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Preface

The third edition of this book extends and further develops some of the topics in the  second 
edition. For instance, the multiterminal transformer model is extended to include a second 
transformer that could be a booster or the second transformer of a 2-core phase shifter. This 
second transformer can also be included in an impulse simulation program.

Although the second edition discussed the linear impedance boundary method, it 
pointed out its deficiencies in terms of calculating eddy losses in nonlinear magnetic mate-
rials, such as tank steel. This new edition includes a section on how to correct the method 
for nonlinear materials.

The more complicated calculation for the directed oil flow disk thermal model in the 
previous edition is now replaced by a more efficient calculation based on graph theory.

Transformer design normally begins with an optimization calculation to produce a mini-
mum cost design based on the client’s requirements. Therefore Chapter 19 on optimization 
methods, which was included in the first edition, has been added. This calculation should 
produce a starter design, which can be further modified when subjected to more detailed 
screening by other design programs. Although the starting point for most designs, this 
chapter is near the end of the book. Most of the book is concerned with detailed design 
methods. These are based on realistic transformer models that cover specific characteristics 
and associated limits that the transformer must satisfy.

Since large power transformers especially have unique client specifications, a generic 
transformer design is usually not possible. Moreover, new materials with different mate-
rial constants are being developed and used, such as natural ester oil instead of mineral oil. 
In addition, different physical configurations may be necessary for different designs, such 
as the use of wound-in-shields or interleaving for high voltage designs, or different place-
ments of oil flow washers for cooling different designs. The models must be flexible enough 
to handle these. Model development in this book therefore starts from general physical 
principles appropriate to the model in question so that the formulas and procedures 
arrived at can be applied to a variety of transformers and the materials they contain.

Because the readers may come from a variety of backgrounds, as little technical jargon as 
possible is used. SI (MKS) units are used throughout, as well as standard terminology and 
symbols.
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Introduction

1.1  Historical Background

Transformers are electrical devices that change or transform voltage levels between two 
circuits. In the process, current values are also transformed. However, the power  transferred 
between the circuits is unchanged, except for a typically small loss that occurs in the 
 process. This transfer only occurs when alternating current (a.c.) or transient electrical 
 conditions are present. Transformer operation is based on the principle of induction, for-
mulated by Faraday in 1831. He found that when a changing magnetic flux links a circuit, 
a voltage or electro-motive force (emf) is induced in the circuit. The induced voltage is 
proportional to the number of turns linked by the changing flux. Thus, when two circuits 
are linked by a common flux and there are different linked turns in the two circuits, there 
will be different voltages induced. This situation is shown in Figure 1.1 where an iron 
core is shown carrying the common flux. The induced voltages V1 and V2 will differ since 
the linked turns N1 and N2 differ.

Devices based on Faraday’s discovery, such as inductors, were little more than labora-
tory curiosities until the advent of a.c. electrical systems for power distribution, which 
began toward the end of the nineteenth century. Actually, the development of a.c. power 
systems and transformers occurred almost simultaneously since they are closely linked. 
The invention of the first practical transformer is attributed to the Hungarian engineers 
Karoly Zipernowsky, Otto Blathy, and Miksa Deri in 1885 [Jes97]. They worked for the 
Hungarian Ganz factory. Their device had a closed toroidal core made of iron wire. The 
primary voltage was a few kilovolts and the secondary about 100 V. It was first used to 
supply electric lighting.

Modern transformers differ considerably from these early models but the operating 
principle is still the same. In addition to transformers used in power systems, which range 
in size from small units that are attached to the tops of telephone poles to units as large as 
a small house and weighing hundreds of tons, there are a myriad of transformers used in 
the electronics industry. The latter range in size from units weighing a few pounds, which 
are used to convert electrical outlet voltage to lower values required by transistorized cir-
cuitry, to micro-transformers, which are deposited directly onto silicon substrates via litho-
graphic techniques.

Needless to say, we will not be covering all of these transformer types here in any detail, 
but will instead focus on the larger power transformers. Nevertheless, many of the issues 
and principles discussed are applicable to all transformers.

1



2 Transformer Design Principles

1.2  Uses in Power Systems

The transfer of electrical power over long distances becomes more efficient as the voltage 
level rises. This can be shown by considering a simplified example. Suppose we wish to 
transfer power P over a long distance. In terms of the voltage V and line current I, this 
power can be expressed as

 P VI=  (1.1)

Let’s assume that the line and load at the other end are purely resistive so that V and I are 
in phase, that is, V and I are real quantities for the purposes of this discussion. For a line of 
length L and cross-sectional area A, its resistance is given by

 
R

L
A

= r
 

(1.2)

where ρ is the electrical resistivity of the line conductor. The line or transmission losses are

 Loss I R= 2  (1.3)

and the voltage drop in the line is

 Voltage drop IR=  (1.4)

N1

N2

V1

V2

Changing �ux

Iron core

FIGURE 1.1
Transformer principle illustrated for two circuits linked by a common changing flux.
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Substituting for I from (1.1), the loss divided by the input power and voltage drop divided 
by the input voltage are

 
Loss

P
PR
V

Voltage drop
V

PR
V

= =2 2,
 

(1.5)

Since P is assumed given, the fractional loss and voltage drop for a given line resistance are 
greatly reduced as the voltage is increased. However, there are limits to increasing the volt-
age, such as the availability of adequate and safe insulation structures and the increase of 
corona losses.

Looking at (1.5) from another point of view, we can say that for a given input power and 
fractional loss or voltage drop in the line, the line resistance increases as the voltage 
squared. From (1.2), since L and ρ are fixed, an increase in R with V implies a wire area 
decrease so that the wire weight per unit length decreases. This implies that power at 
higher voltages can be transmitted with less weight of line conductor at the same line effi-
ciency as measured by line loss divided by power transmitted.

In practice, long distance power transmission is accomplished with voltages in the range 
of 100–500 kV and more recently with voltages as high as 765 kV. These high voltages are, 
however, incompatible with safe usage in households or factories. Thus, the need for 
 transformers is apparent to convert these to lower levels at the receiving end. In addition, 
generators are, for practical reasons such as cost and efficiency, designed to produce elec-
trical power at voltage levels of ~10 to 40 kV. Thus, there is also a need for transformers at 
the sending end of the line to boost the generator voltage up to the required transmission 
levels. Figure 1.2 shows a simplified version of a power system with actual voltages indi-
cated. GSU stands for generator step-up transformer.

In modern power systems, there is usually more than one voltage step-down from trans-
mission to final distribution, each step-down requiring a transformer. Figure 1.3 shows a 
transformer situated in a switch yard. The transformer takes input power from a high volt-
age line and converts it to lower voltage power for local use. The secondary power could 
be further stepped down in voltage before reaching the final consumer. This transformer 
could supply power to a large number of smaller step-down transformers. A transformer 
of the size shown could support a large factory or a small town.

There is often a need to make fine voltage adjustments to compensate for voltage drops 
in the lines and other equipment. These voltage drops depend on the load current, so they 
vary throughout the day. This is accomplished by equipping transformers with tap changers. 

Transmission line

HouseGenerator

13.8 kV

138 kV
138 kV

12.47 kV
240/120 V

Distribution
transformer

GSU transformer
(step-up)

Transformer
(step-down)

FIGURE 1.2
Schematic drawing of a power system.
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These are devices that add or subtract turns from a winding, thus altering its voltage. 
This process can occur under load conditions or with the power disconnected from the 
transformer. The corresponding devices are called, respectively, load or de-energized tap 
changers.

Load tap changers are typically sophisticated mechanical devices that can be remotely 
controlled. Tap changes can be made to occur automatically when the voltage levels drop 
below or rise above certain predetermined values. Maintaining nominal or expected 
 voltage levels is highly desirable since much electrical equipment is designed to operate 
efficiently and sometimes only within a certain voltage range. This is particularly true for 
solid-state equipment. De-energized tap changing is usually performed manually. This 
type of tap changing can be useful if a utility changes its operating voltage level at one 
location or if a transformer is moved to a different location where the operating voltage is 
slightly different. Thus, it is done infrequently. Figure 1.4 shows three load tap changers 
and their connections to three windings of a power transformer. The same transformer can 
be equipped with both types of tap changers.

