is used). Moreover, for cer-
tain real/continuous encoded GAs, it is necessary to consider operators’ polynomial
distribution indices [9].

Real-encoded GAs can be thought of as being similar to Evolutionary Strategies
(ES) introduced by Rechenberg and Schwefel as described by Bäck [4], except that
ESs also are able to self-adapt their control parameters (or strategy parameters as
they call them). The GA described in this work adopts this extra capability. The
term self-adaptive used here is meant in the sense of that coined by Eiben et al.
[14], to indicate control parameters of the GA that are encoded in the chromosome
along with the problem definition parameters applying to the objective functions
(the main parameters), and that these control parameters are subject to change along
with the main parameters due to mutation and crossover. This is different from a
purely adaptive control parameter strategy as in that case the change is instigated
algorithmically by some feedback at the higher level of the GA rather than the lower
level of each chromosome/solution in the population. The deterministic approach is
rule-based and is not considered adaptive.

Eiben et al. [13] showed how population size and tournament selection size can be
made to be self-adaptive, although in the former case to the detriment of performance
of the optimisation. Nonetheless, the latter case was shown to improve performance,
and the method by which a parameter whose context is the population can be set
through the aggregation of its representation at the individuals within the population,
can be extended to other parameters having the same high-level context. However,
the abovework only usesmutation to affect each self-adapting parameter gene, rather
than including the parameter genes in the crossover of the chromosome as a whole,
and the model used is a steady-state GA (SSGA) with relatively low replacement
strategy rather than a generational one (GGA). This work uses a fixed tournament
size in order to keep all the self-adaptation occurring at the level of the individual,
rather than by aggregation, since this is the focus of the work.
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Zhang and Sanderson [42, 43] describe differential evolution (DE) algorithms
that use self-adaptation, including their multi-objective (MO) JADE2 and JADE
algorithms, that generate new values for mutation factors and crossover probabilities
based on probability distributions governed by self-adapting means. DEs [38] are
similar to GAs but new solutions are produced by adding the weighted difference of
two population vectors to a third, to create a new donor vector which is recombined
(crossover)with a target (parent) vector to produce the trial (child) vector. Differences
between GAs and DEs, both algorithmic and from a performance perspective, are
discussed in [41]. In a DE scheme, the mutation factor is a weight rather than a
probability as in a GA, and notably crossover acts on whole parameters (the genes
in a GA) rather than parts of parameters (Holland’s schemas).

Sareni et al. [31] describe self-adaptation in a multi-objective genetic algorithm
(MOGA) in which there is a self-adaptive choice between three different crossover
operators for crossover, and in which mutation is self-adapted by the standard devi-
ation of the amount of perturbation applied to a gene. Both of these mechanisms are
different to the ones employed by the MOOEA in this work.

Tan et al. [40] expounded their binary MOGA in which the mutation rate is
deterministically assigned as a function of time, and Tan et al. [39] discuss a deter-
ministic binary MOGA in which rules assign values for mutation and crossover
probabilities. Ho et al. [19] used a binary GA for single objective optimisation in
which sub-population groups adapted their mutation or crossover rates based on
feedback from average fitness increase, while Li et al. [29] investigated diversity-
guided mutation and deterministically adaptive mutation and crossover rates in a
binary single-objective GA. These works all found their implementations of the var-
ious adaptive methods provided advantages on mathematically based benchmark
problems, but differ from this work which is concerned with self-adaptation in a
real-encoded multi-objective GA that addresses a real-world optimisation problem
having time-consuming function evaluations.

This work presents a real-encoded generational MOOEA employing elitism in
which each solution has an evolving self-adaptive mutation-rate and self-adaptive
crossover-rate, together with their own perturbation factors, encoded in its chromo-
some andwhich are subject to bothmutation and crossover themselves, alongwith the
main problem parameters. TheMOOEA is used on a real engineeringmulti-objective
optimisation problem (MOOP), that of airfoil optimisation, and its performance on
the problem is comparedwith twoother leading heuristic algorithms,Multi-Objective
Tabu Search (MOTS) andNSGA-II. TheMOOEAuses a novel crossovermechanism
in order to recombine both the mutation rate and crossover rate control parameters
at the level of the chromosome, and unlike other GAs, controls the number of dupli-
cate chromosomes in each generation.Whereas DE algorithms have used probability
distributions governed by self-adapting means, this MOOEA uses its own mutation
and crossover operators to control its self-adapting control parameters in the same
way that they change the main genes.
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2 A Self-adaptive Multi-objective Evolutionary Algorithm

Ganesh, the MOOEA developed in this work, was inspired by the NSGA-II algo-
rithm [10] with some modifications, to: initialisation of population and solution, the
non-domination sorting method, the construction of the new generation, the addition
of repairable Hard Constraints, the adoption of a plug-in architecture, and of course
the self-adaptive aspect. Soft constraints are implemented similarly to NSGA-II,
requiring the constraint definition to return an increasingly negative number indicat-
ing the increasing degree of violation, and where 0 indicates no violation. Internally
theMOOEA is constructed to minimise, requiring objective functions that maximise
to return a negative number, by the principle of duality [8]. A tournament selection
method of degree two is used, polynomial mutation [11] is used along with a simu-
lated binary crossover (SBX) [9] for real parameters, and the crossover strategy used
in the problemdiscussed here is uniform crossover, although amulti-locus gene-swap
crossover is available also. Self-adaptive crossover requires further consideration and
is discussed more fully, below.

The non-domination sorting is amended from NSGA-II to ensure that each solu-
tion is compared with every other one once in a simple and efficient manner as
given below, with the number of comparisons being of the same order, O(mN2),
as that of the continuously updated method [8], and the actual number of compar-
isons made will on average be the same. Here, compare solutions means perform the
(z1 � z2) dominance test [46], meaning that z1 is not worse than z2 in all objectives
and better in at least one objective. The method of updating dominated-by count and
dominated-solutions lists are modified accordingly.

Where there is a population p having n solutions:

for p in 0 to n-1

for q in (p + 1) to n-1

compare q to p

or more formally:

∀p ∈ {0, . . . , n − 1},∀q ∈ {p + 1, . . . , n − 1} : (q � p) → q

The new generation is produced by pruning one solution at a time from themerged
parent and child populations and recalculating the distance/crowding metric each
time, giving a more accurate estimate of the best solution to remove with respect to
the crowding (and non-dominated ranking) metric, a method which was later found
to have been already tried by [28].

This MOOEA additionally provides the ability to choose the cardinality of dupli-
cate solutions in each generation, meaning that 0, 1 or many duplicates may be kept,
with the default beingmany.Zero duplicatesmeans one solution havingnoduplicates,
and so on, where a duplicate is defined as all corresponding genes in both chromo-
somes having the same values. Duplicates can arise even in real-encoded problems
which are not combinatoric, due to elitism. The ability to control the existence of
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duplicates is achieved here through the use of a linked hash map data structure where
the key is the chromosome and the value includes a count and list of chromosomes
having the same genes.

Hard constraints may be either of pre- or post-evaluation types, where pre-
evaluation hard constraints are allowed to be repairable, whereas post-evaluation
hard constraints must cause discarding of failing solutions. Repair is effected by
changing the parameters (the genes) until the solution is once again within the con-
straint. Since repair occurs before evaluation of the solution (the determining of the
objective function values), repaired solutions are available in the current generation
as normal. Of course hard constraints which rely upon the values of objective func-
tions as part of their violation detection, may only be of the post-evaluation type.
Soft constraints may be of either type, with the same proviso, but do not provide a
discard option.

Initialisation at both population level and solution level have defaults which are
able to be over-ridden by the problem definition, enabling pre-defined data to be
included, and alternative distribution functions to be used.

The plug-in architecture of the algorithm enables the optimisation problem to
be specified separately as a new code module, thus each new optimisation problem
adds code, rather than requiring changes to the existing code base, and enables the
optimisation problem to be effectively a parameter of the algorithm.

2.1 Self-adaptation

Bäck et al. [5], use a randommutation rate initially, each solution being initialised to a
randomnumber in the range (0.001, 0.25), however he suspected that this randomness
slowed down convergence to some extent. Ganesh allows mutation and crossover
rates to be specified for the initial population, or to be set to random values in a
uniform distribution, or to default to certain values. The default mutation rate of
each solution would be set to 1/n where n is the number of variables of the objective
functions (OFs), and the default crossover rate would be 0.6, both as probability of
occurrence. This MOOEA (henceforth referred to as a GA for brevity) also allows
alternative initialisers to be written and specified per problem, allowing for different
probability distributions, such as the uniform or Gaussian, however this work uses
the uniform distribution.

Similarly to Bäck [4] and Smith and Fogarty [37] (a steady-state GA), mutation
first occurs to the gene encoding the mutation rate and then the new mutation rate
is applied to the main genome, but unlike the previous studies, this is based on a
generational GA, that is one in which the entire population is in theory able to be
replaced by fitter solutions, and for which the variables, and operator parameters, are
encoded as real numbers in the genes.

The GA control parameters undergoing self-adaptation are the mutation probabil-
ity pM (per gene) and the crossover probability pC (per chromosome), and also the
associated polynomial distribution indices, [9, 11], for each, ηM and ηC respectively,
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Fig. 1 Flow-chart explaining self-adaptive crossover

which are all real values. Each solution has a chromosome encoding its objective
function parameters and its control parameters. Mutation occurs to all of the para-
meters including the control ones and their indices, but mutation occurs first to the
control ones at the current rate of mutation, and then the main ones using the newly
mutated values.

The uniform crossover specifies that each gene has a 50% chance of crossing
over if the chromosome is to undergo crossover at all, and the probability of chromo-
some crossover occurring is given by pC. However since crossover occurs between
chromosomes but each chromosome has its own pC, the pC to be used is chosen
stochastically at 50% probability from either of the parent chromosomes selected
for breeding, and the ηC is taken from the same chromosome. The ηC value is then
used in the crossover of the respective controls from each chromosome (pC, ηC, pM
and ηM) and themain chromosome genes, with the new control values being written
to the recombined chromosomes, as shown in Fig. 1.
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3 Airfoil Optimisation

The real-world engineering problem to which this GA is applied is airfoil optimisa-
tion, using the NACA 0012 airfoil section, as previously carried out by Oliver et al.
[30], following on from Kipouros et al. [27] in which Multi-Objective Tabu Search
(MOTS) software [22] and NSGA-II were used. NACA 0012 [1], Fig. 2, is a standard
symmetric airfoil having a 12% thickness to chord length ratio, defined originally
by the U.S. National Advisory Committee for Aeronautics, now part of the National
Aeronautics and Space Administration (NASA). Airfoil shape modification is car-
ried out by free-form deformation (FFD) [33] code and the shape is evaluated for
aerodynamic efficiency by Drela’s XFoil tool [12] which calculates moment, drag
and lift coefficients of flow, based on eight parameters as illustrated in Fig. 3.

TheMOOEAwithXfoil had previously [30] been found to locate extrememinima
that give rise to unfeasible airfoil shapes, as under certain conditions Xfoil would
not converge and would not feedback the convergence failure, hence the unfeasible
coefficientswere still selected for by theMOOEA, andwould have an inappropriately
high fitness, ensuring they remained in final results. Soft constraints had been applied

Fig. 2 The NACA 0012 airfoil [34]

Fig. 3 An airfoil is a cross-section of awing and is shown here enclosed in its free-formdeformation
hull with the eight deformation parameters, comprising four control points with a horizontal and
vertical shift, that define its shape altering. Kipouros et al. [27]
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Fig. 4 An airfoil showing strengthening spars and vertical stiffeners

to both lift and drag coefficients in an attempt to minimise this problem, and this had
improved the performance yet not eliminated the problem entirely.

In order to preclude the necessity of removingunfeasible designs from future result
sets, the Xfoil software was further enhanced to ensure that convergence problems
are identified to the MOOEA by assigning extremely low-quality fitness values for
each objective function of any candidate solution for which convergence in Xfoil
is a problem. The MOOEA is therefore able to eliminate these unfeasible designs
through its normal selection process. It should be noted that Xfoil was originally
designed to be an interactive tool, and the challenges found using it in batch mode
were not due to the original author.

The airfoil is subject to two hard geometrical constraints, these being implemented
inside XFoil, parametrically: the thickness of the airfoil section at (a) 25% and (b)
50% of the chord as defined by NACA-0012, which ensure there is a minimum
volume in which to place strengthening spars towards the leading and trailing edges,
thus discovered optimised designs should in theory be feasible and practicable, as in
Fig. 4.

The optimisation definition ensures that each candidate design has the same angle
of attack, Fig. 5, so that the objective function results are comparing equivalent mea-
surements, by choosing FFD parameters which do not alter the position of the leading
and trailing edges of the airfoil or the chord.

The FFD’s eight design parameters are encoded in the GA as real numbers in the
genes of each solution’s chromosome, and the FFD code modifies the airfoil relative
to a given datum design vector defining the geometry, based on the parameters from
theGAdesignvector. FFDexpresses themodifiedgeometry as sets of x–y coordinates
in a form that XFoil can receive, XFoil then calculates the coefficients of moment,
drag (CD), and lift (CL) of the modified geometry and returns the latter two results,
CD and CL, to the GA. Since the goal of this work is to optimise the airfoil with
respect to drag and lift as a bi-objective problem, the coefficient of moment is not
used at this time.

The objective functionsOF1 andOF2, as given by Eqs. (1) and (2), definemaximi-
sation of the lift coefficient andminimisation of the drag coefficient respectively, nor-
malised by their respective datum values. The datum values, (CL = 1.46444,CD =
0.0305108), are the original coefficient values of the standard airfoil section.
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Fig. 5 Diagram showing α the Angle of Attack, lift (L) and drag (D) vectors and the airfoil
chord [2]

OF1 = max F(CL) = − CL

CL,datum
(1)

OF2 = min F(CD) = − CD

CD,datum
(2)

Ganesh is set to perform 6,000 function evaluations in each run with a population
size of 120 and being allowed to run for 50 generations, as was performed in [27].
For all cases here, Ganesh is set to allow no duplicates. The probability of crossover
pC is initially set to 0.9 and that of mutation pM to 0.5 for each member of the
initial population, and their respective polynomial indices ηC to 10 and ηM to 20, as
was the case for NSGA-II, but in the succeeding generations these values self-adapt.
The probabilities may self-adapt in the interval [0, 1] while the polynomial indices
may self-adapt in the interval [1, 100], noting that for the latter, larger values cause
smaller perturbations in the original gene values, and vice-versa.

The problem definition used by the GA also defines the range by which the
design vector is allowed to be modified, and thus how much the geometry of the
airfoil may change, specified as follows: ±0.3, ±0.4, ±0.6 and ±1.0, with a larger
range enabling larger variation in the free-form deformation. A given run of the GA
uses one of those ranges, and the corresponding results are compared with those of
MOTS and NSGA-II. It should be noted that the range specifies by howmuch one of
the 8 FFD geometrical parameters is permitted to change - it is not a fixed amount,
and the lower ranges are by definition therefore encapsulated in the higher ranges.
The value of each parameter is relative to the geometry and is dimensionless. Large
deformations give rise to more exotic airfoil shapes which are more likely to be
impractical in reality and which tend to be more demanding, or even impossible, to
compute, thus the ranges used enable useful comparisons to be made in an escalating
fashion over the objective space.
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4 Results

Although 80 runs (20 per range) of the GA had been performed for the original
work [30], automatic removal of unfeasible designs had not been possible, therefore
a statistical analysis of the results would have provided little value and may have
been potentially misleading.

These final results are the consequence of integrating the MOOEA with the new
version of Xfoil, furthermore, the other algorithms, MOTS and NSGA-II, have also
been re-run with the new Xfoil, enabling a thorough statistical analysis and compar-
ison of them all to be performed, as is presented here. As before, another set of 20
runs per range per algorithm is performed, giving a total of 80 runs per algorithm
and therefore 240 runs overall.

Figures6, 7, 8, 9, 10 and 11 show scatter plots of non-dominated solutions in the
objective space obtained by Ganesh and the other algorithms, in which OF1 and OF2
give the normalised values of CL and CD, plotted along the x and y axes respectively,
as previously described. All solutions found are considered feasible designs and none
have been removed, and dominated solutions are not shown. The values of CL are
shown as negative since it is being maximised and the GA is constructed internally to
assume minimisation. All results are for generation 50 (numbered as 0 to 49) unless

Fig. 6 Results for range ±0.3 showing Ganesh, MOTS and NSGA-II
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Fig. 7 Results for range ±0.3 showing Ganesh and MOTS only

stated otherwise in the figure caption, to provide a direct comparison with the MOTS
and NSGA-II results obtained previously.

The number of generations for which the algorithms are permitted to run for is
a limitation set in the scenario as a basis for comparison; Ganesh had not finished
converging, as therewere found to be dominated solutions in the last generations, thus
if it had been permitted to run longer, even better results would have been obtained.
This is likely to be true of the other algorithms too.

The PISA package [6] was used with the results obtained to produce standard
metrics for hypervolume indicator [44] and ε-indicator [46], to understand the per-
formance better through its statistical analysis and performance package. Table1
gives the results of Kruskal–Wallis non-parametric one-tailed tests comparing each
algorithm’s 20 samples results (for a given range) against each of the others, in which
the null hypothesis, H0, is that any variation seen between any two algorithm per-
formances is due to random fluctuation within normal bounds, assuming an alpha
value of 5%.



122 J.M. Oliver et al.

Fig. 8 Results for range ±0.6 showing Ganesh, MOTS and NSGA-II

When H0 is not rejected, one algorithm cannot be said to out-perform the other,
conversely whenH0 is rejected, the test suggests that the first algorithm does outper-
form the second, for the indicator under consideration. Table1 gives the test results
showing p-values representing the probability that the difference in performance seen
is no greater than would be expected if the samples had the samemeans, thus where a
p-value is less than 0.05, it is reasonable to rejectH0 and say the first algorithm does
out-perform the other. Where the p-value is greater than 0.05, H0 is not rejected and
the algorithms probably have similar performance. The tests use the hypervolume
indicator [44, 45], which was originally described as “the size of the space covered”,
and the ε-indicator [46], for which the means and standard deviations of the values
used in the tests are given in Tables2, 3 and 4.