Most power systems today are 3-phase systems, that is, they produce sinusoidal voltages 
and currents in three separate lines or circuits with the sinusoids displaced in time relative 
to each other by 1/3 of a cycle or 120 electrical degrees as shown in Figure 1.5. At any 
instant of time, the three voltages sum to zero. Such a system made possible the use of 
generators and motors without commutators, which were cheaper and safer to operate. 
Thus, transformers that transformed all three phase voltages were required. This could be 
accomplished by using three separate transformers, one for each phase, or more commonly 
by combining all three phases within a single unit, permitting some economies particularly 
in the core structure. A sketch of such a unit is shown in Figure 1.6. Note that the three 
fluxes produced by the different phases are, like the voltages and currents, displaced in 

FIGURE 1.3
Transformer located in a switching station, surrounded by auxiliary equipment. (Courtesy of Waukesha Electric 
Systems, Waukesha, WI.)
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FIGURE 1.4
Three load tap changers attached to three windings of a power transformer. These tap changers were made by the 
Maschinenfabrik Reinhausen Co., Germany.
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FIGURE 1.5
Three-phase voltages versus time.
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time by 1/3 of a cycle relative to each other. This means that, when they overlap in the top 
or bottom yokes of the core, they cancel each other out. Thus the yoke steel does not have 
to be designed to carry more flux than is produced by a single phase.

At some stages in the power distribution system, it is desirable to furnish single-phase 
power. For example, this is the common form of household power. To accomplish this, only 
one of the output circuits of a 3-phase unit is used to feed power to a household or group 
of households. The other circuits feed similar groups of households. Because of the large 
numbers of households involved, on average each phase will be equally loaded.

Because modern power systems are interconnected so that power can be shared between 
systems, sometimes voltages do not match at interconnection points. Although tap chang-
ing transformers can adjust the voltage magnitudes, they do not alter the phase angle. 
A phase angle mismatch can be corrected with a-phase-shifting transformer. This inserts 
an adjustable phase shift between the input and output voltages and currents. Large power 
phase shifters generally require two 3-phase cores housed in separate tanks. A fixed phase 
shift, usually of 30°, can be introduced by suitably interconnecting the phases of standard 
3-phase transformers, but this is not adjustable.

Transformers are fairly passive devices containing very few moving parts. These include 
tap changers and cooling fans, which are needed on most units. Sometimes pumps are 
used on oil-filled transformers to improve cooling. Because of their passive nature, trans-
formers are expected to last a long time with very little maintenance. Transformer lifetimes 
of 25–50 years are common. Often, units will be replaced before their useful life is up 
because of improvements in losses, efficiency, and other aspects over the years. Naturally,  
a certain amount of routine maintenance is required. In oil-filled transformers, the oil qual-
ity must be checked periodically and filtered or replaced if necessary. Good oil quality 
insures sufficient dielectric strength to protect against electrical breakdown. Key trans-
former parameters such as oil and winding temperatures, voltages, currents, and oil qual-
ity as reflected in gas evolution are monitored continuously in many power systems. These 
parameters can then be used to trigger logic devices to take corrective action should they 
fall outside of acceptable operating limits. This strategy can help prolong the useful operat-
ing life of a transformer. Figure 1.7 shows the end of a transformer tank where a control 

Phase a Phase b Phase c

Yoke

Leg Leg Leg

YokeFlux a Flux b Flux c

FIGURE 1.6
3-phase transformer utilizing a 3-phase core.
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cabinet is located, which houses the monitoring circuitry. Also shown projecting from the 
sides are radiator banks equipped with fans. This transformer is fully assembled and is 
being moved to the testing location in the plant.

1.3  Core-Form and Shell-Form Transformers

Although transformers are primarily classified according to their function in a power sys-
tem, they also have subsidiary classifications according to how they are constructed. As an 
example of the former type of classification, we have generator step-up transformers, 
which are connected directly to the generator and raise the voltage up to the line transmis-
sion level or distribution transformers, which is the final step in a power system, transfer-
ring single-phase power directly to the household or customer. As an example of the latter 
type of classification, perhaps the most important is the distinction between core-form and 
shell-form transformers.

The basic difference between a core-form and a shell-form transformer is illustrated in 
Figure 1.8. In a core-form design, the coils are wrapped or stacked around the core. This 
lends itself to cylindrical coils. Generally, high-voltage and low-voltage coils are wound 
concentrically with the low-voltage coil inside the high-voltage one. In the shell-form 
design, the core is wrapped or stacked around the coils. This lends itself to flat oval-shaped 
coils called pancake coils, with the high- and low-voltage windings stacked side by side, 
generally in more than one layer each in an alternating fashion.

FIGURE 1.7
End view of a transformer tank showing the control cabinet at the bottom left, which houses the electronics. 
The radiators are shown on the far left. (Courtesy of Waukesha Electric Systems, Waukesha, WI.)
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Each of these types of constructions has its advantages and disadvantages. Perhaps the 
ultimate determination between the two comes down to a question of cost. In distribution 
transformers, the shell-form design is very popular because the core can be economically 
wrapped around the coils. For moderate to large power transformers, the core-form design 
is more common, possibly because short-circuit forces can be better managed with cylin-
drically shaped windings.

1.4  Stacked and Wound Core Construction

In both core-form and shell-form types of constructions, the core is made of thin layers or 
laminations of electrical steel, especially developed for its good magnetic properties. 
The magnetic properties, however, are best along a particular direction called the roll-
ing d irection because this is the direction in which the hot steel slabs move through the 
rolling mill, which squeeze them down to thin sheets. Thus, this is the direction the flux 

FIGURE 1.8
3-phase core-form (a) and shell-form (b) transformers contrasted.

(a)

(b)
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should naturally want to take in a good core design. The laminations can be wrapped 
around the coils or stacked. Wrapped or wound cores have few, if any, joints so they carry 
flux nearly uninterrupted by gaps. Stacked cores have gaps at the corners where the core 
steel changes direction. This results in poorer magnetic characteristics than for wound 
cores. In larger power transformers, stacked cores are much more common, while in small 
distribution transformers, wound cores predominate. The laminations for both types of 
cores are coated with an insulating coating to prevent large eddy current paths from devel-
oping, which would lead to high losses.

In one type of wound core construction, the core is wound into a continuous “coil.” The 
core is then cut so that it can be inserted around the coils. The cut laminations are then 
shifted relative to each other and reassembled to form a staggered stepped type of joint. 
This type of joint allows the flux to make a smoother transition over the cut region than 
would be possible with a butt type of joint where the laminations are not staggered. Very 
often, in addition to cutting, the core is reshaped into a rectangular shape to provide a 
tighter fit around the coils. Because the reshaping and cutting operations introduce stress 
into the steel, which is generally bad for the magnetic properties, these cores need to be 
re-annealed before use to help restore these properties. A wound core without a joint would 
need to be wound around the coils or the coils would need to be wound around the core. 
Techniques for doing this are available but somewhat costly.

In stacked cores for core-form transformers, the coils are circular cylinders, which sur-
round the core legs. In smaller transformers, up to approximately 10 MVA 3-phase rating 
or 5 MVA single-phase, the cross section of the core legs may be circular or rectangular, 
based either on economical reasons or manufacturer’s preference and technology. In larger 
ranges, the preferred cross section of the core is circular since this will maximize the flux 
carrying area. In practice, the core is stacked in steps, which approximates a circular cross 
section as shown in Figure 1.9. Note that the laminations are coming out of the paper and 
carry flux in this direction, which is the sheet rolling direction. The space between the core 

Coil

Laminations
Core step

FIGURE 1.9
Stepped core used in core-form transformers to approximate a circular cross section.
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and innermost coil is needed to provide insulation clearance for the voltage difference 
between the winding and the core, which is at ground potential. It is also used for the cool-
ing medium such as oil to cool the core and inner coil. Structural elements to prevent the 
coil from collapsing under short-circuit forces may also be placed in this region.

In practice, because only a limited number of standard sheet widths are kept in inven-
tory and because stack heights are also descretized, at least by the thickness of an  individual 
sheet, it is not possible to achieve ideal circular coverage. Figure 1.10 shows a 3-phase 
stepped core for a core-form transformer without the top yoke. This is added after the coils 
are inserted over the legs. The bands around the legs are used to facilitate the handling 
of  the core. They could also be used to hold the laminations together more tightly and 
 prevent them from vibrating in service. Such vibrations are a source of noise.

1.5  Transformer Cooling

Because power transformers are usually more than 99% efficient, the input and output 
power are nearly the same. However, because of the small inefficiency, there are losses 
inside the transformer. The sources of these losses are I2R losses in the conductors, losses in 
the electrical steel due to the changing magnetic flux, and losses in metallic tank walls and 
other metallic structures caused by the stray time varying flux, which induces eddy 
 currents. These losses lead to temperature rises, which must be controlled by cooling. 

FIGURE 1.10
3-phase stepped core for a core-form transformer without the top yoke.
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The primary cooling media for transformers are oil and air. In oil-cooled transformers, the 
coils and core are immersed in an oil-filled tank. The oil is then circulated through radia-
tors or other types of heat exchanger so that the ultimate cooling medium is the surround-
ing air or possibly water for some types of heat exchangers. In small distribution 
transformers, the tank surface in contact with the air provides enough cooling surface so 
that radiators are not needed. Sometimes, in these units the tank surface area is augmented 
by means of fins or corrugations.

The cooling medium in contact with the coils and core must provide adequate dielectric 
strength to prevent electrical breakdown or discharge between components at different 
voltage levels. For this reason, oil immersion is common in higher voltage transformers 
since oil has a higher breakdown strength than air. Often, one can rely on the natural 
 convection of oil through the windings driven by buoyancy effects to provide adequate 
cooling so that pumping isn’t necessary. Air is a more efficient cooling medium when it is 
blown by means of fans through the windings for air-cooled units.

In some applications, the choice of oil or air is dictated by safety considerations such as 
the possibility of fire. For units inside buildings, air cooling is common because of the 
reduced fire hazard. While transformer oil is combustible, there is usually little danger of 
fire since the transformer tank is often sealed from the outside air or the oil surface is 
blanketed with an inert gas such as nitrogen. Although the flash point of oil is quite high, 
if excessive heating or sparking occurs inside an oil-filled tank, combustible gasses could 
be released.

Another consideration in the choice of cooling is the environment. Mineral oil used in 
transformers is known to be detrimental to the environment in case of an accident. For 
transformers such as those used on planes or trains or units designed to be transportable 
for emergency use, air cooling is preferred. For units not so restricted, oil is the preferred 
cooling medium, so one finds oil-cooled transformers in general use from large generator 
or substation units to distribution units on telephone poles.

There are other cooling media, which find limited use in certain applications. Among 
these is sulfur hexafluoride gas, usually pressurized. This is a relatively inert gas, which 
has a higher breakdown strength than air and finds use in high voltage units where oil is 
ruled out for reasons such as those mentioned earlier and where air doesn’t provide enough 
dielectric strength. Usually when referring to oil-cooled transformers, one means that the 
oil is standard transformer oil. However, there are other types of oil, which find specialized 
usage. One of these is silicone oil. This can be used at a higher temperature than standard 
transformer oil and at a reduced fire hazard. Other types finding increasing use for envi-
ronmental reasons are the natural ester-based oils. These are made from edible seeds and 
are biodegradable. They also have low flammability and are nontoxic.

1.6  Winding Types

For core-form power transformers, there are two main methods of winding the coils. 
These are sketched in Figure 1.11. Both types are cylindrical coils, having an overall rect-
angular cross-section. In a disk coil, the turns are arranged in horizontal layers called 
disks, which are wound alternately out-in, in-out, etc. The winding is usually continuous 
so that the last inner or outer turn gradually transitions between the adjacent layers. 
When the disks have only one turn, the winding is called a helical winding. The total 
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number of turns will usually dictate whether the winding will be a disk or helical  winding. 
The turns within a disk are usually touching so that a double layer of insulation separates 
the metallic conductors. The space between the disks is left open, except for structural 
separators called radial spacers or key spacers. This allows room for cooling fluid to flow 
between the disks, in addition to providing clearance for withstanding the voltage differ-
ence between them.

In a layer coil, the coils are wound in vertical layers, top-bottom, bottom-top, etc. The 
turns are typically wound in contact with each other in the layers, but the layers are sepa-
rated by means of spacers so that cooling fluid can flow between them. These coils are also 
usually continuous with the last bottom or top turn transitioning between the layers.

Both types of winding are used in practice. Each type has its proponents. In certain appli-
cations, one or the other type may be more efficient. However, in general they can both be 
designed to function well in terms of ease of cooling, ability to withstand high voltage 
surges, and mechanical strength under short-circuit conditions.

If these coils are wound with more than one wire or cable in parallel, then it is necessary 
to insert cross-overs or transpositions, which interchange the positions of the parallel 
cables at various points along the winding. This is done to cancel loop voltages induced by 
the stray flux. Otherwise, such voltages would drive currents around the loops formed 
when the parallel turns are joined at either end of the winding, creating extra losses.

The stray flux also causes localized eddy currents in the conducting wire whose magni-
tude depends on the wire cross-sectional dimensions. These eddy currents and their asso-
ciated losses can be reduced by subdividing the wire into strands of smaller cross-sectional 
dimensions. However, these strands are then in parallel and must therefore be trans-
posed to reduce the loop voltages and currents. This can be done during the winding 
process when the parallel strands are wound individually. Wire of this type, consisting of 
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FIGURE 1.11
Two major types of coil construction for core-form power transformers: (a) disk coil and (b) layer coil.
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individual strands covered with an insulating paper wrap, is called magnet wire. The 
transpositions can also be built into the cable. This is called continuously transposed cable 
and generally consists of a bundle of 5–83 strands or more, each covered with a thin enamel 
coating. One strand at a time is transposed along the cable so that all the strands are even-
tually transposed at every turn around the core. The overall bundle is then sheathed in a 
paper wrap.

Figure 1.12 shows a disk winding situated over the inner windings and core and clamped 
at either end via the insulating blocks and steel structure shown. Short horizontal gaps are 
visible between the disks. Vertical columns of radial or key spacer projections are also vis-
ible. This outer high voltage winding is center-fed so that the top and bottom halves are 
connected in parallel. The leads feeding this winding are on the left.

1.7  Insulation Structures

Transformer windings and leads must operate at high voltages relative to the core, tank, 
and structural elements. In addition, different windings and even parts of the same wind-
ing operate at different voltages. This requires that some form of insulation between these 
various parts be provided to prevent voltage breakdown or corona discharges. The 
s urrounding oil or air, which provides cooling also has some insulating value. The oil is of 
a special composition and must be purified to remove small particles and moisture. The 
type of oil most commonly used, as mentioned previously, is called transformer oil. 

FIGURE 1.12
Disk winding shown in position over the inner windings and core. Clamping structures and leads are also shown. 
(Courtesy of Waukesha Electric Systems, Waukesha, WI.)
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Further insulation is provided by paper covering the wire or cables. When saturated with 
oil, this paper has a high insulation value. Other types of wire covering besides paper are 
sometimes used, mainly for specialty applications such as higher temperature operation. 
Other insulating structures, which are generally present in sheet form, often wrapped into 
a cylindrical shape, are made of pressboard. This is a material made of cellulose fibers, 
which are compacted together into a fairly dense and rigid matrix. Key spacers, blocking 
material, and lead support structures are also commonly made of pressboard or wood.