The hypervolume indicator is a measure of how much area or (hyper-)volume,
depending on the dimensionality of the objective space, is covered by an approxima-
tion front, thus it is not only an indicator of convergence but also of breadth of front.
The ε-indicator (epsilon) is a measure of the minimum distance of translation needed
to move every solution in the discovered front, so that the front weakly dominates
the most converged front found. So for a given range, the most converged front from
all 60 samples is chosen, by PISA, as the reference set against which the ε-indicator
is measured.
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Fig. 9 Results for range ±0.8 showing Ganesh, MOTS and NSGA-II

The Kruskal–Wallis tests show that for these set of results, for both indicators
across all ranges, Ganesh seems to out-perform MOTS in terms of convergence and
has a similar breadth of front, although at the greater ranges, not as dense as MOTS.
As can be seen in the scatter plot for the 1.0 range, MOTS does achieve several very
good non-dominated points. The tests also show that Ganesh out-performs NSGAII
for hypervolume at 0.3, both indicators at 0.6 and for ε-indicator at 0.8, but neither
at 1.0. NSGAII on the other hand does not seem to out-perform Ganesh for any
indicator at any range, while it also seems to outperform MOTS across indicators
and ranges.

The means and standard deviations for the indicators given in Tables2, 3 and 4
show that Ganesh tends to have a higher variation in indicator value than NSGA-II,
and this seems to be borne out by the scatter plots, although Ganesh does seem to
get solutions to the front edge of the Pareto plots. NSGA-II seems to achieve wider
fronts at 1.0, while not seeming as well converged, which seems to be the reason
that neither can be said to out-perform the other in all respects as shown by the
Kruskal–Wallis tests.
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Fig. 10 Results for range ±1.0 showing Ganesh, MOTS and NSGA-II

Figure6 has the results of NSGA-II plotted last, hence this set somewhat obscures
the underlying results of MOTS and Ganesh, so the latter two are shown together in
a separate plot, in Fig. 7.

Figure11 is a repeat of Fig. 10 but with a much later generation of a Ganesh
run: generation 863, which was the first generation in which all 120 solutions of
the population of that generation were non-dominated. Prior to that point, every
preceding generation had at least one dominated solution in it. As one would expect,
this front dominates the others, but it also has quite a dense and wide front. It is
reasonable to suppose that even this late generation is not yet the best performance that
it might achieve, given that it has only just eliminated the last dominated solution(s).
Figure11 also shows, by means of an arrowed line, the airfoils for a number of
selected points. The drag coefficient scale has been extended to show the datum
airfoil point, towards the right at the top. The airfoils are chosen from each end of
the approximate Pareto front and from near the middle, to show the response of
aerodynamic performance to the shape as it is specialised away from the NACA012
airfoil.
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Fig. 11 Results for range ±1.0 showing Ganesh, MOTS and NSGA-II, and GaneshG863 which
is the first generation of Ganesh having only non-dominated solutions (in generation 863), and a
selection of resulting airfoils

An airfoil from generation 863 is shown in Fig. 12, which is near the middle of the
Pareto front approximation. This represents a compromise design having good lift
and good drag coefficient values. The graph above the airfoil section shows pressure
coefficient distributions for the airfoil surfaces and boundary conditions. The parallel
coordinates plot of Fig. 18 shows the design parameters for the selected approximate
cL of this airfoil.

In Figs. 13 and 14 themeans of theGA control parameters are plotted since each of
the 120 solutions in each generation has its own value for each of these parameters. It
can be seen that as theGAprogresses through its generations, both pMandpCbecome
smaller, hence the disturbance to good solutions is lessened, while their respective
polynomial distribution indices become larger, which decreases the perturbation to
the section geometry, thus at the start the GA is better at exploring the search space
while towards the end it is better at converging to good solutions.

Figures 15 and 16 show how the standard deviations of the control parameters
vary across the generations. As can be seen, they start off low, since the parameters
are set at the start of the run, then increase rapidly at the early stages, but begin to
increase less rapidly at around the middle of the run, with expectations of levelling
out towards the end of the run. This is indicative of much variation across individual
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Table 2 Means and standard deviations (SD) of the ε- and hypervolume indicators provided by
PISA for Ganesh results

Ganesh

Range Epsilon Hypervolume

Mean SD Mean SD

0.3 0.075457 0.039082 0.050667 0.023536

0.6 0.080692 0.033401 0.075564 0.032801

0.8 0.111012 0.032667 0.131357 0.044737

1.0 0.146081 0.056356 0.190044 0.101289

Table 3 Means and standard deviations (SD) of the ε- and hypervolume indicators provided by
PISA for MOTS results

MOTS

Range Epsilon Hypervolume

Mean SD Mean SD

0.3 0.155269 0.066874 0.122358 0.03185

0.6 0.317691 0.055242 0.401264 0.037391

0.8 0.251978 0.058163 0.387173 0.085911

1.0 0.234526 0.044423 0.351916 0.094109

Table 4 Means and standard deviations (SD) of the ε- and hypervolume indicators provided by
PISA for NSGA-II results

NSGA-II

Range Epsilon Hypervolume

Mean SD Mean SD

0.3 0.069424 0.026199 0.069150 0.015704

0.6 0.102902 0.021668 0.115390 0.029101

0.8 0.128359 0.028219 0.144089 0.042932

1.0 0.154388 0.037153 0.180101 0.046149

candidate solutions, for these controls, that nevertheless seems to reach a maximum
level, perhaps a “requisite variety”. The trends of the means do however seem to
indicate that overall the solutions are evolving to better states.

Figure17 is a plot that shows results in the form of parallel coordinates (‖-coords),
the technique devised by Inselberg [21] and later used in the field of optimisation
by Fleming [16], Siirtola [35, 36], and in engineering design by Kipouros et al. [25,
26], in which each dimension is oriented parallel to the others, thus transforming an
n-dimensional point into a 2-dimensional polygonal line that relates the values in
each dimension. This approach enables highly multi-dimensional data to be plotted
uniquely and without loss of information, and here the entire design space of each
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Fig. 12 An airfoil (ffd-2867) from range ±1.0 in generation 863, cL 1.547 cD 0.540 (the values
in the figure itself are not normalised.), showing analysis of aerodynamic performance

Fig. 13 Trends of the means of the pM and ηM control parameters against generation number for
all ranges for all samples for Ganesh

solution, 8 variables and 2 objective function results, are plotted together. The plots
were produced using the Parallax tool [3].

Thus Fig. 17 shows the eight parameters and twoobjective functions (Cl andCd) of
the design vector of all solutions in generation 863 of a run for range±1.0, as shown
in Fig. 11. This shows parameter 6 has been selected for value 1, the value that seems
to achieve the greatest lift, while the lowest drag has also been selected, showing
that the least drag corresponds to the least lift (as lift here is a negative amount as
explained previously). As might be expected, the opposite value of parameter 6 is
selected for least drag, while high values of p5 and p3 are also selected, both of
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Fig. 14 Trends of the means of the pC and ηC control parameters against generation number for
all ranges for all samples for Ganesh

Fig. 15 Trends of the standard deviations of pM and ηM control parameters against generation
number for all ranges for all samples for Ganesh

Fig. 16 Trends of the standard deviations of pC and ηC control parameters against generation
number for all ranges for all samples for Ganesh
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Fig. 17 Parallel coordinates plot showing Ganesh results for range ±1.0 at generation 863, which
is the first generation having only non-dominated solutions

Fig. 18 Parallel coordinates plot showing Ganesh results for range ±1.0 at generation 863, with
the airfoil cL and cD, see Fig. 12, selected

which are antagonistic for lift. Interestingly, p4 seems to have high values for both
lift and drag. Figure18 shows the plot for the selected airfoil of Fig. 12, as previously
described.

5 Conclusion

Recalling that the range of deformation allowed in the FFD transformation is a
dimensionless relative measure against a particular geometry, it was apparent that
as the range increased, the MOOEA was able to find attainment surfaces that were
better approximations of the Pareto-optimal front, as do the other algorithms, as it
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is intrinsically enabled to explore wider areas of the search space at earlier times.
XFoil can take longer to run with larger variations in range as it may find it harder
to converge successfully and indeed may fail to converge.

The ability of the GA to self-adapt its crossover andmutation rates seemed to help
it improve exploration and convergence, since not being fixed, the rates are more
likely to be appropriate at a given generation as they co-evolve along with the fitness
of solutions. Although each new self-adaptive parameter can also be thought of as a
factor increasing the total decision search space, the increase is by a relatively small
percent. There is inevitably a trade-off between the impact on search efficiency by the
small expansion of the search space through the addition of the control parameters,
and the exploitation effect of possibly more appropriate control parameters arising.
Moreover, the number of generations allowed in these experiments can be thought
of as quite low, and at greater generations, the impact of self-adaptivity would be
expected to be greater.

Specifying that zero duplicates are permitted is beneficial as it prevents the
MOOEA from prematurely converging to just a few solutions having many copies,
as can be the case, and although it is limited to intra-generational checking, as each
preceding generation also has zero duplicates, it seems to perform well, even though
it does not prevent previously rejected solutions from re-appearing subsequently (as
they might if eliminated due only to breaking crowding limits). Nevertheless, not
having to save every solution ever produced can be a significant memory saving,
especially for long runs having a great many generations.

This self-adaptive GA has been shown to work well on a benchmark 2D aerody-
namic design problem, as a real-world engineering example, and to provide better
convergence than MOTS and in some cases NSGA-II while not being worse than
either overall. It does not provide as good a density of solutions in the Pareto-optimal
front as MOTS always. This can be viewed as a trade-off between being better at
exploring the search space widely but doing less well at exploiting solutions found
locally.

6 Future Work

It is considered desirable to enable the GA to switch betweenmodes centred on either
convergence or distribution, since these have been shown generally to be mutually
exclusive. Like most generational GAs, this GA is distribution-centric as driven by
its ranking algorithm, but allowing it to adopt a convergence-centric mode when
convergence halts, by only allowing new solution points that dominate at least one
of the existing points to enter the next generation, should improve convergence per-
formance. Any optimisation algorithm that exhibits these characteristics is expected
to be favourable for the exploration and exploitation of such complex engineering
design problems. DE algorithms, in which a new solution vector only enters the pop-
ulation if it is better than the parent, can be only considered as convergent-centric.
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Abstract Atmospheric pressure on Mars is approximately 1% of that on Earth and
varies about 15% during the year due to condensation and sublimation of its pri-
marily CO2 atmosphere. Impacts of the uncertainties during the entry are difficult to
be modeled. The situation becomes more complex when uncertainties are from dif-
ferent disciplines. In this work, a robust multi-disciplinary optimization method for
Mars microentry probe design under epistemic uncertainties is presented. Objectives
of the evidence-based robust design are set to minimize the interior temperature of
thermal protection systems (TPS) and maximize its belief value under uncertainties.
A population-based multi-objective estimation of distribution algorithm (MOEDA)
is designed for searching the robust Pareto set. Candidate solutions are adaptively
clustered into groups. In each group, principal component analysis (PCA) technique
is performed to estimate population distribution, sample and reproduce individuals.
Non-dominated individuals are sorted and selected through the NSGA-II-like selec-
tion procedure. Adaptive sampling and binary branching techniques are employed for
computing the evidence belief functions. PCA dimensionality reduction technique
is implemented for identifying and removing uncertain boxes with little contribu-
tion of the beliefs.With variable fidelity model management, analytical aerodynamic
model is used first to initialize the optimization searching direction. Artificial neural
network (ANN) surrogate model is used for reducing the computational cost. When
the optimization goes close to the optima, more data from the high accuracy model
are put into the aerodynamic database, making the optimization procedure converge
on optima quickly while keeping high-level accuracy.
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1 Introduction

WhendesigningMarsmicroentry probe, challenges for the designers are complicated
by many factors. Atmospheric pressure on Mars is approximately 1% of that on
Earth and varies about ±15% during the year due to condensation and sublimation
of its primarily CO2 atmosphere. Temperature on the Mars surface might be cold
enough that carbon dioxide freezes during the winter and “snows” onto the polar
cap. Therefore, uncertain impacts of these factors should not be neglected during the
mission design, and a robust design optimization method taking uncertainties into
account is required.

Numerous examples of multi-disciplinary design optimization (MDO) applica-
tions have been found in many areas [4, 23, 26]. Roshanian proposed an integrated
approach for multi-disciplinary design of launch vehicle, using response surface
method for approximation of the propulsion model [25]. Huang proposed a multi-
objective Pareto concurrent subspace optimization method for multi-disciplinary
design [15]. In [11], interval-based methods were used in the multi-objective
optimization (MOO). To reduce computational cost, some researchers introduced
variable fidelity model management into MDO for the reentry vehicle and air-
craft design [10, 21]. Taking into account the uncertainty impacts, Mueller and
Larsson proposed a robust optimization method for collision avoidance maneuver
planning [20]. Lantoine proposed a hybrid differential dynamic programming algo-
rithm for robust low-thrust optimization [17]. Vasile and Croisard proposed a robust
mission design method with Evidence Theory [6, 27].

In real-life engineering design problems, particularly some problems in the pre-
liminary design phase, it is generally desirable to investigate uncertainty impacts in
the design optimization. An appropriate representation of the uncertainty in analysis
outcomes is therefore an essential part of complete analysis. For aleatory uncertain-
ties,whose probability density functions are supposed to be known, probability-based
analysis tools can be used for computing the confidence level of the solutions, and
the traditional optimization tools can be used for searching the optimal solutions with
probability-based reliable constraints.However, the knowledge of the probability dis-
tribution is not always available for the uncertainties. For epistemic uncertainties due
to lack of knowledge, the uncertainties are expressed by means of intervals based on
experts’ opinion or rare experimental data, and the classic probability theory-based
analysis tools cannot be used. Therefore, some researchers proposed evidence-based
robust design optimization methods for the design optimization under epistemic
uncertainties [6, 27].

With Evidence Theory (Dempster-Shafer’s theory), both aleatory and epistemic
uncertainties, coming from a poor or incomplete knowledge of themodel parameters,
can be correctly modeled [1]. The values of uncertain parameters are expressed by
means of intervals with associated probabilities. In particular, the value of belief
expresses the lower probability that the selected design point remains optimal (and
feasible) even under uncertainties.
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In this work, a population-based robust optimization (RO) method for Mars
microentry probe design is proposed. The optimization objective is to minimize
the interior temperature of TPS, while at the same time to maximize its belief value.
Candidate solutions are adaptively grouped with affinity propagation method. No
predefined number of the clusters is required. In each cluster, principal component
analysis (PCA) is performed for estimating population distribution, sampling, and
reproducing individuals. Non-dominated individuals are sorted and selected through
the NSGA-II-like selection procedure. Multi-fidelity aerodynamic models are inte-
grated into the robust optimization procedure. Variable fidelity model management
is conducted through artificial neural network (ANN) surrogate model. When the
optimization goes close to the optima, more data from the high accuracy model are
put into the aerodynamic database, making the optimization procedure converge on
optima quickly while keeping high-level accuracy.

The rest of the paper is organized as follows: Sect. 2 describes dynamic mod-
els involved in this paper, including the entry dynamic, aerodynamic, and thermal
dynamic models. Section3 investigates impacts of the epistemic uncertainties and
corresponding computation of evidence levels. The multi-objective robust optimiza-
tionmethod is presented in Sect. 4. Numerical simulation of themicroprobe (nomore
than 0.8m in diameter) design under uncertainty is given in Sect. 5, and conclusions
are presented in Sect. 6.

2 Dynamic Models

2.1 Entry Dynamic Equations

With state variable [r, λ, φ, v, θp, ξ ]T , the entry dynamic equations in planet-centered
frame can be written as [24, 29] (Fig. 1)

ṙ = v sin θp

λ̇ = v
cos θp cos ξ

r cosφ

φ̇ = v cos θpsinξ

r

v̇ = −D

m
− g sin θp

θ̇p = L

mv
cos γv −

(g
v

− v

r

)
cos θp

ξ̇ = L

mv cos θp
sin γv − v

r
cos θp cos ξ tan φ (1)
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Fig. 1 Illustration of point mass entry trajectory equations: λ and φ are longitude and latitude,
respectively; θp denotes flight path angle, and ξ is velocity azimuth angle

where r, λ, and φ are the distance from the center of the planet to the vehicle,
longitude, and latitude, respectively; θp denotes flight path angle, and ξ denotes
velocity azimuth angle. Drag D and lift L in the Eq.1 are given by

D = 1

2
ρ(h)SCdv

2

L = 1

2
ρ(h)SClv

2 (2)

Given the initial condition, state variables at each point of the trajectory can
be obtained by integrating Eq.1. The aeroshell of the probe is defined by a set
of geometric parameters (see Fig. 2). The parameters consist of radius of nose Rn,
diameter Rb, and semi-apex angle θ . The leeward side of the body is a semisphere.

With modified Newtonian theory, drag coefficient and lift coefficient can be
obtained [3]

Cd = Cd(Cpt2, α, γ,Rn, θ,Rb), Cl = Cl(Cpt2, α, γ,Rn, θ,Rb) (3)

where α is angle of attack (AoA), γ is specific heat rate, and pressure coefficient
Cpt2 can be computed with
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Fig. 2 Geometric definition
of the micro Mars probe.

Cpt2 = 2

γ

(
γ + 1

2

)
γ

γ − 1

(
γ + 1

2γ − γ−1
M2∞

) 1
γ−1

− 2

γM2
∞

(4)

where M∞ is Mach number.
Suppose thatM∞ � 1.0, lift coefficient and drag coefficient can be obtained with

Eqs. 3 and 4.More accurate data taking into account all effects can be from numerical
computational fluid dynamics (CFD) model. In this work, the commercial CFD soft-
ware Numeca® is used to perform high-accuracy computation of Reynolds-averaged
Navier–Stokes equations. However, the costly computation makes it impractical to
rely exclusively on the high-fidelity CFD model for the design optimization.