Although normal operating voltages are quite high, 10–500 kV, the transformer must be 
designed to withstand even higher voltages, which can occur when lightning strikes the 
electrical system or when power is suddenly switched on or off in some part of the system. 
However infrequently these occur, they could permanently damage the insulation, dis-
abling the unit, unless the insulation is designed to withstand them. Usually such events 
are of short duration. There is a time-dependence to how the insulation breaks down. A 
short duration high voltage pulse is no more likely to cause breakdown than a long dura-
tion low voltage pulse. This means that the same insulation that can withstand normal 
operating voltages, which are continuously present, can also withstand the high voltages 
arising from lightning strikes or switching operations, which are present only briefly. In 
order to insure that the abnormal voltages do not exceed the breakdown limits determined 
by their expected durations, lightning or surge arrestors are often used to limit them. These 
arrestors thus guarantee that the voltages will not rise above a certain value so that break-
down will not occur, assuming their durations remain within the expected range.

Because of the different dielectric constants of oil or air and paper, the electric stresses 
are unequally divided between them. Since the oil dielectric constant is about half that of 
paper and air is an even smaller fraction of paper’s, the electric stresses are generally 
higher in oil or air than in the paper insulation. Unfortunately, oil or air has a lower break-
down stress than paper. In the case of oil, it has been found that subdividing the oil gaps 
by means of thin insulating barriers, usually made of pressboard, can raise the breakdown 
stress in the oil. Thus large oil gaps between the windings are usually subdivided by mul-
tiple pressboard barriers as shown schematically in Figure 1.13. This is referred to as the 
major insulation structure. The oil gap thicknesses are maintained by means of long verti-
cal narrow sticks glued around the circumference of the cylindrical pressboard barriers. 
Often the barriers are extended by means of end collars, which curves around the ends of 
the windings to provide subdivided oil gaps at either end of the windings to strengthen 
these end oil gaps against voltage breakdown.

The minor insulation structure consists of the smaller oil gaps separating the disks and 
maintained by the key spacers, which are narrow insulators, usually made of pressboard 
and spaced radially around the disk’s circumference as shown in Figure 1.13b. Generally, 
these oil gaps are small enough that subdivision is not required. In addition, the turn to 
turn insulation, usually made of paper, can be considered as part of the minor insulation 
structure. Figure 1.14 shows a winding during construction with key spacers and vertical 
sticks visible.

The leads, which connect the windings to the bushings or tap changers or to other wind-
ings, must also be properly insulated since they are at high voltage and pass close to tank 
walls or structural supports, which are grounded. They also can pass close to other leads 
at different voltages. High stresses can be developed at bends in the leads, particularly if 
they are sharp, so that additional insulation may be required in these areas. Figure 1.15 
shows a rather extensive set of leads along with structural supports made of pressboard or 
wood. The leads pass close to the metallic clamps at the top and bottom and will also be 
near the tank wall when the core and coil assembly is inserted into the tank.
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FIGURE 1.14
View of a partially wound winding showing the key spacers and vertical sticks.
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FIGURE 1.13
Major insulation structure consisting of multiple barriers between windings. Not all the key spacers or sticks are 
shown: (a) side view and (b) top view.
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Although voltage breakdown levels in oil can be increased by means of barrier 
subdivisions, there is another breakdown process, which must be guarded against. This is 
breakdown due to creep. It occurs along the surfaces of the insulation. It requires s ufficiently 
high electric stresses directed along the surface as well as sufficiently long uninterrupted 
paths over which the high stresses are present. Thus, the barriers themselves, sticks, key spac-
ers, and lead supports can be a source of breakdown due to creep. Ideally, one should position 
these insulation structures so that their surfaces conform to voltage e quipotential surfaces 
to which the electric field is perpendicular. Thus, there would be no electric fields directed 
along the surface. In practice, this is not always possible, so a compromise must be reached.

The major and minor insulation designs, including overall winding to winding s eparation 
and the number of barriers as well as disk-to-disk separation and paper covering thickness, 
are often determined by design rules based on extensive experience. However, in cases of 
newer or unusual designs, it is often desirable to do a field calculation using a finite- element 
program or other numerical procedure. This can be especially helpful when the potential 
for creep breakdown exists. Although these methods can provide accurate calculations of 
electric stresses, the breakdown process is not as well understood, so there is usually some 
judgment involved in deciding what level of electrical stress is acceptable.

1.8  Structural Elements

Under normal operating conditions, the electromagnetic forces acting on the transformer 
windings are quite modest. However, if a short-circuit fault occurs, the winding currents 
can increase 10–30-fold, resulting in forces of 100–900 times normal since the forces increase 

FIGURE 1.15
Leads and their supporting structure emerging from the coils on one side of a 3-phase transformer. (Courtesy of 
Waukesha Electric Systems, Waukesha, WI.)



17Introduction

as the square of the current. The windings and supporting structure must be designed to 
withstand these fault current forces without permanent distortion of the windings or sup-
ports. Because current protection devices are usually installed, the fault currents are inter-
rupted after a few cycles, but that is still long enough to do some damage if the supporting 
structure is inadequate.

Faults can be caused by falling trees that hit power lines, providing a direct current path 
to ground or by animals or birds bridging across two lines belonging to different phases, 
causing a line to line short. These should be rare occurrences, but over the 20–50 year 
 lifetime of a transformer, their probability increases, so sufficient mechanical strength to 
withstand these is required.

The coils are generally supported at the ends with pressure rings. These are thick rings of 
pressboard or other material that cover the winding ends. The center opening allows the core 
to pass through. The rings are in the range of 30–180 mm for large power transformers. Some 
blocking made of pressboard or wood is required between the tops of the windings and the 
rings since all of the windings are not necessarily of the same height. Additional blocking is 
usually placed between the ring and the top yoke and clamping structure to provide some 
clearance between the high winding voltages and the grounded core and clamp. These struc-
tures can be seen in Figure 1.12. The metallic clamping structure can also be seen.

The top and bottom clamps are joined by vertical tie plates, sometimes called flitch 
plates, which pass along the sides of the core. The tie plates are solidly attached at both 
ends, so they pull the top and bottom clamps together by means of tightening bolts, com-
pressing the windings. These compressive forces are transmitted along the windings via 
the key spacers, which must be strong enough in compression to accommodate these 
forces. The clamps and tie plates are generally made of structural steel. Axial forces that  
tend to elongate the windings when a fault occurs will put the tie plates in tension. The tie 
plates must also be strong enough to carry the gravitational load when the core and coils 
are lifted as a unit since the lifting hooks are attached to the clamps. The tie plates are typi-
cally about 10 mm thick and of varying width depending on the expected short-circuit 
forces and transformer weight. The width is often subdivided to reduce eddy current 
losses. Figure 1.16 shows a top view of the clamping structure.

The radial fault forces are countered inwardly by means of the sticks, which separate 
the oil barriers, and by means of additional support next to the core. The windings them-
selves, particularly the innermost one, are often made of hardened copper or bonded 
cable to provide additional resistance to the inward radial forces. The outermost winding 
is usually subjected to an outer radial force, which puts the wires or cables in tension. The 
material itself must be strong enough to resist these tensile forces since there is no sup-
porting structure on the outside to counter these forces. A measure of the material’s 
strength is its proof stress. This is the stress required to produce a permanent elongation 
of 0.2% (sometimes 0.1% is used). Copper of specified proof stress can be ordered from the 
wire or cable supplier.

The leads are also acted on by extra forces during a fault. The forces are produced by the 
stray flux from the coils or from nearby leads, interacting with the lead’s current. The leads 
are therefore braced by means of wood or pressboard supports, which extend from the 
clamps. This lead support structure can be quite complicated, especially if there are many 
leads and interconnections. It is usually custom made for each unit. Figure 1.15 is an exam-
ple of such a structure.

The assembled coil, core, clamps, and lead structure are placed in a transformer tank. 
The tank serves many functions, one of which is to contain the oil for an oil-filled unit. 
It also provides protection not only for the coils and other transformer components but for 
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FIGURE 1.16
Top view of clamping structure for a 3-phase transformer.

FIGURE 1.17
Large power transformer showing tank and attachments.
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personnel from the high voltages present inside since the tank is grounded. If made of soft 
(magnetic) steel, it keeps stray flux from getting outside the tank. The tank is usually made 
airtight so that air doesn’t enter and oxidize the oil.

Aside from being a containment vessel, the tank also has numerous attachments such as 
bushings for getting the electrical power into and out of the unit, an electronic control and 
monitoring cabinet for recording and transferring sensor information to remote processors 
or receiving remote control signals, and radiators with or without fans to provide cooling. 
On certain units, there is a separate tank compartment for tap changing equipment. 
Also some units have a conservator attached to the tank cover or to the top of the radiators. 
This is a large, usually cylindrical, structure, which contains oil in communication with the 
main tank oil. It also has an air space, which is separated from the oil by a sealed d iaphragm. 
Thus, as the tank oil expands and contracts due to temperature changes, the flexible dia-
phragm accommodates these volume changes while maintaining a sealed oil environment. 
Figure 1.17 shows a large power transformer with a cylindrical conservator visible on top. 
Bushings mounted on top of the tank are visible. Also shown are the radiators with fans. 
Technicians are working on the control box.

1.9  Modern Trends

Changes in power transformers tend to occur very slowly. Issues of reliability over long 
periods of time and compatibility with existing systems must be addressed by any new 
technology. A major change, which has been ongoing since the earliest transformers, is the 
improvement in core steel. The magnetic properties, including losses, have improved dra-
matically over the years. Better stacking methods, such as stepped lapped construction, 
have resulted in lower losses at the joints. The use of laser or mechanical scribing has also 
helped lower the losses in these steels. Further incremental improvements in all of these 
areas can be expected.

The development of amorphous metals as a core material is relatively new. Although 
these materials have very low losses, lower than the best rolled electrical steels, they also 
have a rather low saturation induction (~1.5 T versus 2 T for rolled steels). They are also 
rather brittle and difficult to stack. This material has tended to be more expensive than 
rolled electrical steel and, since expense is always an issue, has limited their use. However, 
this could change with the cost of no-load losses to the utilities. Amorphous metals have 
found use as wound cores in distribution transformers. However, their use as stacked cores 
in large power transformers is not commonplace.

The development of improved wire types, such as transposed cable with epoxy bonding, 
is an ongoing process. Newer types of wire insulation covering such as Nomex are finding 
use. Nomex is a synthetic material, which can be used at higher temperatures than paper. 
It also has a lower dielectric constant than paper, so it produces a more f avorable stress 
level in the adjacent oil than paper. Although it is presently a more expensive material than 
paper, it has found a niche in air-cooled transformers or in the rewinding of older trans-
formers. Its thermal characteristics would probably be underutilized in transformers filled 
with transformer oil because of the limitations on the oil temperatures.

Pressboard insulation has undergone improvements over time such as precompressing 
to produce higher density material, which results in greater dimensional stability in 
transformer applications. This is especially helpful in the case of key spacers, which bear 
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the compressional forces acting on the winding. Also, preformed parts made of press-
board, such as collars at the winding ends and high voltage lead insulation assemblies, 
are becoming more common and are facilitating the development of higher voltage 
transformers.

Perhaps the biggest scientific breakthrough, which could revolutionize future transform-
ers, is the discovery of high temperature superconductors. These materials are still in the 
early stage of development. They could operate at liquid nitrogen temperatures, which is 
a big improvement over the older superconductors that operate at liquid helium tempera-
tures. It has been exceedingly difficult to make these new superconductors into wires of 
the lengths required in transformers. Nevertheless, prototype units are being built and 
technological improvements can be expected [Meh97].

A big change, which is occurring in newer transformers, is the increasing use of on-line 
monitoring devices. Fiber optic temperature sensors are being inserted directly into the 
windings to monitor the hottest winding temperature. This can be used to keep the trans-
former’s loading or overloading within appropriate bounds so that acceptable insulation 
and adjacent oil temperatures are not exceeded and the thermal life is not too negatively 
impacted. Gas analysis devices are being developed to continuously record the amounts 
and composition of gasses in the cover gas or dissolved in the oil. This can provide an early 
indication of overheating or of arcing so that corrective action can be taken before the situ-
ation deteriorates too far. Newer fiber optic current sensors based on the Faraday effect are 
being developed. These weigh considerably less than present current sensors and are much 
less bulky. Newer miniaturized voltage sensors are also being developed. Sensor data in 
digitized form can be sent from the transformer to a remote computer for further process-
ing. Newer software analysis tools should help to more accurately analyze fault conditions 
or operational irregularities.

Although tap changers are mechanical marvels, which operate very reliably over 
 hundreds of thousands of tap changing operations, as with any mechanical device, they 
are subject to wear and must be replaced or refurbished from time to time. Electronic tap 
changers, using solid-state components, have been developed. Aside from essentially 
eliminating the wear problem, they also have a much faster response time than mechanical 
tap changers, which could be very useful in some applications. Their expense relative to 
mechanical tap changers has been one factor limiting their use. Further developments per-
haps resulting in lower cost can be expected in this area.

As mentioned previously, there are incentives to transmit power at higher voltages. 
Some of the newer high voltage transmission lines operate in a d.c. mode. In this case, 
the conversion equipment at the ends of the line which change a.c. to d.c. and vice versa 
requires a transformer. However, this transformer does not need to operate at the line 
voltage. For high voltage a.c. lines, however, the transformer must operate at these 
higher voltages. At present, transformers, which operate in the range of 750–800 kV, 
have been built. Even higher voltage units have been developed. A better understand-
ing of high voltage breakdown mechanisms, especially in oil, is needed to spur growth 
in this area.



21

Magnetism and Related Core Issues

2.1  Introduction

Transformer cores are constructed predominantly of ferromagnetic material. The most 
common material used is iron, with the addition of small amounts of silicon and other ele-
ments that help improve the magnetic properties and/or lower losses. Other materials, 
which find use in electronic transformers, are the nickel–iron alloys (permalloys) and the 
iron oxides (ferrites). The amorphous metals, generally consisting of iron, boron, and other 
additions, are also finding use as cores for distribution transformers. These materials are 
all broadly classified as ferromagnetic and, as such, have many properties in common. 
Among these are saturation magnetization or induction, hysteresis, and a Curie tempera-
ture above which they cease to be ferromagnetic.

Cores made of silicon steel (~3% Si) are constructed of multiple layers of the material in 
sheet form. The material is fabricated in rolling mills from hot slabs or ingots. Through a 
complex process of multiple rolling, annealing, and coating stages, it is formed into thin 
sheets of 0.18–0.3 mm thickness and up to a meter wide. The material has its best magnetic 
properties along the rolling direction, and a well-constructed core will take advantage of 
this. The good rolling direction magnetic properties are due to the underlying crystalline 
orientation, which is called a Goss or cube-on-edge texture as shown in Figure 2.1. The 
cubic crystals have the highest permeability along the cube edges. The visible edges point-
ing along the rolling direction are highlighted in the  figure. Modern practice can achieve 
crystal alignments of >95%. The permeability is much lower along the cube diagonals or 
cube face diagonals. The latter are pointing in the sheet width direction.

In addition to its role in aiding crystal alignment, the silicon helps increase the resistivity of 
the steel from about 25 μΩ cm for low-carbon magnetic steel to about 50 μΩ cm for 3% Si–Fe. 
This higher resistivity leads to lower eddy current losses. Silicon also lowers the saturation 
induction from about 2.1 T for low-carbon steel to about 2.0 T for 3% Si–Fe. Silicon confers 
some brittleness on the material, which is an obstacle to rolling to even thinner sheet thick-
ness. At higher silicon levels, the brittleness increases to the point where it becomes difficult 
to roll. This is unfortunate because at 6% silicon content, the magnetostriction of the steel 
disappears. Magnetostriction is a length change or strain, which is produced by the induction 
in the material. At a.c. frequencies, this contributes to the noise level in a transformer.

The nickel–iron alloys or permalloys are also produced in sheet form. Because of their 
malleability, they can be rolled extremely thin. The sheet thinness results in very low eddy 
current losses so that these materials find use in high-frequency applications. Their satura-
tion induction is lower than that for silicon steel.