2.2 Heat Flux and Heat Load

The thermal protection system (TPS) is composed of SLA-561V, a material widely
used in space engineering for thermal protection, and has been used as the primary
TPS material on all the sphere-cone Mars entry vehicles sent by NASA. Equation
for computing heating flux on the TPS surface is given by [3, 19]

q̇ = 1.89−8
√

ρ
/
Rnv

3 (5)



140 L. Hou et al.

Suppose that the heat transfer occurs only in one direction deep into the TPS layer,
the one-dimensional heating transfer equation can then given by [2, 13]

∂

∂x

(
kc

∂T

∂x

)
+ ṁpcp

∂T

∂x
= ρccp

∂T

∂t

∂

∂x

(
kv

∂T

∂x

)
= ρvcp

∂T

∂t
(6)

with boundary conditions under radiation equilibrium condition:

q̇ = εσT 4
w + k

dT

dx
(x = 0)

k
dT

dx
= εσTin

4 (x = LTPS) (7)

where cp is heat capacity, ṁ is surface recession rate of TPS materials, ρc, and
ρv denotes the density of char material and virgin material; kc and kv are thermal
conductivities of char material and virgin material, respectively; Tw and Tin denote
temperatures at outer and inner surfaces. Material properties of SLA-561V are taken
from TPSX website [14]. Integrating Eqs. 5–7, temperature distribution of TPS can
be obtained with finite-difference method.

Neglecting the effects of decomposition, and pyrolysis gas flow, with the semi-
infinite solid approximation, closed-form analytical solutions to the in-depth heat
transfer equation can be obtained. The simplified relation of TPS surface temperature
Ts and heat flux q̇ is

q̇ = εσT 4
s (8)

where ε is emissivity factor, and σ = 5.6703e − 8 is the Stefan-Boltzmann constant,
respectively. The temperature at a depth x within the solid at time t is given by

T(x, t) = erf

(
x − ẋt

2
√

αt

)
(T0 − Ts) + Ts (9)

where erf is the gaussian error function, ẋ is TPS surface recession rate, and T0 is
the initial temperature, respectively. The thermal diffusivity α in Eq.9 is given by

α = k

ρcp
(10)

where k is thermal conductivity, cp is specific heat, and ρ is density, respectively. The
equations above can be used as simplifiedmodel for conceptual design in preliminary
design phase.
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3 Uncertain Impacts and Evidence Theory Modeling

3.1 Evidence Theory-Based Uncertainty Modeling

In this section, an Evidence Theory (ET)-based uncertainty modeling technique is
presented. In this method, as opposed to a single value of probability, bounds for
uncertainty quantification are used instead. Propagation of the information is through
basic probability assignment (BPA) [1, 6, 27]. The total degree of belief in a propo-
sition A is expressed within a bound [Bel(A),Pl(A)] lying in the unit interval [0, 1].
Bel(A) is obtained by accumulation of BPAs of the propositions that imply proposi-
tion A, whereas Pl(A) is plausibility calculated by adding the BPAs of propositions
that imply or could imply the proposition A.

In Evidence Theory, the belief of an uncertain parameter u ∈ [a, b] is an elemen-
tary proposition. The level of confidence an expert has on an elementary proposition
is quantified using the basic probability assignment (BPA). The BPA satisfies the
following rules:

m(E) ≥ 0,∀E ∈ U

m(∅) = 0∑
E∈U

m(E) = 1 (11)

where m(E) is BPA of the elementary proposition E, and U is a set that contains all
possible E and unions of E.

A focal element (FE) is an element ofU that has a non-zero BPA. The Belief (Bel)
and Plausibility (Pl) functions of proposition A are [1, 6]:

Bel(A) =
∑

FE⊂A, FE⊂U

m(FE) (12)

Pl(A) =
∑

FE∩A�=∅, FE⊂U

m(FE) (13)

For BPAs of more than one uncertain parameters (e.g., u1 and u2, and correspond-
ing intervals they are located in, [a1, b1] and [a2, b2]), as Eq.14 shown, the BPA of
given Cartesian product is product of the BPA of each interval, i.e.,

m((u1, u2) ∈ [a1, b1] × [a2, b2]) = m(u1 ∈ [a1, b1]) × m(u2 ∈ [a2, b2]) (14)

Using Evidence Theory for robust engineering design was proposed in 2002 by
Oberkampf et al. [22] and was recently applied to robust design of space systems [1,
18] and space trajectory design [6]. Suppose the uncertain parameters and design vari-
ables are u = [u1, u2, ..., um] ∈ U and d = [d1, d2, ..., dn] ∈ D, respectively, where
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U ∈ Rm and D ∈ Rn are uncertain space and design space, respectively, the robust
optimization can be formulated as

max
v∈R,x∈D

Bel(f (d,u) < v)

min
v∈R,x∈D

v (15)

where v ∈ R is the threshold to be minimized, and f (d,u) is the main objec-
tive function. Based on this idea, M. Vasile et al. proposed three approaches
to solve the OUU (optimization under uncertainty) problem: evolutionary multi-
objective approach, step technique, and clustering approximation method [6]. These
approaches are applied to BepiColombo preliminary mission design, and minimize
wetmass of the spacecraft taking into account uncertainties. In the following sections,
a population-based multi-objective optimization method is proposed for the robust
design optimization.

3.2 Approximation of Belief and Plausibility

Given propositionA = {u ∈ U|f (d,u) ≤ v}, and subsets of�, belief and plausibility
of proposition A can be computed through

Bel(A) =
∑
∀θi⊆A

m(θi), Pl(A) =
∑

∀θi∩A�=0

m(θi) (16)

where m(θ) is the BPA associated to the subset θi, and U is the uncertain space.
In this work, a binary tree evolutionary algorithm is performed for computing

the belief and plausibility values [28]. In this algorithm, with uncertainty space
U and threshold v, an iterative partitioning and pruning procedure is implemented
for identifying those focal elements contributing to the plausibility and belief of v.
Algorithm 1 shows how the binary tree evolutionary algorithmworks with the propo-
sition A = {u ∈ Ui|f (x̄,u) ≤ vi}, where x is design vector, vi is threshold, and Ui is
the uncertain box.

3.3 Dimensionality Reduction of Uncertainties

With Evidence Theory, computational cost for Bel and Pl grows exponentially with
the number of the dimensions. In this work, a double-level strategy is implemented
for obtaining the approximation of the Belief and Plausibility cumulative function.
First, a principle component analysis (PCA)-based algorithm is implemented for
dimensionality reduction, leaving those focal elements contributing most for Bel
and Pl values.
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Algorithm 1 Binary tree evolutionary algorithm
1: Given design parameter x̄, and uncertain box Ui
2: for each threshold vi do
3: iter = 0
4: initialize the uncertain measure values with Bel(v) = 0 and Pl(v) = 0
5: partition hypercube Ui into Ūl and Ūr along the longest edge
6: for each sub-box Ūr ,Ūl do
7: compute f jmin = min

u∈Ūj
f (x̄,u) and f jmax = max

u∈Ūj
f (x̄,u), where j = l, r

8: if f jmin > v then
9: pl(−A) = pl(−A) + BPA(Ūj), remove the box Ūj

10: else
11: if f jmax < v then
12: Bel(A) = Bel(A) + BPA(Ūj), Pl(A) = Pl(A) + BPA(Ūj)

13: end if
14: end if
15: end for
16: iter = iter + 1
17: if iter < nmax and BPA(Ūj) > ε then
18: go to 5
19: end if
20: end for

In this analysis, given design parameters, a series of numerical computations
with uncertainty impacts are performed. This set is chosen to represent the impacts
of uncertainties. A Latin hypecube sampling of uncertainties are performed and is
stored in a M × N matrix, where M is the number of experiments and N is the size
of variables Ψ = f (d,u)

Ψ =

⎛
⎜⎜⎜⎝

Ψ
(1)
1 Ψ

(2)
1 · · · Ψ

(M)
1

Ψ
(1)
2 Ψ

(2)
2 · · · Ψ

(M)
2

...
...

...
...

Ψ
(1)
N Ψ

(1)
N · · · Ψ

(M)
N

⎞
⎟⎟⎟⎠ (17)

with numerical samples Ψ , a deviation matrix computed with respect to the mean
vector Ψ can be obtained as

Ψ̃ = Ψ − Ψ̄ (18)

With covariance matrix C = Ψ̃ · Ψ̃ T , a linear basis can be obtained by extract-
ing eigenvectors Ui from C. After ranking the eigenvectors in descending order of
their corresponding eigenvalues, relative contributions of each uncertainty can be
estimated. Equation19 shows the criterion used for dimensionality reduction

e = 1 −
∑m

i=1 λ2
i∑M

i=1 λ2
i

(19)
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BPAs of the discarded boxes are added up to those boxes remained such that sum
of BPAs over the whole uncertainty space holds 1.0.

After dimensionality reduction, to further the approximation, boxes with BPA
lower than the specified value are removed for their little contributions of Bel and
Pl. Sort the boxes with respect to their BPAs, remove those boxes whose BPA values
are less than, e.g., 0.01, and transfer the BPAs to the remainder boxes related to
uncertain parameters. EBT technique can then be implemented for computing Bel
and Pl values.

3.4 Adaptive Sampling for Belief Function Computation

Note that in the computation of Pl(A) and Pl(−A) in EBT, when exploring solution
space in Ūl and Ūr , it does not always require exact minimum (maximum) value
of the cost function. One can consider some other approximate values instead. This
will help reduce computational cost, but may introduce error during the computation.
This is implemented by an adaptive sampling and selecting strategy.

In the evidence-based robust optimization, the computational cost mainly comes
from those programs searching minimum and maximum values of the cost function.
The cost is particularly expensive for reentry vehicle design in which large number of
uncertainties and design parameters are involved. In this study, instead of conducting
theminimum searching programs such as fmincon function ofMATLAB, an adaptive
sampling and searching technique is used. Samples are selected in the uncertainty box
with uniform distribution. Those values of maximum and minimum magnitude are
selected and put into the archive for performing the computation of belief functions.
For each individual box, sample size is set to be proportional to the product of BPA
and longest distance of the box. This is based on the assumption that minimum and
maximum values are uniformly distributed and varies monotonously with respect to
the uncertainties.Therefore, one can use the samples instead of searching the real
maximum values at very high expense of computational cost.

4 Multi-fidelity Robust Optimization

4.1 Multi-objective Optimization with Adaptive Clustering
Density Estimator

In this section, a population-based multi-objective estimation of distribution algo-
rithm (MOEDA) is proposed for conducting themulti-objective optimization (MOO).
Individuals are adaptively clustered into groups. In each group, local principle com-
ponent analysis is used for modeling distribution and reproduction of individuals.
The method is organized as follows:
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1. Clustering Using Affinity Propagation

There are several ways to cluster a data set. The popular k-centers clustering tech-
nique begins with a set of randomly selected exemplars and iteratively refines this set
so as to decrease the sum of squared errors. Another similar method is to use local
PCA for partitioning population [30]. Both algorithms have the number of clusters
predefined before data partitioning is performed.

In this paper, affinity propagation clustering technique is used instead [12]. In this
algorithm, affinity propagation takes as input a real number s(k, k), “preference,” for
each data point. Data points with larger values of s(k, k) are more likely to be chosen
as exemplar. Real-valued messages are exchanged between data points until high-
quality centers and corresponding clusters gradually emerges. The “responsibility,”
r(i, k), sent from data point i to candidate exemplar point k, reflects the accumu-
lated evidence for how well-suited point k is to serve as exemplar for point i. The
“availability,” a(i, k), sent from candidate exemplar point k to point i reflects the
accumulated evidenced for how appropriate it would be for point i to choose k as its
exemplar. Figure3 shows how the messages of “responsibilities” and “availabilities”
work.

In affinity propagation clustering method, the number of clusters need not be
specified beforehand. Instead, the appropriate number of clusters will be determined
from the message passing and depends on the input exemplar preference. The initial
preference is set to be the median of the input similarities, a negative squared error.
Real-valued messages are exchanged between data points until high-quality centers
and corresponding clusters gradually emerges.

2. Modeling Using Principal Component

In each cluster, principle component technique is employed for modeling individu-
als [30]. For each cluster Sj, boundaries of the subset are given by

aji = min
x∈Sj

(x − x̄j)
TUj

i , bji = max
x∈Sj

(x − x̄j)
TUj

i (20)

where the principal component Uj is computed as a unit eigenvector associated with
the sample data covariance matrix C of the points in Sj

Fig. 3 Affinity propagation clustering: individuals are clustered into groups with messages of
“responsibilities” and “availability” between individuals
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C = 1

|S| − 1

∑
x∈S

(x − x̄)(x − x̄)T (21)

where |S| is cardinality of Sj. With the ith largest eigenvalue λ
j
i of C in Sj, we have

σj = 1

n − m + 1

n∑
i=m

λ
j
i (22)

where m is the number of objectives and n is the dimension of the vector x.
To make the clusters more approximate the Pareto set (PS), and avoid missing real

solutions, extensions on both sides of boundary are made to generate new sampling
subspace Ψ j. The percentage the extension made is 25% of either side:

Ψ j =
{
x ∈ Rn

∣∣∣∣∣x = x̄j +
m−1∑
i=1

αiU
j
i , i = 1, . . . ,m − 1

}
(23)

with
α
j
i − 0.25(bji − aji) ≤ αi ≤ bji + 0.25(bji − aji) (24)

3. Reproduction by Sampling

Generate τ samples with the probability proportional to its size for subspace Ψ k:

P(τ = k) = vol(Ψ k)

k∑
j=1

vol(Ψ j)

(25)

Uniformly randomly generate a point x′ from Ψ τ . Generate N new individuals
x = x′ + ε, where ε is a noise vector from N(0, στ I).

4. Selection

The selection procedure is based on the non-dominated sorting similar to NSGA-
II [7]. Crowding distance of the points in set is defined as the average side length
to the largest m-D rectangle in the objective space. Solutions with lager crowing
distance will be put into the new population.

4.2 Experimental Results of the New MOO
with Multi-probability Constraints

Consider a bi-objective optimization problem with two design variables x = [x, y]
with variance σ = 0.03 [8].
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min f1 = x

min f2 = 1 + y

x
subject to y + 9x − 6 ≥ 0,

−y + 9x − 1 ≥ 0,

0.1 ≤ x ≤ 1,

0 ≤ y ≤ 5 (26)

The probability constraint is

P(gj(x) ≥ 0) ≥ Rj, (j = 1, 2, ..., J) (27)

where x are design variables, Rj is the desired reliability (within [0, 1]). By replacing
the original probability constraint by Gj(U∗) ≥ 0, the most probable point (MPP)
can be obtained by solving the optimization problem

Minimize Gj(U)

subject to ‖U‖ = βr
j (28)

where βr
j is the required reliability index computed from the required reliability Rj

as

βr
j = Φ−1(Rj) (29)

Population size of the MOEDA is set to be 50. After 100 generations, a set
of reliable solutions is obtained. Figure 4 shows the deterministic front and three
reliable frontiers with reliability index βr equal to 1.0(84.13%), 2.0(97.725%), and
3.0(99.875%). As shown in the figure, the reliable trade-off frontier moves inside
the feasible objective space as βr increases. These solutions agree well with those
in [8].

4.3 Multi-fidelity Model Management

In Mars entry probe design optimization, direct search methods relying exclusively
on high-fidelity aerodynamic models is cost-prohibitive. Therefore, researchers pro-
posed different model management strategies for variable-fidelity optimization [5,
16]. In this section, an ANN-based multi-fidelity strategy is designed to integrate the
models with different accuracy levels into the robust optimization.

The model management works as follows: First, a Latin hype-cube sampling is
carried out for different geometric configurations, with which an ANN for response
surface fits is initialized by the results from both low- and high-fidelity models.
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Fig. 4 Trade-off frontiers
for the two probability
constraints test problem

In the ANN approximator, the inputs are drag coefficient and lift coefficient from
both models, and the corresponding Mach number and AoA, while the output is the
difference between CFD and modified Newtonian theory. The actual lift and drag
coefficients in the optimization procedure are then from the analytical model plus
output of the ANN.

The ANN is updated after every few generations of optimization. Only the indi-
viduals of great value are sampled using high-fidelity model. The sample sets consist
of the centroid of the cluster, individuals located on the lower and higher bounds of
the sampling cluster, and other interested individuals, e.g., individuals with highest
temperature in the cluster. Putting into the ANN new high-fidelity results and cor-
responding lower fidelity results and training the ANN, new response surface can
then be established. During the optimization, more and more information from high-
fidelity model is put into the surrogate model, making the surrogate model closer to
the high-fidelitymodel, and finally after several generations, converges to the optimal
values with accuracy level of the high-fidelity model.

Figure5 shows flowchart of the evolution control and database handler.

5 Numerical Results

In this section, robust optimization of a microentry probe design is presented. The
probe cross section diameter is 0.8 m, with entry massm = 12kg and TPS thickness
LTPS = 1.4cm. The design parameters are d = [Rn, θ ]T . Initial values of the design
parameters are given in Table1.

Initial entry conditions are set to be same as the Spirit spacecraft and listed in
Table2, with uncertainties u = [ρ,Cd,Cl, r, λ, φ, v, θ,m]T of atmospheric model
and trajectory parameters. Table3 shows their corresponding BPA structure.
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Fig. 5 Evolutionary control and database handler: relation of evidence computation, surrogate and
multi-objective optimization

Table 1 Initial values of design parameters

Parameters θ Rn

Lower bound 35.0◦ 0.04 m

Upper bound 75.0◦ 0.15 m

Table 2 Initial entry conditions [9]

r v ξ θp λ φ

3392.3 5.628 79.025 −11.495 161.776 −17.742

km km/s (◦) (◦) (◦) (◦)
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Table 3 BPA structure of uncertain parameters

Parameters Lower bound Upper bound BPA

ρ −10% −5% 0.05

−5% 0 0.25

0 5% 0.3

5% 10% 0.4

Cd −10% −5% 0.05

−5% 0 0.25

0 5% 0.3

5% 10% 0.4

Cl −10% −5% 0.05

−5% 0 0.25

0 5% 0.3

5% 10% 0.4

r −2.0km −0.5km 0.20

−0.5km 0 0.40

0 0.5km 0.40

0.5km 2.0km 0.20

λ −0.20◦ −0.10◦ 0.20

−0.10◦ −0.05◦ 0.30

−0.05◦ 0.10◦ 0.30

0.10◦ 0.20◦ 0.20

ϕ −0.20◦ −0.10◦ 0.20

−0.10◦ −0.05◦ 0.30

−0.05◦ 0.10◦ 0.30

0.10◦ 0.20◦ 0.20

v −50 m/s −20 m/s 0.20

−20 m/s −10 m/s 0.40

−10 m/s 10 m/s 0.30

10 m/s 20 m/s 0.10

θ −0.5◦ −0.05◦ 0.40

−0.05◦ −0.01◦ 0.30

−0.01◦ 0.01◦ 0.20

0.01◦ 0.20◦ 0.10

m −0.5kg −0.10kg 0.40

−0.10kg −0.05kg 0.30

−0.05kg 0.10kg 0.20

0.10kg 0.50kg 0.10
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ANN-based surrogatemodel is trained throughBayesian regularizationbackprop-
agation. ANN is trained with different geometric configurations and flow conditions.
The first round of training is done by putting into ANN different values of Cd and
Cl from the analytical model and CFD software with respect to M∞ and geometric
configuration, 300 samples in total.