Ferrite cores are made of sintered powder. They generally have isotropic magnetic 
 properties. They can be cast directly into the desired shape or machined after casting. 

2
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They have extremely high resistivities, which permits their use in high-frequency applica-
tions. However, they have rather low saturation inductions.

Amorphous metals are produced by directly casting the liquid melt onto a rotating, 
internally cooled drum. The liquid solidifies extremely rapidly, resulting in the amorphous 
(noncrystalline) texture of the final product. The material comes off the drum in the form 
of a thin ribbon with controlled widths, which can be as high as ~250 mm. The material has 
a magnetic anisotropy determined by the casting direction and subsequent magnetic 
anneals so that the best magnetic properties are along the casting direction. Their satura-
tion induction is about 1.5 T. Because of their thinness and composition, they have extremely 
low losses. These materials are very brittle, which has limited their use to wound cores. 
Their low losses make them attractive for use in distribution transformers, especially when 
no-load loss evaluations are high.

Ideally, a transformer core would carry the flux along a direction of highest  permeability and 
in a closed path. Path interruptions caused by joints, which are occupied by low- permeability 
air or oil, lead to poorer overall magnetic properties. In  addition, the cutting or slitting opera-
tions can introduce localized stresses that degrade the  magnetic properties. In stacked cores, 
the joints are often formed by overlapping the  laminations in steps to facilitate flux transfer. 
Nevertheless, the corners result in regions of higher loss. This can be accounted for in design by 
multiplying the ideal magnetic circuit losses, usually provided by the manufacturer on a per-
unit-weight basis, by a building factor of >1. Another, possibly better, way to account for the 
extra loss is to apply a loss multiplying factor to the steel occupying the corner or joint region 
only. More fundamental methods to account for these extra losses have been proposed, but 
these tend to be too elaborate for routine use. Joints also give rise to higher exciting current, that 
is, the current in the coils necessary to drive the required flux around the core.

2.2  Basic Magnetism

The discovery by Oersted that currents give rise to magnetic fields led Ampere to propose 
that material magnetism results from localized currents. He proposed that large numbers 
of small current loops, appropriately oriented, could create the magnetic fields associated 

FIGURE 2.1
Goss or cube-on-edge crystalline texture for silicon steel.
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with magnetic materials and permanent magnets. At the time, the atomic nature of matter 
was not understood. With the Bohr model of the atom, where electrons are in orbit around 
a small massive nucleus, the localized currents could be associated with the moving elec-
tron. This gives rise to an orbital magnetic moment, which persists even though a quantum 
description has replaced the Bohr model. In addition to the orbital magnetism, the electron 
itself was found to possess a magnetic moment that cannot be understood simply from the 
circulating current point of view. Atomic magnetism results from a combination of both 
orbital and electron moments.

In some materials, the atomic magnetic moments either cancel or are very small so that little 
material magnetism results. These are known as paramagnetic or diamagnetic materials, 
depending on whether an applied field increases or decreases the magnetization. Their perme-
abilities relative to vacuum are nearly equal to 1. In other materials, the atomic moments are 
large and there is an innate tendency for them to align due to quantum mechanical forces. 
These are the ferromagnetic materials. The alignment forces are of very short range, operating 
only over atomic distances. Nevertheless, they create regions of aligned magnetic moments, 
called domains, within a magnetic material. Although each domain has a common orientation, 
this orientation differs from domain to domain. The narrow separations between domains are 
regions where the magnetic moments are transitioning from one orientation to another. These 
transition zones are referred to as domain walls.

In nonoriented magnetic materials, the domains are typically very small and randomly 
oriented. With the application of a magnetic field, the domain orientation tends to align 
with the field direction. In addition, favorably orientated domains tend to grow at the 
expense of unfavorably oriented ones. As the magnetic field increases, the domains 
 eventually all point in the direction of the magnetic field, resulting in a state of magnetic 
saturation. Further increases in the field cannot orient more domains so the magnetization 
does not increase but is said to saturate. From this point on, further increases in induction 
are due to increases in the field only.

The relation between induction, B, magnetization, M, and field, H, in SI units is (boldface 
symbols are used to denote vectors)

 B H M= +( )mo  (2.1)

where μo = 4π × 10−7 H/m in SI units. For many materials, M is proportional to H:

 M H= c  (2.2)

where χ is the susceptibility, which need not be a constant. Substituting into (2.1),

 B H H= +( ) =m c m mo o r1  (2.3)

where μr = 1 + χ is the relative permeability. We see directly in (2.1) that as M saturates 
because all the domains are similarly oriented, B can only increase due to increases in H. 
This occurs at fairly high H or exciting current values, since H is proportional to the excit-
ing current. At saturation, since all the domains have the same orientation, there are no 
domain walls. Since H is generally small compared to M for high-permeability ferromag-
netic materials up to saturation, the saturation magnetization and saturation induction are 
nearly the same and will be used interchangeably.

As the temperature increases, the thermal energy begins to compete with the alignment 
energy and the saturation magnetization begins to fall until the Curie point is reached 
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where ferromagnetism completely disappears. For 3% Si–Fe, the saturation magnetization 
or induction at 20°C is 2.0 T (Tesla) and the Curie temperature is 746°C. This should be 
compared with pure iron where the saturation induction at 20°C is 2.1 T and the Curie 
temperature is 770°C.

The fall off with temperature follows fairly closely a theoretical relationship between the 
ratio of saturation induction at absolute temperature T to saturation induction at T = 0 K to 
the ratio of absolute temperature T to the Curie temperature expressed in K. For pure iron, 
this relationship is graphed in Figure 2.2 [Ame57]. This same normalized graph also applies 
rather closely to other iron-containing magnetic materials such as Si–Fe as well as to nickel- 
and cobalt-based magnetic materials.

Thus, to find the saturation magnetization of 3% Si–Fe at a temperature of 200°C = 473 K, 
since the Curie temperature is 746°C, the ratio T/TC = 473/1019 = 0.464. From the graph, 
this corresponds to MS/M0 = 0.94. On the other hand, we know that at 20°C, where T/TC = 
0.287, MS/M0 = 0.98. Thus, M0 = 2.0/0.98 = 2.04 and MS (T = 200°C) = 0.94 × 2.04 = 1.92 T. 
This is only a 4% drop in the 20°C saturation magnetization. Considering that core tem-
peratures are unlikely to reach 200°C, temperature effects on magnetization should not be 
a problem in transformers under normal operating conditions.

Ferromagnetic materials typically exhibit the phenomenon of magnetostriction, that is, a 
length change or strain resulting from the induction or flux density that they carry. Since 
this length change is independent of the sign of the induction, for an a.c. induction at fre-
quency f, the length oscillations occur at frequency 2f. These length vibrations contribute 
to the noise level in transformers. Magnetostriction is actually a fairly complex phenome-
non and can exhibit hysteresis as well as anisotropy.

Another source of noise in transformers, often overlooked, results from the transverse 
vibrations of the laminations at unsupported free ends. This can occur at the outer 
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iron. This also applies reasonably well to other ferromagnetic materials containing predominately iron, nickel, or 
cobalt. MS is the saturation magnetization at absolute temperature T and M0 the saturation magnetization at 
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surfaces of the core and shunts if these are not constrained. This can be shown qualita-
tively by considering the situation shown in Figure 2.3. In Figure 2.3a, we show a leakage 
flux density vector B impinging on a packet of tank shunt laminations that are flat against 
the tank wall and rigidly constrained. After striking the lamination packet, the flux is 
diverted into the packet and transported upward in the figure since we are looking at the 
bottom end. In Figure 2.3b, the outer laminations are constrained from a certain distance 
upward, below which they are free to move. Part of the flux density B is diverted along 
this outer packet, and a reduced flux density impinges on the portion of the packets that 
are free to move. The magnetic energy associated with Figure 2.3b is lower than that asso-
ciated with Figure 2.3a. A force is associated with this change in magnetic energy. This 
force acts to pull the outer lamination outward. It is independent of the sign of B so that if 
B is sinusoidal of frequency f, the force will have a frequency of 2f. Thus, it contributes to 
the  transformer noise at the same frequency as magnetostriction. If this frequency is near 
the mechanical vibration frequency of the cantilevered (free) portion of the packets, 
a  resonance situation may develop.