Analytical aerodynamic model is used during the first few iterations to learn
the cost function. Numeca® discretizes the computational domain with multi-block
structured mesh. The computational meshes consist of 18 blocks with nearly 1.2106
total nodes, changed by internal scripting based on design parameters. The flow
model consist of CO2 and N2, of which 97% by volume is CO2, and 3% by volume is
N2. After every 10 generations, the database is updated by inserting new results from
the CFD software. Trajectory equation is integrated until altitude reaches to 10km,
or the Mach number is lower than 1.3. The objectives of the robust optimization

Fig. 6 Temperature versus
Bel

Fig. 7 Temperature versus
Bel
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Fig. 8 Optimal solutions: individual A

Fig. 9 Optimal solutions: individual B

are to minimize the TPS interior temperature and maximize its belief value, with a
constraint that the maximum overload should be no more than 9 g.

The computation is performed on a Linux platform with 32 Core (4× 8 3.0GHz
AMD 6220), 40 GB of memory. Figures6 and 7 show the optimization results with
a population of 60 individuals after 80 generations. Geometric parameters ([Rn, θ ])
of each individual on the Pareto front are listed in the figures as well (Fig. 7).

Two individuals A and B are selected from Pareto optimal front for illustrating
their performance (Figs. 8 and 9). Individual A has a belief of 0.847 with highest
temperature of 304.1 k, while probe B’s temperature is 301.4 k with a belief of
0.487. Corresponding trajectories and TPS temperatures are shown in the figure as
well (Figs. 10 and 11).
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Fig. 10 Trajectory and TPS performance of individual A and individual B.

Fig. 11 Trajectory
parameters of individual A
and individual B.

6 Conclusion

A robust multi-fidelity optimization strategy is proposed for Mars microentry
probe design. Evidence Theory is implemented to model epistemic-type uncertainty
impacts. Optimization results are improved further with the multi-fidelity models,
reducing the computational cost while accuracy level is preserved. Adaptive cluster-
ingMOEDA is designed for conducting the multi-objective optimization, using local
principle component for generating new individuals. In each cluster, local principle
component techniques are employed for data modeling and data generation. AMOO
with probability constraints is used to test the MOO’s performance. Experimental
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results show that the proposed algorithm could be used in robust optimization under
both the aleatory and epistemic uncertainties.

Moreover, a multi-fidelity model is incorporated into the robust multi-disciplinary
optimization. ANN surrogate model is trained firstly with low-fidelity results, with
high-fidelity data put into the database, the solutions converge to high-fidelity results.
EBT branching and pruning technique and adaptive approximated computation are
used for the computation of belief function during the robust optimization. The
method in this paper provides a way for conducting optimization of the similar
problems in multi-disciplinary space mission design under epistemic uncertainties.
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A Simulation-Based Algorithm
for the Probabilistic Traveling
Salesman Problem

Weiqi Li

Abstract The probabilistic traveling salesman problem (PTSP) is a variation of the
classic TSP and one of the most significant stochastic network and routing problems.
Designing effective and efficient algorithms for solving PTSP is a really challenging
task, since in PTSP, the computational complexity associated with the combinatorial
explosion of potential solution is exacerbated by the stochastic element in the data.
In general, researchers use two types of techniques in their search algorithms for
PTSP: analytical computation and empirical estimation. The analytical computation
approach computes the cost f (π ) of an a priori tourπ using a closed-form expression.
Empirical estimation simply estimates the cost throughMonte Carlo simulation. This
paper describes a simulation-based algorithm that constructs the solution attractor
of local search for the PTSP and then finds the best a priori tour within the solution
attractor. More specifically, our algorithm first uses a simple multi-start local search
process to find a set of locally optimal a priori tours through Monte Carlo simulation
and stores these tours in a matrix. Then, the algorithm uses an exhausted search
process to find all tours contained in the solution attractor and identifies a globally
optimal a priori tour π through Monte Carlo simulation.

1 Introduction

Problem solving under uncertainty has a high impact on the real-world applica-
tions, since in the real world many optimization problems are inherently dynamic
and stochastic. Such problems exist in many areas such as optimal control, logistic
management, dynamic simulation, telecommunications networks, genetics research,
neuroscience, and ubiquitous computing. As real-time data in information systems
become increasingly available with affordable cost, people have to deal with more
and more such complex application problems in which information defining the
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state of the problem continuously changes. Today, uncertainty and dynamism have
become much more relevant in many practical applications.

Stochastic combinatorial optimization problems (SCOP) are the optimization
problems that include uncertainty in the formulation of the problems. There are
two major aspects to consider when modeling optimization problems under uncer-
tainty: first, the way uncertain information is formalized, and second, the dynamicity
of the model, that is, the time uncertain information, is revealed with respect to the
time at which decisions must be taken [1].

Uncertain information can be formalized in several ways. One way is to describe
uncertain information by means of random variables of known probability distrib-
utions. Under this model, the optimization problem is stochastic, and the objective
function strongly depends on the probabilistic structure of the problem. In SCOPs,we
can distinguish a time before the actual realization of the random variables and time
after the random variables are revealed when the associated random events happen.
Static SCOPs are characterized by the fact that the identification of a possibly optimal
solution is done before the actual realization of the random variables. This model
is applicable when a given solution may be applied with no modifications once the
actual realization of the random variables is known. This type of optimization prob-
lems is known as “a priori” optimization [2, 3]. Dynamic SCOPs arise when it is not
possible or not convenient to design a solution that is usable as it is for any realization
of the random variables. In this model, optimization efforts must be taken both before
and after the random events have happened. In other words, in a dynamic SCOP, a
priori solution must be modified dynamically when new information is available [1].

The traveling salesman problem (TSP) is a prototypical combinatorial optimiza-
tion problem and has many applications in telecommunications, logistics, schedul-
ing, genetics, neuroscience, and other areas. TSP has provided much motivation for
development of complexity theory, design of new algorithms, and analysis of solution
space [4, 5]. Under the static SCOP framework, the TSP is called probabilistic TSP,
which consists in finding the a priori tour that visits all cities with minimum expected
traveling cost, given that each city has a known probability of requiring a visit. Once
the information of which cities actually require a visit in a certain day is known, the
cities requiring a visit are visited in the order of the a priori tour, simply skipping
the cities not requiring a visit. However, under the dynamic SCOP framework, an a
priori tour must be modified dynamically when the uncertain information is reveled.
This chapter focuses on the probabilistic TSP.

This chapter introduces a new sampling approximation algorithm to solve the
probabilistic TSP, based on the concept of solution attractor of multi-start local
search. This chapter is an extended version of [6]. The remaining content of the
chapter is organized as follows. Section2 describes the PTSP. Section3 discusses the
Monte Carlo sampling approximation. Section4 proposes a simulation-based sam-
pling approximation algorithm, discusses some experimental results on the behavior
of the proposed search system, and compares the proposed search system with other
PTSP search algorithms. Section5 concludes this chapter.
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2 Probabilistic Traveling Salesman Problem

The classic TSP is defined as: Given a set of n cities and an n × n cost matrix C
in which c(i, j) denotes the traveling cost between cities i and j (i, j = 1, 2, 3, . . . ,
n; i �= j). A tour π is a closed route that visits every city exactly once and returns
at the end to the starting city. The goal of a search algorithm for the TSP is to find a
tour π* with minimal traveling cost.

For the TSP under dynamic and stochastic environment, the number of cities n
can increase or decrease and the cost c(i, j) between two cities i and j can change
with time. This chapter considers only the case in which the number of cities n
changes with time t. Therefore, the TSP in the dynamic and stochastic context can be
defined as

min f (π) =
nt −1∑

i=1

c(i, i + 1) + c(nt , 1) (1)

subject to nt ∈ N

where nt is the number of cities at time t andN is the set of all potential cities existing
in the problem. If we want to design an algorithm to solve the TSP, and the purpose
of the algorithm is to continuously track and adapt the changing n through time and
to find the currently best solution quickly, that is, to re-optimize the found tour for
every change of n, this type of TSP is defined as a dynamic TSP (DTSP). However,
if we treat the number of cities n as a random variable and wish to find an a priori
tour through all N cities, which is of minimum traveling cost in the expected value
sense, this kind of TSP becomes a probabilistic TSP (PTSP). In a PTSP, in any given
realization of the problem, the n cities present will be visited in the same order as
they appear in the a priori tour, i.e., we simply skip those cities not requiring a visit.
The goal of an algorithm for a PTSP is to find a feasible a priori tour with minimal
expected cost [3, 7].

The underlying idea of an a priori optimization consists of determining a solution
of the whole instance (i.e., the one where all data are present), called an a priori
solution, and applying a strategy, called a modification strategy, that adapts the a
priori solution as quickly as possible to the subinstance that must effectively be
solved. The choice of this strategy depends strongly on the application modeled by
the problem. Typically for a PTSP instance, the first step in a search algorithm is to
compute a feasible tour π including the whole set of the cities N ; this is an a priori
tour π with minimal expected cost. In order to compute the effective tour for a given
time, a commonly used modification strategy is to drop absent cities and to visit the
present cities following the order induced by the a priori tour π [2, 7].

The PTSPwas initially introduced by Jaillet [7, 8], who demonstrated that an opti-
mal solution to the deterministic TSP may not be the best solution for a PTSP. Jaillet
introduced an analytical framework for the PTSP, examined someof its combinatorial
properties and derived a number of asymptotic results. Further, theoretical proper-
ties, asymptotic analysis, and heuristic schemes were investigated by some other
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researchers [2, 9–11]. Surveys of approximation schemes, asymptotic analysis, and
complexity theorems for a class of a priori combinatorial optimization problems can
be found in [4, 12].

Formally, a PTSP is defined as a complete graph G = (V, A, C, P), where V =
{vi : i = 1, 2, . . . , N} is a set of nodes; A = {a(i, j): i, j ∈ V, i �= j} is the set of
edges that completely connects the nodes; C = {c(i, j): i, j ∈ A} is a set of costs
associated with the edges; P = {pi : i ∈ V } is a set of probabilities that for each
node vi specifies its probability pi of requiring a visit. In this chapter, the costs in
C are assumed to be symmetric; that is, traveling from a node vi to v j has the same
cost as traveling from node v j to vi . The node v1 is assigned as the depot node with
the presence probability of 1. Each non-depot node vi is associated with a presence
probability pi that represents the possibility that node vi will be present in a given
realization. Based on the values of presence probability (pi ) of non-depot nodes,
two types of PTSP can be classified: the homogeneous and heterogeneous PTSP. In
the homogeneous PTSP, the presence probabilities of non-depot nodes are all equal
(pi = p for every non-depot node vi ); in the heterogeneous PTSP, these probabilities
are not necessarily the same.

Designing effective and efficient algorithms for solving PTSP is a really chal-
lenging task, since in the PTSP, the computational complexity associated with the
combinatorial explosion of potential solutions is exacerbated by the stochastic ele-
ment in the problem data [13]. It is clearly much harder to solve a PTSP in practice
than a deterministic TSP of the same size. The predominant approaches to finding
good solutions for PTSP instances in the literature have been the adaptation of the
heuristics for the TSP [9–12]. In general, researchers use two techniques in calcu-
lating the cost f (π ) of an a priori tour π in the PTSP: analytical computation and
empirical estimation [8, 13].

Solving the PTSPmainly relies on computing the expected cost of an a priori tour.
Theoretically, for a given PTSP instance, the expected cost of an a priori tour can
always be computed. A naïve approach calculates the sum of the a posterior costs
over all possible combinations of realizations of the random variable each multiplied
with the according probability that such realizations occur. The computation of the
expected cost of a specific a priori tour π for the PTSP instance, denoted E(π ),
depends on the relative location of the cities in that tour and the presence probability
of each city in a given instance. By explicitly considering all realizations based on
the presence of each individual city, the expected cost of tour π can be calculated.
For an N-city PTSP instance, either a city requires a visit or the city does not require
a visit, which leads in total to 2N possible scenarios for N cities, that is, an a priori
tour π requires 2N possible realizations. The probability p(ri ) of realization ri can
be calculated based on the presence probability of each individual city. Let c[ri (π)]
describe the cost of tour π for realization ri under the assumption that cities not
in ri are simply skipped in the tour. The expected tour cost can then be formally
described as

E(π) =
2N∑

i=1

p(ri )c[ri (π)] (2)



A Simulation-Based Algorithm for the Probabilistic … 161

In general, it is extremely difficult to find an efficient way to compute Eq.2. Since
we have to compute a sum of O(2N ) terms in Eq.2, it is apparent that the evalua-
tion of E(π ) is computationally intractable for reasonable size of N, and this naïve
computation is therefore not useful for any practical implementation.

An improved method to calculate the exact solution cost analytically is to sum
over all edges and multiply their costs with the probability that they occur in the a
posteriori tour. The probability that a certain edge occurs in the a posteriori tour is
the product of the probabilities that both of its cities require a visit and that all the
cities that are between them in the a priori tour do not require a visit. Thus, the cost
E(π ) can be calculated using the following closed-form expression [7, 8, 14]:

E(π) =
N∑

i=1

N∑

j=i+1

cπ(i)π( j) pπ(i) pπ( j)

j−1∏

k=i+1

(1 − pπ(k))+

N∑

j=1

j−1∑

i=1

cπ( j)π(i) pπ(i) pπ( j)

N∏

k= j+1

(1 − pπ(k))

i−1∏

k=1

(1 − pπ(k))

(3)

where π = (π (1), π (2), . . . , π(N ), π(N + 1) = π (1)) is a permutation of the set V ;
cπ(i)π( j) represents the cost between cities π (i) and π (j); π (i) denotes the city that
has been assigned the ith position in tour π and pπ(i) is the probability of city π (i).
Using the Eq.3, the expected cost can be calculated in run time O(n2). Although this
is much better than the exponential run time of the first approach, it is still too slow
for input instances of reasonable sizes.

Unfortunately, designing an effective local search for a PTSPwith a computation-
ally expensive objective function is still a challenging task. The reason is that in local
search it is crucial to be able to evaluate the neighborhood of a solution efficiently.
When the objective function is complex like in Eq.3, it is difficult to find a delta
expression which is both exact and fast to be computed.

Birattari et al. [13] discussed some limitations on analytical computation tech-
nique and suggests that the empirical estimation technique can overcome the diffi-
culties posed by analytical computation. Empirical estimation simply estimates the
cost E(π ) of an a priori tour through Monte Carlo simulation. Instead of summing
over all possible scenarios, we could sample M (M < 2N ) scenarios of using the
known probabilities and take the average over the costs of the a posteriori tours for
the sampled scenarios.

In recent years, several search algorithms, using analytical computation and/or
empirical estimation approach, have been proposed to solve the PTSP. Laporte
et al. [15] provided an exact algorithm for the PTSP. They used an integer L-shaped
method and solved to optimality instances involving up to 50 cities. However, the
exact approach is limited to small problem sizes. Consequently, much of the PTSP
literature focuses on heuristic and meta-heuristic approaches.

Bertsimas et al. [3] investigated some properties of the PTSP and proposed
some tour construction heuristics and tour improvement heuristics for the PTSP.
Bertsimas and Howell [9] introduced the 2-p-opt local search and the 1-shift local
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search for the PTSP, using new equations for efficiently evaluating the cost of local
search moves. Later, Bianchi et al. [16] provided corrections for the equations in
[9]. Bianchi and Campbell [17] extended the 2-p-opt and 1-shift local search to
the heterogeneous PTSP. Liu [18] introduced a concept of diversified local search
strategy under the scatter search framework for the PTSP. Weyland et al. [19] pre-
sented 3-opt sampling local search algorithm using delta evaluation and the Monte
Carlo sampling-based approximation to evaluate solutions. Birattari et al. [13] intro-
duced an estimation-based iterative improvement algorithm, called 2.5-opt-EEs, that
performs delta evaluation using empirical estimation techniques. Marinakis et al.
[20] proposed an expending neighborhood search GRASP method for the PTSP.
Campbell [21] presented an aggregation method for the solution of the PTSP.
Marinakis et al. [22] provided a stochastic dynamic programming algorithm for
the PTSP.

To efficiently and effectively solve the PTSP, recent studies have focused on
adopting new algorithmic approaches based on meta-heuristics such as simulated
annealing (SA), evolutionary algorithm (EA), genetic algorithm (GA), and ant colony
optimization (ACO). Bowler et al. [23] used a stochastic SA algorithm to experimen-
tally analyze the asymptotic behavior of suboptimal homogeneous PTSP solution,
in which the objective function is estimated by sampling and the sampling estima-
tion error is used instead of the annealing temperature. Liu [24] considered a hybrid
scatter search EA for the PTSP that incorporates the use of the nearest neighbor con-
structive heuristic, threshold accepting screeningmechanism, and crossover operator.
Liu [25] also proposed an optimization procedure based on GA that incorporates the
nearest neighbor algorithm, 1-shift and/or 2-opt exchanges for local search, selection
scheme, and edge recombination crossover operator into genetic algorithm frame-
work. Liu et al. [26] used an EA with diversified crossover operator to solve the
heterogeneous PTSP. Bianchi et al. [27, 28] investigated the potentialities of ACO
algorithms for both homogeneous and heterogeneous PTSP under different probabil-
ity configurations of cities. Gutjahr [29, 30] proposed and analyzed a sampling-based
ACO algorithm, in which statistical tests are performed for comparing the sample
average values of the solutions generated by ants in order to select a set of best solu-
tions. Branke and Guntsch [31] proposed two modifications to the standard ACO
meta-heuristic which enhance its performance for the PTSP. They first examined the
use of an approximation of the evaluation function for solutions in order to save time
that could then be used for constructing more solutions; second, they devised new
heuristic guidance schemes for the ants which more accurately reflect the impact
of a decision on solution quality. Birattari et al. [32, 33] proposed an empirical
estimation-based ACO/F-Race algorithm, where at each iteration the selection of the
new best solution is done with a procedure called F-Race. F-Race consists in a series
of steps at each of which a new scenario is sampled and is used for evaluating the
solutions that are still in the race. At each step, a Friedman test is performed and
solutions that are statistically dominated by at least another one are discarded from
the race. Liu [34] developed a memetic algorithm (MA) by incorporating the nearest
neighbor algorithm to generate initial solutions, 1-shift and/or 2-opt exchanges for
local search, and edge recombination crossover to efficiently and effectively solve
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the PTSP. Marinakis and Marinakis [35] designed a hybrid multi-swarm optimiza-
tion algorithm for the PTSP. A comprehensive review on the developments in the
meta-heuristic algorithms filed can be found in [1].

3 Monte Carlo Sampling Approximation

Stochastic optimization problems involve integrals of any probabilistic function.
Owing to the intractability of exactly solving these complex problems, in recent
years, a great deal of attention has been devoted to theoretical and practical aspects
of combining optimization and simulation techniques to solve these types of opti-
mization problems [36].

The sample average approximation (SAA) method is an approach for solving
stochastic optimization problem by using simulation. In this method, the expected
objective function of the stochastic problem is approximated by a sample average
estimate derived from a sample. The given stochastic optimization problem is there-
fore transformed into a so-called sample average optimization problem. The resulting
sample average approximating problem is then solved by deterministic optimization
techniques. The expected value of the objective function is obtained by consider-
ing several realizations of the random variable and by approximating the cost of a
solution with a sample average function [37]. The process is repeated with different
samples to obtain candidate solutions along with statistical estimates of their opti-
mality gaps. Hence, a sampling technique which provides a representative sample
from themultivariate probability distribution is crucial in obtaining true performance
statistics for optimization. Here, it is assumed that the uncertainty distributions are
a priori known. The SAA method has been used successfully to solve stochastic
optimizations with a large sample of realizations [1, 37–40].

In the SAAmethod, the objective value of a new solution is computed by a sample
average of the type of the following equation:

G M(x) := 1

M

M∑

i=1

G(x, ωi ) (4)

The objective function G M(x) is typically approximated by the sample average.
ω1, ω2, . . . , ωM is a random sample of M independent, identically distributed real-
izations of the random vector ω. The sample average is also referred to as sample
estimate, and the random realizations referred to as random scenarios.

In sampling approximation search, a stochastic optimization problem is usually
represented by a computer simulation model. Simulation models are models of real
or hypothetical systems, reflecting all important characteristics of the system under
studied. Optimization via simulation means searching for a solution that yields the
maximumorminimum expected value of the problem that is represented by a simula-
tion model. One of the best known methods for sampling a probability distribution is
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the Monte Carlo sampling technique, which is based on the use of a pseudo-random
number generator to approximate a uniform distribution.

Currently, the Monte Carlo sampling approximation method is the most popular
approach for solving stochastic optimization problems. This method approximates
the expected objective function of the stochastic problem by a sample average esti-
mate derived from a random sample. We assume that the sample used at any given
iteration is independent and identically distributed and that this sample is indepen-
dent of previous samples. The resulting sample average approximating problem is
then solved by deterministic optimization techniques. The process can be repeated
with different samples to obtain candidate solutions along with statistical estimates
of their optimality gaps. Sampling approximation via simulation is statistically valid
in the context of simulation as the underlying assumptions of normality and indepen-
dence of observations can be easily achieved through appropriate sample averages
of independent realizations, and through adequate assignment of the pseudo-random
number generator seeds, respectively [37].

In the case of PTSP, the elements of the general definition of the stochastic prob-
lem take the following format: A feasible tour π is an a priori tour visiting once
and only once all N cities, and the random variable n is extracted from an N-
variate Bernoulli distribution and prescribes which cities need being visited. The
cost f (π ) of a PTSP tour π can be empirically estimated on the basis of a sam-
ple costs f (π, n1), f (π, n2), . . . , f (π, nM) of a posteriori tours obtained from M
independent realizations n1, n2, . . . , nM of the random variable n:

f̂M(π) = 1

M

M∑

i=1

f (π, ni ) (5)

f̂M(π) denotes the average of the objective values of theM realizations on the a priori
tour π , which gives us an approximation for the estimated cost for tour π . Clearly,
f̂M(π) is an unbiased estimator of f (π ). A search algorithm for PTSP is looking
for the optimal tour π* which has the smallest estimated objective value f̂M(π∗),
that is,

π∗ ∈ arg min{ f̂M(π1), f̂M(π2), . . .} (6)

The optimal value f̂M(π∗) and the optimal tour π* to the PTSP provide estimates
of their true counterparts.

One of the main disadvantages of the Monte Carlo method is that the bound is
probabilistic, and there is no methodical way for constructing the sample points
to achieve the probabilistic bound. Therefore, optimization via simulation adds an
additional complication because the value of a solution cannot be evaluated exactly,
but instead must be estimated. Because we have estimates, it may not be possible
to conclusively determine if πi is better than π j , which may frustrates the search
algorithm that tries to move in an improving direction. In principle, we can eliminate
this complication by making so many replications at each iterative point that the
performance estimate has essentially no variance. In practice, this could mean that
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we will explore very few iteration due to the time required to simulate each one.
Therefore, in a practical sampling approximation algorithm, the test if a solution is
better than another one can only be done by statistical sampling, that is, obtaining a
correct comparison result onlywith a certain probability. The goal now is to get a good
average case solution and the expected value of the objective is to be optimized. The
way simulation approximation is used in an optimization algorithm largely depends
on the way solutions are compared and the best solutions among a set of other
solutions is selected.

A major determinant of the computational cost for a simulation-based optimiza-
tion algorithm is the number of simulation replications used to estimate the cost for
each a priori tour in PTSP. A key feature that is not a factor in classic TSP is the
trade-off between the amount of computational effort needed to estimate the cost
for a particular solution versus the effort in finding improved solutions. The number
of realizations M should be large enough for providing a reliable estimate of the
costs of solutions, but at the same time it should not be too large otherwise too much
time is wasted. The appropriate number of realizations M depends on the stochastic
character of the problem at hand. The larger the probability that a city is to be visited,
the less stochastic an instance is. In this kind of case, an algorithm can be designed
to consider a reduced number of realizations and therefore explore more solutions in
the unit of time. On the other hand, when the probability that a city is to be visited is
small, the instance at hand is highly stochastic. In such a case, it pays off to reduce
the total number of solutions explored and to consider a large number of realizations
for obtaining more accurate estimate [37, 41, 42].

There are several sampling strategies available. For the PTSP, popular sampling
strategies include (1) the same set of M realizations is used for all steps of the iter-
ation in the algorithm; (2) a set of M realizations is sampled anew each time an
improved solution is found; and (3) a set of M realizations is sampled anew for each
comparison of solutions. The first strategy is a well-known variance-reduction tech-
nique called the method of common random numbers (CRN). CRN takes advantage
of the same set of random numbers across all alternatives for a given replication.
CRN is typically designed to induce positive correlation among the outputs of each
respective alternative for a given replication, thereby reducing the variance of the
difference between the mean alternative point estimators. One of the practical moti-
vations for using CRN in a search algorithm is to speed up the sample average
computations. However, one major problem with CRN is that the iterations of the
algorithmmay be “trapped” in a single “bad” sample path. Second and third strategies
are called variable-samplemethod. In variable-samplemethod, the objective function
is replaced, at each iteration, by a sample average approximation. This resampling
technique allows the iterations of the algorithm to get away from the possible “bad”
sample paths. Another advantage of a variable-sample scheme is that the sample
sizes can increase along the algorithm, so that sampling effort is not wasted at the
initial iteration of the algorithm [36].

Some researchers have been proposed estimation-based algorithms to deal with
the PTSP, using local search or meta-heuristics [19, 36, 40–43]. This chapter intro-
duces a new optimization approach that constructs solution attractor of multi-start
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local search in the context of Monte Carlo simulation. This new algorithm combines
optimization and simulation in a parallel iterative process in order to gain the advan-
tages of optimization (exact solution), simulation (stochasticity), and speed (parallel
processing).

4 The Proposed Simulation-Based Search Algorithm

4.1 The Parallel Search System

The proposed search system uses a parallel multi-start local search procedure to
construct the solution attractor for the PTSP. Then, the optimal solution is found in
the solution attractor. In the search system, the costs of solutions are estimated using
Monte Carlo simulation. This section describes the parallel attractor-construction
procedure for the PTSP.

A search trajectory is the path followed by the search process in the solution
space as it evolves with time. A multi-start heuristic search algorithm produces sev-
eral search trajectories and generates different locally optimal solutions. The solution
attractor of a multi-start search algorithm is defined as a subset of the solution space
that contains the whole solution space of the end points (locally optimal solutions)
of all local search trajectories. The solution attractor drives the search trajectories to
converge into a small region in the solution space [44]. Figure1 illustrates the con-
cepts of local search trajectories and solution attractor of a multi-start local search
system. Figure2 presents a parallel algorithms for constructing the solution attractor
of local search for an n-city TSP instance implemented in a master–worker archi-
tecture. This attractor-construction procedure is very straightforward: generating M
locally optimal tours, storing them into an n × n matrix (called hit-frequency matrix
E = {ei j }n×n and then finding all tours contained in the matrix E. In the procedure,
C is the cost matrix for a TSP instance G, π i is an initial tour generated by the

Fig. 1 The concepts of
search trajectories and
solution attractor in a
multi-start local search
system
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Fig. 2 The parallel procedure for constructing solution attractor of multi-start local search in TSP
with master–worker implementation

function Initial_Tour(). The function Local_Search() runs a local search on π i and
outputs a locally optimal tour π j . The hit-frequency matrix E is used to record the
number of hits on the edge a(i, j) of the graph by the set of M locally optimal tours. In
principle, the matrix E can be the architecture that allows individual locally optimal
tours to be linked together along a common structure and generate the structure of
the solution attractor. This solution attractor can help to find the globally optimal
tour [44]. Li [45–47] applied the solution attractor concept to tackle multi-objective
TSP and dynamic TSP. This chapter applies this concept to solve PTSP.

Because the procedure for constructing solution attractor of multi-start local
search can be divided in such away that separate CPUs can start and execute different
search trajectories without interferingwith each other, we implemented our proposed
multi-start search algorithm into a parallel search system. Parallel multi-start search
explores different areas in the solution space at the same time; thus, it generates a
wide sample of the local optima. This type of parallel processing can be useful to
efficiently solve difficult optimization problems, not only speeding up the execution
times, but also improving the quality of the final solutions.

Figure3 sketches the basic framework of our parallel multi-start search system for
PTSP.This search systemcontains K + 1 computers and bears intrinsic parallelism in
its data and processing structures. Based on a common costmatrixC and a probability
array P, this search system starts K separate search trajectories in parallel. When a
search trajectory reaches its locally optimal point, the processor stores the solution in
the common hit-frequency matrix E. Then, the processor starts a new search if more
computing time is available. Finally, at the end of the search, the matrix E is searched
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Fig. 3 Schematic structure of the parallel search system for PTSP

Fig. 4 The parallel search system implemented in a master–worker architecture

by an exhausted search process and the best solution in the attractor is outputted as
the optimal solution.

Figure4 illustrates the implementation of the proposed parallel search system
using a master–worker architecture. Figures5 and 6 lists the procedures for master
computer and worker computers. In this master–worker parallel search system, one
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Fig. 5 The algorithm for master computer

computer serves as a master and other computers as workers. The master computer
generates a TSP instance with N nodes and a probability array P = {pi }N , initializes
the hit-frequencymatrixE, and sends a copy of the costmatrixC to each of theworker
computers. The multi-search task is distributed to K worker computers.

Then, based on the probability values in the array P, the master computer gen-
erates a set of M realizations (m1, m2, . . . , mM). Each of the M realizations is an
array that contains binary values, where a value “1” at position i in the array indi-
cates that node vi requires being visited whereas a value “0” means that it does not
require being visited. The master computer then sends the set of M realizations to the
worker computers. Depending on the implementation setting, the master computer
can send the same set of M realizations to all worker computers or a different set of
M realizations to each of the worker computers. In our implementation, the master
computer sends the same set of M realizations to all worker computers.
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Fig. 6 The algorithm for worker computers

When receiving a set of M realizations, each worker computer independently
performs its local search: it randomly generates an initial a priori tour, calculates the
sample-averaged cost by using theM realizations; it then generates a new a priori tour
and calculates its sample-averaged cost by using the same M realizations; if this new
a priori tour has lower average cost, the current a priori tour is replaced by this better
a priori tour; otherwise, another new a priori tour is generated and compared with the
current a priori tour; when the search process reaches a locally optimal a priori tour,
the worker computer sends the locally optimal tour to the master computer. Figure7
presents the algorithm of the local search process with simulation. After sending a
locally optimal tour to the master computer, the worker computer can start a new
search. The worker computer can use the same set of M realizations or a new set of M
realizations in the new search. In our implementation, when a worker computer starts
a new search, it requests the master computer to send a new set of M realizations and
then evaluates the tours using the new M realizations. In other words, each locally
optimal tour is generated by using a different set of M realizations.

When the master computer receives a locally optimal a priori tour from a worker
computer, it stores the tour into the matrix E. It then generates a new set of M real-
izations and sends it to the requesting worker computer. When the worker computer
receives this new set of M realizations, it lunches a new local search. In such a way,
the multi-start search is performed by the K worker computers in parallel.

When a predefined number of locally optimal a priori tours are collected from the
worker computers and stored in the matrix E, the master computer sends a stopping
signal to the worker computers to stop their search processes. The set of locally
optimal tours in E forms a solution attractor for the problem.
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Fig. 7 The algorithm of local search using simulation

Then, the master computer launches an exhausted search process in the matrix E
and identifies all tours inE. These tours are thendivided intoK groups L1, L2, . . . , Lk .
The master computer generates a set of M realizations and send a group of tours Li

with the M realizations to i worker computer. The worker computer i uses the set of
M realizations to calculate the sampling-average cost for each of the tours in Li and
send the cost value with the tour back to the master computer. The master computer
compares all tours in terms of sampling-average costs and outputs the a priori tour
with lowest average cost.

In the proposed search algorithm, theMonteCarlo simulation is used in two levels:
at the local search level, the worker computers use the Monte Carlo simulation to
calculate the sampling-average cost for each tour during the search; and at the global
search level, the worker computers use the Monte Carlo simulation to calculate
the sampling-average cost for each of tours in the solution attractor and the master
computer chooses the globally optimal tour that has the smallest estimated cost.
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4.2 The Experimental Setting

PTSP is a new research and application area in the TSP class. Due to its novelty,
so far there is no test problem instance available to be used for implementing a new
search algorithm and assessing its suitability, quality, effectiveness, and efficiency.
Therefore, we design a test problem for the implementation and evaluation of our
proposed algorithm.

The design of a test problem is always important in designing any new search
algorithm. The context of problem difficulty naturally depends on the nature of
problems that the underlying algorithm is trying to solve. In the context of solving
PTSP, we designed our test problem based on several considerations. First, the size of
problem should be large because the classic TSP instances as small as 200 cities are
now considered to be well within the state of the global optimization art. A problem
instance must be considerable large than this for us to be sure that the heuristic
approach is really called for. Second, there is no any pre-known information related
to the results of the experiment, since in a real-world problem one does not usually
have any knowledge of the solutions. There is nomotivation for an algorithmdesigner
tofine-tune the proposed search algorithm inorder tomake the results of the algorithm
look better. Third, when dealingwith stochastic combinatorial problems, randomness
in both process and data means that the underlying model in the algorithm must be
suitable for the modeling of natural stochastic problems. In other words, we should
formulate a problem that goes nearer to real-world stochastic conditions. Last, the
problem instance should be general, understandable, and easy to formulate so that
the experiments are repeatable and verifiable.

We generated a TSP instance with N = 1000 cities. The cost matrix C was gen-
erated at random, where each cost element c(i, j) in C was assigned a random inte-
ger number independently drawn from an uniform distribution of the integers in
the range [1, 1000]. Our TSP instances were a general symmetric TSP, with only
c(i, j) = c( j, i) restriction. The triangle inequality c(i, j) + c( j, k) ≥ c(i, k) was
not assumed in our problem instance. A probability array P contained a set of prob-
ability values that assigned probability pi to city i for requiring a visit. We specified
node 1, v1, as the depot node with p1 = 1.0. The probability for each of non-depot
cities was generated from a uniform random number in a certain range. Therefore,
our test problem is a heterogeneous PTSP.

Our search algorithm was implemented using Sun Java JDK 1.3.1 and all exper-
iments were conducted on a network of 6 PCs. Each PC was with Pentium 4 at
2.4GHz and 512MB of RAM running Linux. The PCs were interconnected with a
fast Ethernet communication network using the LAM implementation of the MPI
standard. The network was not dedicated, but was very steady. In our parallel search
system, one computer served as amaster computer and other five computers asworker
computers. Our network architecture and algorithms were asynchronous by nature,
meaning that the processors did not have a common clock by which to synchronize
their processing and calculation.
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Our experiments relied heavily on randomization in order to generate a wide sam-
ple of locally optimal tours. All initial tours were randomly constructed. We used
simple 2-opt local search in our search system. 2-opt is an iterative improvement
technique, which starts from some initial solution and then moves to an improving
neighboring solution by exchanging two edges until a local optimum is found.During
the local search, the search process randomly selected a solution in the neighbor-
hood of the current solution. Amove that gave the first improvement was chosen. The
great advantage of first-improvement pivoting rule in search process is to produce
randomized local optima. The local search process on each search trajectory termi-
nated when no improvement could be achieved after 10000 iterations. We assume
that the sample of M realizations used at any given iteration is independent and
identically distributed and that this sample is independent of previous samples.