2.3  Hysteresis

Hysteresis, as the name implies, means that the present state of a ferromagnetic material 
depends on its past magnetic history. This is usually illustrated by means of a B–H dia-
gram. Magnetic field changes are assumed to occur slowly enough that eddy current effects 
can be ignored. We assume the B and H fields are collinear although, in general, they need 
not be. Thus, we can drop the vector notation. If we start out with a completely demagne-
tized specimen (this state requires careful preparation) and increase the magnetic field 
from 0, the material will follow the initial curve as shown in Figure 2.4a. This curve can be 
continued to saturation, Bs. If, at some point along the initial curve, the field is reversed and 
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FIGURE 2.3
Geometry for obtaining a qualitative understanding of the force on a loose end lamination: (a) no loose lamina-
tions and (b) loose end lamination.
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decreased, the material will follow a normal hysteresis loop as shown in Figure 2.4b. If the 
magnetic field is cycled repeatedly between ±Hmax, the material will stay on a normal hys-
teresis loop determined by Hmax. There is a whole family of such loops as shown in 
Figure 2.4c. The largest loop occurs when Bmax reaches Bs. This is called the major loop. 
These loops are symmetrical about the origin. If at some point along a normal loop, other 
than the extreme points, the field is reversed and cycled through a smaller cycle back to its 
original value before the reversal occurred, a minor or incremental loop is traced as shown 
in Figure 2.4d. Considering the many other possibilities for field reversals, the resulting 
hysteresis paths can become quite complicated.

Perhaps the most important magnetic path is a normal hysteresis loop since this is 
traced in a sinusoidal cyclic magnetization process. Several key points along such a path 
are shown in Figure 2.5. As the field is lowered from Hmax to zero, the remaining induc-
tion is called the remanence, Br. As the field is further lowered into negative territory, the 
absolute value of the field at which the induction drops to zero is called the coercivity, Hc. 
Because the loop is symmetrical about the origin, there are corresponding points on the 
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FIGURE 2.4
Hysteresis processes: (a) initial curve, (b) following a normal hysteresis loop after reversal from the initial curve, 
(c) family of normal hysteresis loops, and (d) minor or incremental hysteresis loops.
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negative branch. At any point on a magnetization path, the ratio of B to H is called the 
permeability, while the slope of the B–H curve at that point is called the differential per-
meability. Other types of permeability can be defined. The area of the hysteresis loop is 
the magnetic energy per unit volume and per cycle. This energy is dissipated over each 
hysteresis cycle.

In oriented Si–Fe, the relative permeability for inductions reasonably below saturation is 
so high that the initial curve is close to the B axis if B and H are measured in the same units 
as they are in the Gaussian system or if B versus μoH is plotted in the SI system. In addition, 
the hysteresis loops are very narrow in these systems of units and closely hug the initial 
curve. Thus, for all practical purposes, we can assume a single-valued B–H characteristic 
for these high-permeability materials coinciding with the initial curve. Since inductions in 
transformer cores are kept well below saturation in normal operation to avoid high e xciting 
currents, the effects of saturation are hardly noticeable and the core, for many purposes, 
can be assumed to have a constant permeability.

2.4  Magnetic Circuits

In stacked cores and especially in cores containing butt joints as well as in gapped reactor 
cores, the magnetic path for the flux is not through a homogeneous magnetic material. 
Rather, there are gaps occupied by air or oil or other nonmagnetic materials of relative 
 permeability equal to 1. In such cases, it is possible to derive effective permeabilities by 
using a magnetic circuit approximation. This approximation derives from the mathematical 
similarity of magnetic and electrical laws. In resistive electric circuits, the conductivities 
of  the wires and circuit elements are usually so much higher than the surrounding 
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Key points along a normal hysteresis loop.
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medium (usually air) that little current leaks away from the circuit. However, in magnetic 
circuits where the flux corresponds to the electric current, the circuit permeability, which is 
the analog of conductivity, is not many orders of magnitude higher than that of the sur-
rounding medium so that flux leakage does occur. Thus, whereas the circuit approach is 
nearly exact for electric circuits, it is only approximate for magnetic circuits [Del94].

Corresponding to Kirchhoff’s current law at a node,

 i

iIå = 0
 

(2.4)

where Ii is the current into a node along a circuit branch i (positive if entering the node, 
negative if leaving), we have the approximate magnetic counterpart

 i

iå =F 0
 

(2.5)

where Φi is the flux into a node. Whereas (2.4) is based on conservation of current and ulti-
mately charge, Equation 2.5 is based on conservation of flux. Kirchhoff’s voltage law can 
be expressed as

 i

iV emfå ò= × =E d��
 

(2.6)

where E is the electric field and the voltage drops Vi are taken around the loop in which an 
electromotive force (emf) is induced. The integrals in this equation are path integrals and 
ℓ the path length. With E corresponding to H, the magnetic analogy is

 i
i

NI mmfå ò( ) = × =H d��
 

(2.7)

where (NI)i are the amp-turns and mmf is the magnetomotive force.
In terms of the current density J and the flux density B, we have

 
I = × = ×ò òJ dA B dA, F

 
(2.8)

so that J and B are corresponding quantities in the two systems. In (2.8), the integrals 
are surface integrals and A the vectorial cross-sectional area perpendicular to J or B. 
Ohm’s law in its basic form can be written as

 J E= s  (2.9)

where σ is the conductivity. This corresponds to

 B H= m  (2.10)

in the magnetic system, where μ is the permeability.
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To obtain resistance and corresponding reluctance expressions for simple geometries, 
consider a resistive or reluctive element of length L and uniform cross-sectional area A as 
shown in Figure 2.6. Let a uniform current density J flow through the resistive element 
and a uniform flux density B flow through the magnetic element normal to the surface 
area A. Then

 I JA BA= =, F  (2.11)

Let a uniform electric field E drive the current and a uniform magnetic field H drive the 
flux. Then

 V EL NI HL= =,  (2.12)

Using (2.9), we have
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where the quantity in parenthesis is recognized as the resistance. Similarly from (2.10),
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where the quantity in parenthesis is called the reluctance. A similar analysis could be 
c arried out for other geometries using the basic field correspondences.

As an application of the circuit approach, consider a simple magnetic core with an air 
gap as shown in Figure 2.7. A flux Φ is driven around the circuit by a coil generating an 
mmf of NI. The path through the magnetic core of permeability μ = μoμr has mean length L 
and the path in the air gap of permeability μo has length Lo. The reluctances in the magnetic 
material and air gap are
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FIGURE 2.6
Geometries for simple resistance and reluctance calculation: (a) simple resistive electrical element and (b) simple 
reluctive magnetic element.
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Since these reluctances are in series, we have
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Thus, since μr can be quite large, the reluctance with air gap can be much larger than 
w ithout so that more mmf is required to drive a given flux. Note that we ignored fringing in 
the air gap. This could be approximately accounted for by letting the area, A, be larger 
in the air gap than in the core material.