4.3 The Experimental Analysis

A main challenge in applying local search to PTSP lies in designing an effective
evaluation procedure that conclusively determines if one tour is better than another.
Because our search system uses simulation and sampling approximation, it is not
possible to decide with certainty whether a tour is better than another during the
search. This type of comparison can only be tested by statistical sampling, obtaining
a correct comparison result only with a certain probability. In other words, the simu-
lation estimates should be accompanied with some indication of precision. The first
decision we had to make in our experiment was to choose an appropriate sample size
M (number of realizations) in our simulation. The number of realizations considered
should be large enough for providing a reliable estimate of the cost of tours but at the
same time it should not be too large otherwise too much computing time is wasted.
In our experiments, the accuracy factors we considered include desired precision of
results, confidence level, and degree of variability. We used the following equation
to determine our sample size M [48, 49]:

M = V (1 − V )

A2

Z2 + V (1−V )

P

(7)

where M is the required sample size; V is the estimated variance in population,
which determines the degree to which the attributes being measured in the problem
are distributed throughout the population; A is the desired precision of results that
measures the difference between the value of the sample and the true value of the
real population, called the sampling error; Z is the confidence level that measures the
percentage of the samples would have the true population value within the range of
chosen precision; and P is the size of population. In our case, the size of population
is 21000.
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In our search system,wehave two levels of simulation.At the local search level, the
worker computers use simulation to calculate sample averages and use the averages to
compare tours. At this level, we choose the sampling error A = ±3% and confidence
level Z = 1.96 (95% confidence). Because our PTSP instance is heterogeneous, we
use variability V = 50%. Using Eq.7, we calculate M = 1067. At the global search
level, the workers use simulation to calculate sample averages for the tours found
in the matrix E, and then, the master computer uses this information to order the
tours and select the best one. At this level, we choose the sample error A = ±3%,
confidence level Z = 2.57 (99% confidence) and V = 50%. We calculate M =
1835. Therefore, in our experiment, we used mlocal = 1100 realizations in the local
search level and mglobal = 1850 in the global search level.

In one experiment, themaster computer generated aTSP instance and a probability
arrayP, in which the value of pi was generated from a uniform random number in the
range [0.1, 0.9]. Then, themaster computer generated a set of 1100 realizations based
onP and sent this set to all worker computers. Theworker computers performed local
search and used the 1100 realizations to calculate the sampling-average cost for each
of tours. When a worker computer found a locally optimal tour, it sent the tour to the
master computer. When the master computer collected 30 locally optimal tours from
the worker computers, it sent a stopping signal to the worker computers to stop local
searching. The master computer then applied an exhausted search procedure on the
matrix E and found 36 tours in E. The master computer sent these tours to the worker
computers. Four worker computers received 7 tours each and one worker computer
received 8 tours. The master computer generated a set of 1850 realizations and sent
it to all worker computers. The worker computers used this new set of realizations
to calculate the sampling-average costs and standard deviations for these 36 tours.
Finally, the master computer used these sampling-average costs to order these tours.
Table1 lists the five best tours found in E. We can see that the expected cost of the
best tour is 4889 with standard deviation 201.

Then, we ran the search system on the same PTSP instance four more times. Each
time, the search system used the same probability arrayP, but generated different sets
of realizations for mlocal and mglobal . Table2 lists the results of these five trials. The
table shows the number of tours found in the matrix E, the sampling-average cost of
the best tour found in each of the trials and total computing time consumed by each
of the computers. We compared these five tours and found that they were actually
the same tour; even it had a different sampling-average value in each of trials. This
best tour is probably the globally optimal a prior tour for the PTSP instance.

Table 1 The five best tours
found in the matrix E

Tour Sampling average Standard deviation

1 4889 201

2 4902 224

3 5092 199

4 5413 213

5 5627 209
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A different experiment studied the effect of the problem stochastic nature (i.e.,
different probability P) on the quality of search in our search system. The results of
this experiment are shown in Table3. The experiment used the same TSP instance but
three different probability arrays P1, P2, and P3. The values in P1, P2, and P3 were
generated from the range [0.1, 0.4], [0.3, 0.7] and [0.6, 0.9], respectively. mlocal =
1100 and mglobal = 1850 were still used in the experiment. For the probability array
P1, the experiment ran the search system five times, each time using different sets of
mlocal and mglobal . These five trials generated three different best tours: first and third
trials generated the same best tour with different sampling-average values; second
trial generated a different best tour; and fourth and fifth trials generated the same
best tour that was different from the one generated by first three trials. This fact
indicates that, when a PTSP instance becomes more stochastic, our search system
has more difficulty to find the globally optimal a priori tour. Then, the experiment
ran the search system five times for the probability array P2, the five trials generated
the same best tour with different sampling-average values. Last the experiment ran
the search system five times for the probability array P3, the search system also
outputted the same best tour in the five trials. Obviously, when a PTSP instance
is less stochastic or its average probability is 50/50, our search system is able to
find the globally optimal a priori tour. This experiment indicates that the “level of
stochasticity” of a problem instance is an important factor that affects the quality of
search systems.

For the PTSP instance with the probability array P1, next experiment wanted to
know if the search quality could be improved by increasing the number of realizations
in the simulation process. The experiment first used mlocal = 1100 and mglobal =
1850 and ran the search system on the problem instance ten times. Five different
best tours were generated in the ten trials and five trials generated the same best
tour. Then, the experiment used mlocal = 3000 and mglobal = 3000, ran the search
system on the problem instance ten times again. Three different best tours were
generated by the ten trials and seven trials generated the same best tour. Then, the
experiment did the same procedure using mlocal = 6000 and mglobal = 6000. This
time two different best tours were generated and nine trials gave us the same best tour.
This experiment indicates that the search quality can be improved by increasing the
number of realizations in the simulation process. Table4 summaries the experiment
results.

4.4 Performance Comparison with Other Algorithms

This subsection presents the performance comparison results between the proposed
search system and some other current state-of-the-art approaches. The proposed
search system was compared with four search algorithms: 2-p-opt, 1-shift, 2.5-opt-
EEs, and pACS. They are all straightforward adaptations of heuristics for the classical
TSP and used to tackle the PTSP.
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Table 4 Search results in three different realizations M

Setting Number of different
best tours in 10 trials

Number of trials
having the same tour

Average standard
deviation

Mlocal = 1100
Mglobal = 1850

5 5 268

Mlocal = 3000
Mglobal = 3000

3 7 247

Mlocal = 6000
Mglobal = 6000

2 9 226

The 2-p-opt and 1-shift local search algorithms were introduced by Bertsimas in
[2, 9]. The 2-p-opt neighborhood of an a priori tour is the set of tours obtained by
reversing a section of the a priori tour. It is the probabilistic version of the famous
2-opt algorithm created for the classical TSP. The 1-shift neighborhood of an a priori
tour is the set of tours obtained bymoving a node which is at position i to position j of
the tour, with the intervening nodes being shifted backward one space accordingly.
In our comparison with the 2-p-opt and 1-shift, we use the correct delta objective
evaluation expression introduced in [16].

The2.5-opt-EEs is an estimation-based local search algorithm [13].Aparticularity
of 2.5-opt-EEs is that the cost of the neighbor solutions is calculated using delta
evaluation through empirical estimation. A description of the 2.5-opt neighborhood
operator, which is a combination of the 2-opt and 1-shift neighborhood operators,
can be found in [50]. A detailed description for 2.5-opt-EEs can be found in [51].

The pACS is a modified algorithm to apply ant colony system to the PTSP [38].
We use the same parameter settings for the pACS described in [38], without tuning
them to our particular problem instances. That is, the parameters for the pACS are
the number of ants m = 10, the probability that the next customer is chosen deter-
ministically q0 = 0.95, the power of heuristic information exponent β = 3, the local
evaporation factor ρ = 0.1, and the global evaporation factor α = 0.1. The objective
function value is estimated using sampling approximation. The number of samples
M is kept fixed through all the iterations.

The comparison experiment was conducted on two heterogeneous PTSP instance
with N = 1000 and N = 2000, each with four different probability arrays P1 =
[0.1, 0.4], P2 = [0.3, 0.7], P3 = [0.6, 0.9], and P4 = [0.1, 0.9]. We used mlocal =
mglobal = 2000 for our search system on both instances, and sample M = 2000 for
the 2.5-opt-EEs and pACS algorithms. In order to reduce variance, the same set of
M realizations was used for all steps of a particular algorithm.

Each instance was tested by running each of the algorithmic procedures 50 times
using different random seeds and averaging the results in an attempt to enhance the
robustness of the results. In local search part, the tours were explored in a random
order in each iteration and the first improving tour was used to replace the current
tour. A locally optimal tour was reached when no improvement was made during
10000 iterations.
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Table 5 The comparison results on two PTSP instances for different probability ranges

N P E(π)

Proposed
system

2-p-opt 1-shift 2.5-opt-EEs pACS

1000

[0.1, 0.4] 1749* 1893 1874 1865 1863

[0.3, 0.7] 4256* 4426 4463 4378 4315

[0.6, 0.9] 6947* 7125 7233 7096 7119

[0.1, 0.9] 5581* 5686 5672 5664 5653

2000

[0.1, 0.4] 3215* 3417 3401 3389 3385

[0.3, 0.7] 6855* 7026 7128 6995 7012

[0.6, 0.9] 8936* 9190 9334 9181 9213

[0.1, 0.9] 7427* 8834 8865 7854 7925

Each algorithm was allowed to run until it reached a locally optimal point. The
results were obtained in average over 50 trials for each instance in each probability
range. Table5 presents the comparison results. N denotes problem size; P represents
the customer presence probability interval; andE(π ) denotes the average value of the
expected cost of the a priori PTSP tour over 50 trials. The best value in each line is
bold, with an asterisk “*” indicating whether the difference to the closest competitor
is significant according to a t test with a confidence of 95%. Table5 does not include
CPU running time for comparison test, because our search systemwas carried out in a
parallel multi-processors network and other algorithms were performed in individual
computers with different computing platforms.

As shown in Table5, our proposed search system consistently performs better in
both PTSP instances for all probability range in terms of the expected cost E(π )
in a statistically significant using t test with 95% confidence. The observed better
performance of our search system can be due to its capability of finding the globally
optimal solutions.

5 Conclusion

This chapter introduces a new search algorithm for PTSP and describes the parallel
implementation of the algorithm. The main novelty of the proposed approach is the
use of solution attractor concept for global solutions and use of the empirical esti-
mation technique for evaluating their values. In our algorithm, the solution attractor
of local search is used to obtain globally optimal solutions and Monte Carlo simula-
tion is used to evaluate the solutions for the stochastic problem. Through multi-start



180 W. Li

search and multiple parallel processors, our search system bears intrinsic diversity,
flexibility, parallelism, and global nature.

In our search system, all samples of realizations are generated by the master
computer in order to reduce the variances of the estimators and computational effort.
However, a parallel approach may be advantageous in which realization samples are
derived in parallel from different processors. When each simulation is performed in
a different processor, the search system can be really ergodic. Taking over a large
ensemble of Monte Carlo salesmen, each of them trapped in some local valley, we
may get more correct values for the average of the estimator.

The pervasive nature of information technology in modern society has sparked
the development of novel computing schemes in which the resources of many sepa-
rate computers connected by a network are used to solve large-scale computational
problems. Our proposed search system can be scalable to large-scale instance sizes.
For example, our algorithm can effectively use grid computing model in which a
large number of computers form a virtual cluster to tackle large-scale complex opti-
mization problems in a massively parallel fashion.

This chapter compared our proposed search system with other PTSP algorithms.
The comparison result demonstrates that our search system outperforms other PTSP
algorithms. Of course, a fair comparison with other algorithms on stochastic prob-
lem is almost impossible, since the solution quality depends heavily on the level of
stochasticity of the problem instance used in the search, and the bound of Monte
Carlo method is also probabilistic.

The PTSP is a basic stochastic optimization problem. The results from the study
of the PTSP can provide insights into research in other probabilistic combinatorial
optimization problems, the potential areas for future research.
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Average Cuboid Volume as a Convergence
Indicator and Selection Criterion
for Multi-objective Biochemical Optimization

Susanne Rosenthal and Markus Borschbach

Abstract The performance of a multi-objective evolutionary algorithm (MOEA) is
evaluated with regard to the quality of the populations under two aspects: the dis-
tance of the non-dominated set of a population to the true Pareto front (PFtrue) and the
spread among these solutions. Diverse convergence indicators have been proposed in
the past with different requirements: either PFtrue or a reference set of Pareto-optimal
solutions is required. Furthermore, most of the convergence indicators are restricted
to a non-dominated solution set, and therefore, the quality of the entire population is
only represented by the non-dominated solutions. This work presents a statistically
reasonable convergence indicator that is able to reflect the quality of the entire pop-
ulation. The average cuboid volume (ACV) assigns desirable aspects regarding the
classification of entire populations. These preferable features are demonstrated and
discussed. Furthermore, ACV is used as selection criterion to determine the solu-
tions of the succeeding generation in a proposed customized NSGA-II for biochem-
ical optimization. Two selection strategies based on the ACV indicator are proposed
and empirically compared to a Pareto rank-based selection strategy. These selection
strategies depend on two parameters and the adaption of the selection pressure by
a variation of these parameters is empirically investigated on a three-dimensional
biochemical minimization problem.

1 Introduction

The performance of MOEA is usually assessed by the quality of the non-dominated
solutions in a population. A range of indicators have been developed in the past
identifying different desirable aspects of the non-dominated solution sets bymapping
these preferable properties into an unary value. The generally accepted desirable
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aspects are the distance of the achieved non-dominated solutions to PFtrue as well as
the uniform and wide spread of the non-dominated solutions among themselves. The
distance of the non-dominated solutions is assessed by convergence indicators and
the spread is measured by diversity metrics. In particular, the convergence indicators
have requirements or disadvantages that make the use of these indicators impossible
or inadequate: Several convergence indicators require the knowledge of PFtrue or
at least a Pareto-optimal solution set that are usually unknown in the case of real-
world multi-objective optimization problems. Most of the convergence indicators
assess the quality of a population only by the non-dominated solutions. This makes
the identification of the entire population progress impossible. Other convergence
indicators measure the quality of a solution set without referring to the set size. These
indicators are inappropriate for comparison of populations with various sizes (e.g.,
[1, 2]).

This work presents a statistically reasonable convergence indicator that is able to
evaluate the quality of the entire population, allows the comparison of populations of
different sizes, and does not require the knowledge of PFtrue or a Pareto-optimal set.
This average cuboid volume (ACV) has been firstly introduced in [3]. It calculates
the average volume of the cuboids spanned by the solutions of a population to a
predefined ideal point.

Some of these state-of-the-art indicators have been used as selection criteria in
a MOEA to assign high selection probabilities to high-quality solutions. The most
established algorithm in this area is the SMS-EMOA introduced by Emmerich et al.
that uses a hypervolume-based and steady-state selection strategy [4]. The solutions
for the succeeding generations are selected by using the hypervolume on different
subsets. The solution set with the maximum hypervolume is selected as succeeding
generation. Another established algorithm is IBEA proposed by Zitzler and Künzli
[5]. The optimization goal is defined in terms of an indicator that is used in the selec-
tion process of the MOEA. In general, every binary-quality indicator is usable as a
selection criterion to determine the solutions of the succeeding generation. Accord-
ing to this work, the ACV indicator is used as a selection criterion to determine
the solutions for the succeeding generation in a customized NSGA-II for biochemi-
cal optimization. Two ACV-based selection strategies are proposed and empirically
compared to a Pareto rank-based selection strategy termed aggregate selection. This
benchmarking is performed on a three-dimensional minimization problem and eval-
uated in terms of convergence and diversity. The experiments are evaluated with a
focus on the following three questions:

1. Which selection strategy achieves the best performance with regard to the desired
aspects convergence and diversity?

2. How does the variation of the selection parameters influence the performance of
the customized NSGA-II?

3. How general are these results?

The remainder of this work is organized as follows: In the second section, we will
give some definitions and a short review of the most popular convergence met-
rics. In Sect. 3, the convergence indicator ACV is presented and its properties are
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demonstrated and discussed. In Sect. 4, the components of the customized NSGA-II
- first introduced in [6] and improved in [7, 8] - as well as the ACV-based selection
strategies are proposed. In Sect. 5, the simulation setups and the experiments are
presented and discussed. Section6 provides a critical summary and gives answers to
the questions raised in this section.

2 Background and Review of Convergence Metrics

The following multi-objective minimization problem is considered

min
x∈Q

{F(x)}, (1)

where Q is the decision (variable) space and F is defined as the objective vector
consisting of k objective functions F : Q −→ R, F(x) = (f1(x), . . . , fk(x)) with fi :
Q −→ R.

Definition 1

(a) A vector u ∈ R
n is said to dominate v ∈ R

n (denoted by u ≺ v) if and only if
u is partially less than v: ∀i ∈ {1, . . . , n}, ui ≤ vi and there exists at least one
i ∈ {1, . . . , n}: ui < vi.

(b) A vector u ∈ R
n weakly dominates a vector v ∈ R

n (denoted by u � v) if
∀i ∈ {1, . . . , n}: ui ≤ vi.

(c) Consider a set of decision solutions X ∈ R
n. The set X is termed a global Pareto-

optimal set if ∀u ∈ X, �v ∈ R
n : v ≺ u.

(d) A point r ∈ R
n is further termed ideal point, if the coordinates ri are simply

better than all feasible fi.

Some metrics have been proposed to reflect the quality of a non-dominated solution
set in terms of convergence to PFtrue with the final aim of evaluating the MOEA
performance. These metrics are evolved under the focus of convergence studies
or of some statistical consideration. An accurately interpretation of a metric value
regarding the relationship between two sets of non-dominated solutions requires a
theoretical analysis of the metric itself. Hansen and Jaszkiewicz [9] defined three
outperformance relations reflecting the relationship of two internally non-dominated
solution sets relative to PFtrue.

Definition 2 A and B are internally non-dominated solution sets and ND(S) denotes
the non-dominated solutions in the set S:
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(a) (Weak outperformance): A Ow B ⇔ ND(A ∪ B) = A and A 
= B. A weakly
outperforms B if all solutions in B are covered (equal or dominated) by those in
A and at least one solution in A is not contained in B.

(b) (Strong outperformance): A Os B ⇔ ND(A ∪ B) = A and B \ ND(A ∪ B) 
= ∅.
A strongly outperforms B if all solutions in B are covered (equal or dominated)
by those in A and some solution in B is dominated by a solution in A.

(c) (Complete outperformance): A Oc B ⇔ ND(A ∪ B) = A and B ∩ ND
(A ∪ B) = ∅. A completely outperforms B if each solution in B is dominated
by a solution in A.

A metric has to be compatible with these relations; otherwise, the metric values are
misleading. Therefore, Hansen and Jaszkiewicz further defined the compatibility or
weak compatibility with these outperformance relations:

Definition 3

(a) Weak compatibility: A metric is weakly compatible with an outperformance
relation O if for two non-dominated solution sets A and B with A O B, such that
the metric evaluates A as not being worse than B.

(b) Compatibility: A metric is weakly compatible with an outperformance relation
O if for two non-dominated solution sets A and B with A O B, such that the
metric evaluates A as being better than B.

The established metrics are reviewed in the following. A theoretical analysis of
several metrics according to the compatibility of the outperformance relations is
proposed in [10].

The hypervolume [11] or S-metric [12] is equivalent to the Lebesgue measure
[13] and determines the closeness of a non-dominated solution set to PFtrue as well
as the spread of the overlapped dominated space. The more the solutions set approx-
imates PFtrue, the more the metric value increases, since this indicator is relative
to a predefined anti-optimal point. The hypervolume is one of the most established
metric because of its favorable mathematical properties [14]. One disadvantage of
this operator is the choice of the anti-optimal point as it influences the results and
is subject of ongoing research. Other disadvantages are its sensitivity to the relative
scaling of the objectives, the presence or the absence of extreme points of a front,
and the high computation complexity caused by the necessary point ordering O(nk)

[15]. A lot of research has been done to find an implementation of the hypervolume
which reduces the computational complexity [16, 17].

Table1 shows the computational complexity of different calculation methods for
the hypervolume. According to this overview, Walking Fish Group (WFG) is the
fastest calculation method for the exact hypervolume [18].

Another convergence metric is the D-metric introduced by Zitzler [12]. The start-
ing point are two solution sets A, B. This metric calculates the size of the space
dominated by A and not dominated by B.

D(A, B) = H(A + B; r) − H(B; r),
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Table 1 Overview of the different methods to calculate the exact hypervolume and the worst-case
complexity, where n is the number of solutions and d the number of objectives

Methods Worst-case complexity

HSO: Hypervolume by slicing objectives O(nd−1)

FPL: Fonseca, Paquete and López-Ibánez O(nd−2 · log n)

HOY: Hypervolume by Overmars and Yap O(n · log n + nd/2)

WFG: Walking Fish Group O(2n)

where H(A; r) denotes the hypervolume with the anti-optimal point r. A reference
set is needed to assess the convergence to PFtrue. Zitzler also proposed the C-metric
[11] that is an appropriate measure to compare the dominance of two Pareto-optimal
sets PF1 and PF2. The C-metric maps the ordered pair (PF1, PF2) into the interval
[0; 1]:

C(PF1, PF2) := | {b ∈ PF2 | ∃a ∈ PF1 : a � b} |
| PF2 |

Therefore, the value C(PF1, PF2) = 0 means that no point of PF2 weakly dominates
at least one point of PF1, whereas C(PF1, PF2) = 1 implicate that all points of
PF2 are weakly dominated by PF1. This metric is usually not symmetric; therefore,
C(PF1, PF2) is not a metric in a mathematical sense and consequently C(PF1, PF2)

and C(PF2, PF1) have to be determined.
The error ratio (ER) [19] is introduced by Veldhuizen that is a percentage measure

for the number of solutions in a set that lies on PFtrue. This metric requires PFtrue as
a reference set.

ER(PFapprox) = 1

|PFapprox|
|PFapprox |∑

i=1

ei whereas (2)

ei =
{
0 if the solution vector i is in PFapprox

1 if the solution vector i is not in PFapprox
(3)

A measure of ER ≈ 1 means that PFapprox comprises only a low number of solutions
in PFtrue, whereas a lower measure value indicates that many solutions are in PFtrue.
ER is exceptionally sensitive to the reference set PFtrue: If a Pareto-optimal solution
is not in PFtrue, it is treated as non-optimal solution by ER. Furthermore, ER takes
not the closeness of PFapprox to PFtrue into account.

The ‘generational distance’ (GD) is also proposed byVeldhuizen [20]. Thismetric
is a measure of the average distance between solutions of PFapprox and PFtrue and is
defined as:

GD(PFapprox) =
(∑n

i=1 dp
i

)2

n
,
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where n is the number of solutions in PFapprox , usually p = 2 and di is the Euclidean
distance between each solution in PFapprox to its nearest located member on PFtrue.

A value of GD(PFapprox) = 0 denotes that PFapprox = PFtrue. However, the GD
provides no information about homogeneity, spread, or dominance of PFapprox com-
pared to PFtrue.

The convergence metric proposed by Deb [21] determines the distance of PFapprox

to a reference set of PFtrue, further denoted as PF∗. PF∗ = {a1, a2, . . . , an} is the
solution set of the optimal Pareto front or the final approximate Pareto-optimal set
obtained from a MOEA run. In each generation, the following steps have to be
performed for the determination of this metric:

• Generate the non-dominated solution set PFapprox = {p1, p2, . . . , pn}.
• The smallest normalized Euclidean distance di for each solution ofPFapprox toPF∗
is calculated:

di = min
j=1,...,n

√√√√
M∑

k=1

(
fk(ai) − fk(pj)

f max
k − f min

k

)2

,

where M denotes the number of objective functions, f max
k is the maximal and f min

k
is the minimal function value of the kth objective function of PF∗.

• The convergence metric value is calculated as the average normalized distance for
all solutions in PFapprox

C(PFapprox) =
|PFapprox |∑

i=1

di

|PFapprox|

The lower the values for this metric, the better the convergence.
The averaged Hausdorff distance (Δp) as a performance measure is proposed by

Schütze [22]. Δp is evolved from the model of GD [20] and the inverted general
distance (IGD) [23] and is defined by:

Δp(XY ) = max(GD(X, Y), IGD(X, Y))

= max

⎛

⎝ 1

m

(
n∑

i=0

dist(xi, Y)p

)1/p

,
1

n

(
n∑

i=0

dist(yi, X)p

)1/p
⎞

⎠

with the finite non-empty sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where
X is regarded as the Pareto-optimal set and Y = PFtrue.

Trautmann [24] recently proposed the R2 indicator that evaluates the quality of
PFapprox regarding the convergence to PFtrue, the solutions spread and the represen-
tation of the Pareto front shape. The R2 indicator is defined by:
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R2(S, W, r) = 1

N

∑

w∈W

min
s∈S

max
j

(
wj · (sj − rj)

)
, (4)

where W = {w1, . . . , wN } ⊂ R
k is a set of N weight vector, S ⊂ R

k a set of solutions
and r ∈ R

k is an ideal point that usually is chosen as an optimal objective vector better
than all feasible solutions.

This indicator is popular for its computational complexity O(Nk · |S|) indicating
that the complexity is linear with the number of weights, the problem dimension,
and the solution set size. The number and the choice of weight vectors is an open
issue, especially for k > 2. The volume of the space is exponentially increasing with
k and potentially also the number of weight vectors. This makes the calculation of
R2 as expensive as the hypervolume from a specific number of k on [25].

Empirical results have shown that the R2 indicator and the hypervolume are cor-
related by the Pearson’s correlation coefficient with a statistically significant values
of 0.76 [26].

3 Introduction of the Average Cuboid Volume

3.1 Motivation for the Average Cuboid Volume

The reason for the development of a new convergence metric is multiple: The dis-
advantage of the metrics D-metric, ER, GD, Δp, and the convergence metric of Deb
is their dependency on the knowledge of PFtrue or at least a reference set of Pareto-
optimal solutions that are usually unknown in the case of real-world multi-objective
problems (MOPs). Further, these metrics are not useful indicators for an entire rank-
ing between generations of different sizes. However, the populations in MOGA are
generally bounded in size. From a more global point of view, the evaluation and
comparison of the global convergence behavior of whole populations - not only the
non-dominated solution set of a generation - with respect to the influence of the
population size or the selection pressure are required. For this purpose, a new metric
has been developed with the definite goal of comparing the convergence behavior of
whole populations of different sizes in a statistically meaningful way. Therefore, it
is a ‘fair’ indicator for comparing generations of different sizes. This average cuboid
volume (ACV) is developed according to the model of the hypervolume. The moti-
vation for the exploitation of the hypervolume model is to profit from its preferable
properties as mentioned above. The benefit of this newmetric compared to the hyper-
volume is the low computational complexity as no point ordering is required. The
computational complexity of ACV for a solution set of n individuals and k objective
is O(n · k). The metric calculates the average cuboid volume of the cuboids spanned
by the solution points with respect to a predefined ideal point r that is defined
in Sect. 2. This ideal point is chosen as a theoretical optimal point of (1) and not
as an anti-optimal one like for the hypervolume. In many MOPs or ‘black box’
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optimization problems, it is easier to find an optimal point than an anti-optimal one
- especially in the case of the three-dimensional biochemical minimization problem
presented in the next section. ACV is calculated by

ACV (X) = 1

n

n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ , (5)

where n is the population size, k is the number of objectives, xi are the solutions on
the population X, and xij is the jth component of a solution xi. By Definition 1, we
have xij − rj ≥ 0. The lower the indicator values, the better is the global convergence
behavior as the ideal point is chosen as a theoretical optimal point.

3.2 Discussion of the Averaged Cuboid Volume

The question according to the suitability of a metric for evaluation depends on the
intention of the investigation object and the preferences. ACV is intended to evaluate
the global convergence behavior of a whole population with the ultimate aim of
comparing solution sets of different sizes according to the proximity to PFtrue.

The first reason which is important for the use of ACV is that the convergence
quality does not change in the case of multiple copies of one solution. ACV does not
fulfill this averaging strategy that can be manifested through the following example:
Let x ∈ R

k be a solution for Eq. (1). Further, Y = {x, x, . . . , x} is a set containing n
copies of the solution x, then

ACV (Y) = 1

n

n∑

i=0

⎛

⎝
k∏

j=1

(xj − rj)

⎞

⎠ = 1

n
· n

k∏

j=1

(xj − rj) =
k∏

j=1

(xj − rj) = ACV (X)

The second reason is due the following observation: An intuitive indicator reflect-
ing the quality of approximation sets of different Pareto front refinements requires
‘better’ indicator values for the finest approximation set. The following example
demonstrates this effect for ACV:

Example 1 The Pareto front is given by the bounded convex function f (x) = 1/x2

between the points y1 = (0.1, 100) and y2 = (1.1, 0.826) meaning

PFtrue = {(x, y)|y = 1/x2 with x ∈ [0.1, 1.1]}. (6)

We consider the following three approximation sets of increasing refinement of
the Pareto front
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Table 2 Indicator values of ACV for the approximation sets Y1 − Y3 with the ideal point (0, 0)

X Y1 Y2 Y3

ACV(X) 3.13 2.75 2.43

Y1 = {(0.1 + 0.2 · i, 1/(0.1 + 0.2 · i)2) | i ∈ {0, 1, . . . , 5}},
Y2 = {(0.1 + 0.1 · i, 1/(0.1 + 0.1 · i)2) | i ∈ {0, 1, . . . , 10}},
Y3 = {(0.1 + 0.01 · i, 1/(0.1 + 0.01 · i)2) | i ∈ {0, 1, . . . , 100}}.

Table2 depicts the indicator values of ACV for the three approximation sets with the
ideal point (0, 0).

The third reason of this indicator is the averaging effect. It is trivial that a dom-
inating solution x yields better indicator values than the dominated one y, because
ACV ({x}) = ∏k

i=1(xj − rj) <
∏k

i=1(yj − rj) = ACV ({y}). Moreover, if a dominated
solution x1 in the set X = {x1, x2, . . . , xn} is replaced by a dominating one x̄1, then
ACV ({x1, x2, . . . , xn}) > ACV ({x̄1, x2, . . . , xn}). The averaging effect is illustrated
by the following example [21]:

Example 2 The true discrete Pareto front is described by P = {pi|pi = (0.1 · (i −
1), 1 − (i − 1) · 0.1) with i = 1, . . . , 11}. Two solution sets are given by
X1 = {x1,1, p2, . . . , p11} and X2 = {x2,1, x2,2, . . . , x2,11} with the elements x1,1 =
(ε, 10) and x2,i = pi + ( ε

2 , 5) with i = 1, . . . , 11. For the outlier x1,1, the values
ε = 0.001 are used for numerical evaluations. X1 is a better approximation of the
true Pareto front than X2 as all solutions exceeding the outlier x1,1 are positioned on
the Pareto front. All points of X2 are shifted by ( ε

2 , 5) from the Pareto front, but the
difference of each element to PFtrue is less than the outlier x1,1. As we are interested
in an averaging effect, the indicator values of X1 have to be better than the one of X2.
This is true for ACV (X) as ACV (X1) = 0.15 and ACV (X2) = 2.65 with the ideal
point (0, 0).

This indicates that ACV fulfills the important complement property of location para-
meters [27]. The complement property is formulated as an axiom:

Axiom 1 Given are n values x1, x2, . . . , xn with the location parameter Mn. In the
case that a further value xn+1 enters the set, the following statements hold for the
new location parameter M({x1, x2, . . . , xn+1}) = Mn+1:

if xn+1 ≥ Mn, then Mn+1 ≥ Mn;
if xn+1 ≤ Mn, then Mn+1 ≤ Mn

The complement property is important for the robustness of a measure and this
property is further proven for the ACV indicator regarding the comparison of two
solution sets:
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Proposition 1 Given are two solution sets X = {x1, . . . , xn} and
Y = {y1, . . . , ym+l} with m, n, l ∈ N and it holds:

(i) ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m}: yj � xi and
(ii) ∀i ∈ {1, . . . , n}, ∀j ∈ {m + 1, . . . , m + l}: yj ≺ xi

Then, ACV (Y) < ACV (X).

Proof It has to be shown that

ACV (X) > ACV (Y) ⇔ 1

n

n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ >
1

m + l

m+l∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠

⇔ (m + l)
n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ > n
m+l∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠ (7)

It holds,

(m + l)
n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ ≥ (m + l) · n · min
i=1,...,n

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠

According to the conditions (i) and (ii), it holds

(m + l) min
i=1,...,n

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ ≥ (m + l) max
i=1,...,m+l

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠ >

m+l∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠

From these inequalities, Eq. (7) is proven:

(m + l)
n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ ≥ (m + l) · n · min
i=1,...,n

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ > n ·
m+l∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠

q.e.d.

This proposition implies that ACV is strictly monotonic to the Pareto compliance
[28]: If solution set A is strictly better than a solution set B, then the indicator value of
A (I(A)) is also strictly better than the one ofB (I(B)):A � B ∧ B � A ⇒ I(A) < I(B).
The conditions (ii) and (iii) of the proposition imply that Y is strictly better than X
and the indicator monotonicity is proven by Proposition 1.

Finally, the compatibility of ACV with the outperformance relations is analyzed
according to Definitions 2 and 3.

Proposition 2 ACV is compatible with the complete and the strong outperformance
relation, but not compatible with the weak outperformance relation.

Proof First, the compatibility with the complete outperformance relation is proven:
It has to be shown that if the set A = {x1, x2, . . . , xm} completely outperforms the set
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B = {y1, y2, . . . , yn}with m, n ∈ N and ACV is compatible with the outperformance
relation, then xi ≺ yj, ∀i, j ∈ N ⇒ ACV (A) < ACV (B).

ACV (B) > ACV (A) is proven by the following estimation under the conditions
xi ≺ yj, ∀i, j and Axiom 1:

ACV (B) = 1

n
·

n∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠ ≥ 1

n
· n · min

i=1,...,n

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠

>
xi≺yj

max
i=1,...,m

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ ≥
Ax.1

1

m
·

m∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ = ACV (A)

q.e.d.

Second, the compatibility of ACV with the strong outperformance is proven:
The set A = {x1, x2, . . . , xm} strongly outperforms set B = {y1, y2, . . . , yn+l} with
m, n, l ∈ N if

xi � yj, ∀i, j and ∃p ∈ {1, . . . , m}, ∀j ∈ {n + 1, . . . , n + l}: xp ≺ yj (8)

Under these conditions, it has to prove that ACV (A) < ACV (B):

ACV (B) = 1

n + l

n+l∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠

= 1

n + l

⎛

⎝
n∑

i=1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠ +
n+l∑

i=n+1

⎛

⎝
k∏

j=1

(yij − rj)

⎞

⎠

⎞

⎠

≥ 1

n + l

⎛

⎝n · min
i∈1,...,n

k∏

j=1

(yij − rj) + l · min
i=n+1,...,n+l

k∏

j=1

(yij − rj)

⎞

⎠

>
1

n + l

⎛

⎝n · max
i∈1,...,n

k∏

j=1

(xij − rj) + l ·
k∏

j=1

(xpj − rj)

⎞

⎠

>
1

n
· (n + l) · max

⎛

⎝ max
i∈1,...,n

k∏

j=1

(xij − rj),

k∏

j=1

(xpj − rj)

⎞

⎠

≥
Ax.1

1

m

m∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

⎞

⎠ = ACV (A)

q.e.d.
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Third, the compatibility of ACV with the weak outperformance relation is dis-
proven by the following example: The set A = {(0.2, 0.6), (0.3, 0.4)} weakly out-
performs the set B = {(0.2, 0.6), (0.3, 0.4), (0.7, 0.2)}, but ACV (A) = 0.126 and
ACV (B) = 0.12, and therefore, ACV (A) > ACV (B).

The use of ACV (X) as a convergence metric and as a diversity metric is not part
of our requirements. ACV (X) is not a reliable indicator for diversity. A solution set
with clustered solutions does not always achieve better indicator values, which is
demonstrated in the following example:

Example 3 Once more PFtrue is described by Eq. (3) and the solution set Y4 =
{(0.29, 11.89), (0.3, 11.11), (0.31, 10.4), (0.32, 9.77), (0.33, 9.18), (0.34, 8.65)}
contains clustered solutions on the true Pareto front, then ACV (Y4) = 3.18 ≈
ACV (Y1). Though the solutions of Y4 are much more clustered than those of Y1

and Y4 receive nearly the same indicator values as Y1.

Furthermore, the use of the ACV indicator as a selection criterion results in very
clustered solutions on one part of the Pareto front and makes a further diversity
preserving method necessary. This effect is demonstrated by the following simple
example.

Example 4 Two Pareto fronts are given by the bounded convex functions f (x) = 2/x
and g(x) = 1/x2 between the x-coordinates 0.1 and 1.1, meaning

PF1true = {(x, y)|y = 2/x with x ∈ [0.1, 1.1]} (9)

PF2true = {(x, y)|y = 1/x2 with x ∈ [0.1, 1.1]} (10)

We consider an approximation set for each Pareto front: X1 is an approximation
set for PF1true and X2 is one for PF2true. The solutions are each positioned at the
boundaries of the Pareto fronts (Fig. 1).

Fig. 1 Visualization of Example 3 (left figure) and Example 4 (right figure)
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Table 3 ACV value for each solution of the approximation sets with the ideal point (0, 0)

ACV(X) x1 x2 x3 x4 x5 x6 x7

X1 2 2 2 2 2 2 2

X2 7.7 6.66 4.76 1.1 1.05 1.02 0.95

Table 4 Overview of the properties fulfilled or incompatible with the ACV indicator

1 Insensitivity for multiple copies of equal solutions

2 Sensitivity for refined Pareto-optimal solution sets

3 Compatible with the Pareto compliance of Zitzler

4 Compatibility with the strong and complete outperformance relation

5 Not compatible with the weak outperformance relation

X1 = {x1(0.13, 15.38), x2(0.15, 13.33), x3(0.21, 9.52), x4(0.92, 2.17), x5(0.95, 2.11),

x6(0.98, 2, 04), x7(1.05, 1.91)},
X2 = {x1(0.13, 59.17), x2(0.15, 44.44), x3(0.21, 22.68), x4(0.92, 1.18), x5(0.95, 1.11),

x6(0.98, 1.04), x7(1.05, 0.91)},

Table3 depicts the indicator values of each solution in the approximation sets deter-
mined with the ideal point (0, 0).

In the case of the approximation set X1, all solutions have the same probability to be
chosen for reproduction, whereas in the case ofX2, the solutions at the right boundary
are preferred by the selection strategy based on the ACV indicator. In conclusion,
if the solutions on the Pareto front do not exhibit the same ACV values, the search
process is guided in the direction of the lowest ACV values and therefore results in
clustered solutions on one part of the Pareto front.

Summarizing the following Table4 gives an overview of the properties that are
fulfilled or incompatible with the ACV indicator.

4 The Components of the Customized NSGA-II

The customized NSGA-II differs to the traditional NSGA-II [29] in the components
variation operators and selection strategy to determine the succeeding generation.
The components variation operators, the encoding as well as the fitness functions
constituting the three-dimensional biochemical minimization problem are described
in the following.



198 S. Rosenthal and M. Borschbach

4.1 Encoding

The individuals are implemented as 20-character strings symbolizing short peptide
sequences of the length 20. These individuals are composed of 20 different characters
representing the 20 canonical amino acids. This encoding is highly intuitive in theway
that no transformation is required for fitness evaluation. Furthermore, it represents
all feasible and most important - only feasible - solutions. Small changes performed
by a variation operator on the character strings preserve the similarity of the created
offsprings to their parents. A peptide in the customized NSGA-II is represented by

Example 5 Peptide: AACMNKKLSTRAAEEGGGTT.

The commonly bit string presentation is inadequate as redundancies are highly prob-
abilistic and every peptide has therefore a different probability to be produced. Fur-
thermore, the string encoding schemata also represents non-feasible peptides.

4.2 Variation Operators

Several mutation and recombination operators have been developed and are tested
within the customized NSGA-II [6–8]. The combination of recombination andmuta-
tion operator which achieved the best convergence–diversity balance is the linear
recombination operator ‘LiDeRP’ [7] and the adaption of the deterministic dynamic
mutation of Bäck and Schütz [6]. The combination of LiDeRP and the determin-
istic dynamic mutation provides the most successful balance of exploitation and
exploration of the search process:

The recombination operator LiDeRP varies the number of recombination points
within the generations via a linearly decreasing function:

xR(t) = l

2
− l/2

T
· t, (11)

which depends on the length of the individual l, the total number of the GA gen-
erations T and the index of the actual generation t. Three individuals are randomly
selected from the current population for reproduction. The number of parents have
been empirically verified in [30].

The deterministic dynamic operator of Bäck and Schütz [31] determines themuta-
tion probabilities via the following function with a = 2

pBS =
(

a + l − 2

T − 1
t

)−1

, (12)

The mutation rate is bounded by (0; 1
2 ]. As a high mutation rate in the early gener-

ations results in an inappropriate high destruction of the sequence structure and the
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probability that an optimal partial structure is lost by the populations increases, the
start mutation rate is reduced by a = 5.

4.3 Fitness Functions

A three-dimensional biochemical minimization problem is used for benchmarking.
The biochemical optimization problem has been constituted to be as generic as pos-
sible regarding the approximation technique to predict biochemical features by the
primary structure of a peptide. The biochemical objective values are calculated by
the descriptor values of the amino acids composing the peptide sequence.

TheNeedleman–Wunsch algorithm is onefitness function calculating the sequence
alignment score of a peptide to a predefined reference peptide. This score indicates
the structure similarity of these two peptides. The selection of this algorithm as a
fitness function is motivated by the principle that molecular structure similarity is
often related to similar molecule properties. The Needleman–Wunsch algorithm is
implemented by the BioJava library [32].

The second fitness function is the determination of the molecular weight. A low
molecular weight is a very important feature in the field of peptide-based drug design
as a peptidewith a lowmolecularweight ensures a better diffusion of the drug through
the epithelial layer [33]. This function is also provided by the BioJava library. The
molecular weight is computed as the sum of mass of each amino acid plus a water
molecule:

∑l
i=1 mass(ai) + 17.0073(OH) + 1.0079(H), according to the periodic

system of elements: oxygen (O) and hydrogen (H).
The third fitness function is the average hydrophilicity value of a peptide deter-

mined by the hydrophilicity scale of Hopp and Woods and a window size accord-
ing to the peptide length [34]. The average hydrophilicity is calculated by: 1

l ·
(
∑l

i=1 hydro(ai)). The hydrophilicity is an important feature of a peptide-based drug
as the hydrophilic character is essential for the ability to cross cell membranes [35].

Also the objective values of the fitness functions molecular weight and average
hydrophilicity are calculated as the absolute value of the difference between the
objective function value of a candidate solution and the corresponding value of the
predefined reference peptide.

4.4 Selection Strategy Used in the Customized NSGA-II

This section motivates the development of three selection strategies and describes
its procedures. These strategies determine the individuals of the succeeding gen-
erations in the customized NSGA-II and replace the environment selection of
the traditional NSGA-II which is based on the crowding distance and the Pareto
ranking.
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4.4.1 Motivation of the Selection Strategies

Each of the three selection procedures incorporate the three fundamental objectives
of an ideal population constitution achieved by an evolutionary process in the area
of molecule optimization:

• Diversity of the genetic material: This objective refers to the creation of an at most
high diversity of the genetic material within the succeeding generation.

• Maximization of the solutions spread: This objective refers to the detection of
high-quality individuals with an at most wide spread among these individuals.

• High fitness-directional guidance: This objective refers to the strong guidance of
the selection process in the direction of high-quality individuals.

Another important aspect of the selection process especially in the field of molecule
optimization is the role of change in the selection procedure. The proposed three
selection procedures represent, respectively, an aggregation of the three selection
objectives and the aspect of change: Two selection strategies are based on the tour-
nament selection to integrate the aspect of change in the selection strategies andmake
use of a combination of fitness-proportionate selection and a discerning selection cri-
terion. The third strategy uses random selection instead of the fitness-proportionate
selection.

The three selection strategies depend on two parameters, a probability parame-
ter controlling the strength of the fitness-directional guidance and the tournament
size. The interdependence of these two parameters on the selection procedure is
empirically verified in the experiments on the generic three-dimensional biochemi-
cal minimization problem. In general, these selection strategies are characterized as
preservative procedures as each individual has a nonzero change to be selected for
the succeeding generation.

4.4.2 Aggregate Selection

The first selection strategy is tournament-based and uses a combination of front-
based stochastic universal sampling (SUS) and a rank-based discerning selection
criterion. The procedure is depicted in Fig. 2 and is denoted as aggregate selection
referring to the aggregation of the three selection objectives. The procedure of the
aggregate selection strategy starts with tournament selection of the size TS. This
tournament set is Pareto ranked. An individual is chosen from the Pareto-optimal
front with a probability p0. With a probability of 1 − p0, individuals are chosen from
the different fronts via SUS. The number N of pointers refers to the number of
fronts and the segments are equal in size to the number of individuals in each front.
Therefore, the parameters of this selection strategy are the TS and p0.

Front-based SUS ensures the diversity of the genetic material and a potentially
high solutions’ spread. Further, it provides the opportunity to low-quality solutions to
find their way in the succeeding generation. Low-quality solutions potentially have
high-quality geneticmotifs,which produce high-quality solutions in later generations
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Fig. 2 Aggregate selection
strategy

and ensure genetic diversity. The selection of an individual from the Pareto-optimal
front is characterized as the rank-based discerning selection criterion and ensures the
fitness-directional guidance.

4.4.3 ACV-Based and ACV-Random Selection Strategy

The procedure of the ACV-based selection strategy is comparable to the aggregate
selection in its procedure (Fig. 3), whereas the rank-based discerning selection crite-
rion is substituted by a discerning selection criterion using the ACV indicator: The
ACVscaled value for each individual in the tournament set is determined via Eq. (13)
with X = {x0} and the individual with the lowest ACVscaled value is selected. The
part of the process differing from aggregate selection is highlighted. The basic idea
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Fig. 3 ACV-based selection
strategy with SUS

for the ACV-based selection criterion is motivated by the following consideration of
the aggregate selection strategy: The randomly chosen individuals by the tournament
selection are ranked, and a random individual from the first front is selected. This
selection from the first front does not guarantee the selection of the fittest individual
with respect to all objective values as the Pareto ranking is relative to the other indi-
viduals in the tournament set. This criterion is substituted by the determination of
an ACVscaled value for each individual of the tournament set. In the case of multiple
lowest ACV values, a random one is selected. This criterion guarantees the selection
of the fittest individual with respect to all objectives within the tournament set.

The motivation for the ACV-random selection is the empirical investigation of
the influence of the front-based SUS on the search process. Therefore, this part is
replaced by a simple random selection of an individual from the tournament set with
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Fig. 4 ACV-random
selection strategy

a probability of 1 − p0. The procedure is depicted in Fig. 4 and the differing selection
criterions compared to the aggregate selection are highlighted. The parameters of the
ACV-based and the ACV-random selection are TS and p0.

5 Simulation Setups and Experiments

5.1 Simulation Setups

Two series of tests are performed: The first series of tests compares the perfor-
mances of the three selection strategies with different p0 settings regarding con-
vergence, diversity, and relative non-dominated solution quality. The probability
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p0 = 0% denotes pure SUS as a selection strategy. The start population has a size
of 100 randomly initialized individuals representing 20-mer peptides. In the second
series of test, the influence of the tournament size on the performance is empirically
investigated.

For statistical reasons, each configuration is run 30 times until the 18th generation
as we are focused on early convergence [6, 7]. A normalized version of the ACV
indicator is used as convergence metric which ensures that all objective function
values have the same influence on the indicator values:

ACVscaled = 1

n

n∑

i=1

⎛

⎝
k∏

j=1

(xij − rj)

x̄j

⎞

⎠ , with x̄j = maxi{xij},∀j = 1, . . . , k (13)

A relativeACVmeasure is used as relative non-dominated solution quality to evaluate
the average cuboid volume by the solutions of the non-dominated solutions in relation
to the average cuboid volume of the entire population:

ACVrel =
1
f

∑f
i=1(

∏k
j=1(xij − rj))

1
n

∑n
i=1(

∏k
j=1(xij − rj))

, (14)

The ideal point is generally chosen as (0, 0, 0). The diversity within the population
is assed via:

Δ =
∑

i,j=1,i<j

|dij − d̄|
N

with N =
(

n

2

)
= n(n − 1)

2
,

where dij is the Euclidean distance of each possible combination of solutions, n is
the number of solutions and d̄ is the average distance of all distances. Box plots
are created of the three performance indicators for each configuration. The indicator
values are scaled for an optimal graphical representation.

5.2 Evaluation

A good performance is achieved by a good convergence–diversity balance and by
an at most low value of the relative non-dominated solution quality of a configu-
ration. A good convergence–diversity balance is given by an at most low value of
ACVscaled and an at most high diversity values. Numerical indicators are used to sup-
port the following statements. The results of the first series of tests are represented in
Figs. 5, 6, and 7. All three selection strategies reveal a decrease of the ACVscaled val-
ues by an increase of the probability p0 for the fitness-directional guidance (Fig. 5).
The increase of p0 results in a decrease of the diversity in the case of the aggre-
gate selection strategies and ACV-random selection (Fig. 6). The diversity of the
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Fig. 5 ACVscaled of the three selection strategies with different p0-values and TS = 10

Fig. 6 Diversity of the three selection strategies with different p0-values and TS = 10

Fig. 7 ACVrel of the three selection strategies with different p0-values and TS = 10
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ACV-based selection strategy is on a similar level for all three p0 settings. The rela-
tive non-dominated solution quality measured by ACVrel reveals a general tendency
to lower ACVrel values and therefore a tendency to a higher non-dominated solution
quality relative to the quality of the entire population in the case of ACV-based and
ACV-random selection. The ACVrelresults of ACV-random selection are generally
higher than those of ACV-based selection. However, the ACVrel results of the aggre-
gate selection indicate an increase of the relative non-dominated solution quality.
This confirms the hypothesis that the selection of a random individual of the Pareto-
optimal front in the case of aggregate selection does not guarantee the selection of
the fittest individual with respect to all objective values. The ACV indicator is an
adequate measure for this purpose. According to [36], a good convergence–diversity
balance is given by p0 = 60% in the case of aggregate selection and p0 = 50%
for ACV-based selection. As the convergence and diversity results of ACV-random
selection with p0 = 10% are comparable to the results of Aggregate and ACV-based
selection with the optimal settings, p0 = 10% is regarded as advisable settings for
ACV − random selection.

The results of the second series of tests are represented in Figs. 5, 6, and 7. In
these configurations, the three selection strategies are used with the correspond-
ing optimal parameter setting p0. The ACVscaled results of aggregate selection are
decreased for TS = 10 and higher values and reveal a convergence improvement
(Fig. 8). The variation of TS reveals no influence on the diversity values. The relative
non-dominated solution quality is increased for ts = 10 and 12. ACV-based as well
as ACV-random selection result in comparable ACVscaled values independent of the
TS settings (Figs. 9, 10). The ACVrel values are decreased for TS = 10 and higher
revealing a higher relative non-dominated solution quality. The diversity is signifi-
cantly increased for TS = 10 and higher in the case of the ACV-based selection. A
tendency to higher diversity is also observable for TS = 10 and higher in the case of
ACV-random selection.

Fig. 8 Performance of configuration with aggregate selection, p0 = 60% and a variation of TS



Average Cuboid Volume as a Convergence Indicator … 207

Fig. 9 Performance of configuration with ACV-based selection, p0 = 50% and a variation of TS

Fig. 10 Performance of configuration with ACV-random selection, p0 = 10% and
a variation of TS

6 Conclusion

The evaluation of a MOEA performance is based on two basic principles: The dis-
tance of the non-dominated solutions to the true Pareto front and the spread among the
solutions. Diverse convergence metrics have been proposed in the literature with sev-
eral disadvantages: Some convergence metrics require the knowledge of the Pareto-
optimal front or at least a reference set of the Pareto-optimal front. Usually, the
convergence quality of a population is only measured by the non-dominated solu-
tions which makes an evaluation according to the progress of the entire population
impossible. Other metrics measure the convergence quality without referring to the
set size. Therefore, a statistically reasonable indicator has been introduced which
only requires the knowledge of an ideal point and is able to measure the convergence
progress of the entire population.

This ACV indicator has several preferable properties that have been proved and
discussed: ACV does not ignore the existence of multiple copies of the same solu-
tion within a solution set. It provides better indicator values to finer Pareto-optimal
approximation sets and is compatible with the Pareto compliance as well as with
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the complete and strong outperformance relations. ACV is of a low computational
complexity and simple to calculate. It has been used as convergence indicator as well
as a discerning selection criterion. For these purposes, ACV has to be used in com-
bination with a diversity measure to evaluate the performance of a MOEA in the first
case or with a diversity preserving method in the case of a selection strategy. ACV
is not able to focus on convergence and diversity simultaneously. A disadvantage of
ACV as selection criterion is the guidance of the search process in the direction of
one solution on the Pareto-optimal front that achieves the lowest cuboid volume to
the ideal point.

Two selection strategies based on the ACV indicator have been proposed and are
benchmarked on a generic three-dimensional biochemical minimization problem
compared to the aggregate selection strategy, which uses a Pareto rank-based selec-
tion criterion. Further, the impact of the two selection parameters - the probability
p0 for the fitness-directional guidance and the tournament size - on the performance
of the customized NSGA-II is determined.

The questions raised in the introduction are addressed in the following based on
the experimental results: The first question refers to the identification of an optimal
selection strategy for this optimization problem. In general, a good and comparable
convergence–diversity balance is equally achieved by the three selection strategies
with specific p0 setting. The convergence–diversity performances of aggregate selec-
tion with p0 = 60%, of ACV-based selection with p0 = 50%, and of ACV-random
selection with p0 = 10% are comparable and present an ideal compromise between
convergence and diversity. The main performance differences are observable on the
relative non-dominated solution quality and are further discussed by the answer of
the second question.

The second question refers to the influence of the parameter variation on the
performance of the customized NSGA-II. An increase of the probability for the
fitness-directional guidance results in an improvement of the convergence quality. At
the same time, the diversity is decreased in the cases of aggregate selection and ACV-
random selection. Therefore, a stringent fitness-directional guidance is achieved by
the Pareto ranked-based principle in the case of aggregate selection and the ACV
indicator based in the case of ACV-based and ACV-random selection. The main and
important difference of the fitness-directional guidance strategies is observable by the
relative non-dominated solution quality. The ACVrel values of the selection strategies
based on the ACV indicator are decreased which indicates an improvement of the
non-dominated solution quality by comparable convergence results at the same time.
In contrast, theACVrel results are increased by an increase of p0. In general, theACVrel

results of ACV-random selection are higher than those of ACV-based selection. The
increase of the tournament size results in an improvement of the convergence quality
in the case of aggregate selection and in an improvement of the diversity and relative
non-dominated solution quality in the case of the ACV selection strategies.

The third question refers to generalization of the experimental results. In general,
these selection strategies are generic and therefore transferable to other real-valued
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MOEA. A similar performance of these selection strategies with the parameter vari-
ation is expected but has to be proved for other optimization problems which are part
of the future work.
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