In general, for two reluctances in series having the same cross-sectional area A but 
lengths L1, L2 and permeabilities μ1, μ2, the total reluctance is
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where L = L1 + L2, f1 = L1/L, and f2 = L2/L. Thus, the effective permeability of the combina-
tion is given by
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(2.18)

In (2.18), the μ’s can be taken as relative permeabilities since μo factors out. This could be 
extended to more elements in series. An identical relationship holds for the effective con-
ductivity of a series of equal cross-sectional area resistive elements. As a numerical exam-
ple, suppose material 1 is magnetic steel with a relative permeability of 10,000 and material 
2 is air with a relative permeability of 1. For a small air or oil joint, let f2 = 0.001 and there-
fore f1 = 0.999. From (2.18), we see that 1/μeff = 0.0000999 + 0.001 = 0.0010999, so that 
μeff = 909. Thus, this small air gap results in a fairly large decrease in the circuit relative 
permeability from that of a circuit consisting of only magnetic steel. According to (2.18), for 
μ1 very large and μ2 = 1, μeff approaches 1/f2 so the overall relative permeability is deter-
mined by the relative size of the gap in the magnetic circuit.
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Lo
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µ

µo

FIGURE 2.7
Air gap magnet driven by mmf = NI.
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Thus, in a transformer core with joints, the effective permeability is reduced relative to that 
of an ideal core without joints. This requires a higher exciting current to drive a given flux 
through the core. The core losses will also increase mainly due to flux distortion near the joint 
region. For linear materials, the slope of the B–H curve will decrease for a jointed core relative 
to an unjointed core. For materials that follow a hysteresis loop, the joints will have the effect 
of skewing or tilting the effective hysteresis loop of the jointed core away from the vertical 
compared with the unjointed ideal core. This can be shown by writing (2.7) as

 NI H H Heff= + =1 1 2 2� � � (2.19)

where
H1 is the field in the core steel
H2 is the field in the gap
ℓ1 and ℓ2 are core and gap lengths
ℓ is the total length
Heff is an effective applied field

Assuming the gap is linear with permeability μo (relative permeability 1), we have

 B H2 2 2= m  (2.20)

Also assume that there is no leakage, the core and gap have the same cross-sectional area, 
and the flux is uniformly distributed across it. Then B1 = B2 = B from flux continuity. Thus, 
we get for the H field in the core material
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Since ℓ ≈ ℓ1, H1 is more negative than Heff when B is positive. To see the effect this has on 
the hysteresis loop of the jointed core, refer to Figure 2.8. Heff is proportional to the mmf by 
(2.19), and H1 is the field in the core that traces the intrinsic hysteresis loop. On the top part 

HeffH1HeffH1

Intrinsic loop
Jointed loop

B

H

FIGURE 2.8
Effect of air or oil gaps on the hysteresis loop.
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of the loop, B > 0, so H1 < Heff. This means that the intrinsic hysteresis loop is shifted to the 
left of the loop associated with the jointed core. Since the shift is proportional to B, it is 
greater at the top of the loop and vanishes when B = 0. This has the effect of tilting the 
jointed core loop to the right. On the lower half of the loop where B is negative, H1 > Heff. 
This means that the intrinsic loop is shifted to the right of the jointed core loop, the shift 
again proportional to B. Thus, the jointed core is tilted to the left at the bottom, as expected 
by symmetry. Notice that the remanence falls for the jointed loop because according to 
(2.21), when Heff = 0, H1 < 0 and the associated B value is lower down on the jointed loop. 
A very narrow hysteresis loop, approximating the initial magnetization curve, would also 
be tilted for a jointed core.

2.5  Inrush Current

When a transformer is disconnected from a power source, the current is interrupted and 
the magnetic field or mmf driving flux through the core is reduced to zero. As we have 
seen in the preceding section, the core retains a residual induction, which is called the 
remanence when the hysteresis path is on the positive descending (negative ascending) 
branch of a normal loop. In order to drive the core to the zero magnetization state, it would 
be necessary to gradually lower the peak induction while cycling the field.

Since the intrinsic normal hysteresis loops for oriented Si–Fe have fairly flat tops (or bot-
toms), the remanence is close to the peak induction. However, the presence of gaps in the 
core reduces this somewhat. When the unit is reenergized by a voltage source, the flux 
change must match the voltage change according to Faraday’s law:
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(2.22)

For a sinusoidal voltage source, the flux is also sinusoidal:

 F F w j= +( )p tsin  (2.23)

where Φp is the peak flux. Substituting into (2.22), we get

 V N tp= - +( )wF w jcos  (2.24)

Hence, the peak voltage, using ω = 2πf, where f is the frequency in Hz, is

 V fNp p= 2p F  (2.25)

Thus, to follow the voltage change, the flux must change by ±Φp over a cycle. If, in a 
worst-case scenario, the voltage source is turned on at the bottom of a cycle (negative Φp) 
and the remanent induction has a positive value of Br with an associated core flux of BrAc, 
where Ac is the core area, then the flux will rise to 2Φp + BrAc when the voltage reaches a 
value corresponding to +Φp. Since, under normal conditions, Φp = BpAc, then we see that 
the core induction would rise to 2Bp + Br. Since Bp is usually ~10% to 20% below saturation 
in typical power transformers, this means that the core will be driven strongly into 
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saturation, which requires a very high exciting current. This exciting current is called the 
inrush current and can be many times the normal load current in a transformer.

Actually as saturation is approached, the flux will no longer remain confined to the core 
but will spill into the air or oil space inside the coil that supplies the exciting current. Thus, 
beyond saturation, the entire area inside the exciting coil, including the core, must be con-
sidered the flux-carrying area with an incremental relative permeability of 1. Let Br be the 
residual induction in the core, which, without loss of generality, we can take to be positive. 
In the following, we will assume that this is the remanence. Thus, the residual flux is 
Φr = BrAc. Let ΔΦ be the flux change required to bring the voltage from its turn-on point up 
to its maximum value in the same sense as the residual flux. ΔΦ could be positive, nega-
tive, or zero, depending on the turn-on point. We assume it is positive here.

Part of the increase in ΔΦ will simply bring the induction up to the saturation level, 
entailing the expenditure of little exciting power or current. This part is given approxi-
mately by (Bs − Br)Ac, where Bs is the saturation induction. Beyond this point, further 
increases in ΔΦ occur with the expenditure of high exciting current since the incremental 
relative permeability is 1. Since beyond saturation, the core and air or oil have the same 
permeability, the incremental flux density will be the same throughout the interior of the 
coil, ignoring end effects. Letting the interior coil area up to the mean radius Rm be A 
(A Rm= p 2 ), the incremental flux density is
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The incremental magnetic field inside the coil, ignoring end effects, is Hinc = NI/h, where 
NI are the exciting amp-turns and h the coil height. We are ignoring the exciting amp-turns 
required to reach saturation since these are comparatively small. Since the permeability for 
this flux change is μo, we have Binc = μoHinc = μoNI/h, which implies from (2.26)
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Assuming, in the worst case, that the voltage is turned on at a corresponding flux density 
that is at the most negative point in the cycle, we have, using (2.25),
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In the third equality, we are computing this flux change mathematically as if it all occurred 
in the core as it would under normal conditions. Thus, Equation 2.27 becomes, substituting 
the maximum flux change ΔΦmax for ΔΦ for a worst-case situation,
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As a numerical example, consider transformers with stacked cores and step-lapped joints 
where Br ≈ 0.9Bp. Taking h = 2 m, Ac/A = 0.5, Bp = 1.7 T, Br = 0.9, Bp = 1.53 T, and Bs = 2 T, 
we obtain NImax = 2.33 × 106 amp-turns. For N = 500, Imax = 4660 amps. This is very high for 
an exciting current.
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While the voltage is constrained to be sinusoidal, the exciting current will be distorted due 
mainly to saturation effects. Even below saturation, there is some distortion due to nonlin-
earity in the B–H curve. Figure 2.9a illustrates the situation on inrush. The sinusoidal voltage 
is proportional to the incremental induction, which is displaced by the  remanent induction. 
It requires high H values near its peak and comparatively small to zero H values near its 
trough. This is reflected in the exciting current, which is proportional to H. This current 
appears as a series of positive pulses separated by broad regions of near zero value as shown 
in Figure 2.9a. The positive current pulses appear undistorted because they are associated 
with the saturated portion of the B–H curve where the relative permeability is close to 1. The 
high exciting inrush current will damp out with time as suggested in Figure 2.9b. This is due 
to resistive effects.

2.6  Fault Current Waveform and Peak Amplitude

For comparison purposes, we now examine the time dependence of the fault current. We 
will ignore the load current at the time of the fault and assume the transformer is suddenly 
grounded at t = 0. The equivalent circuit is shown in Figure 2.10, which will be derived 

Br

V

t

B

t

B

H

t

(a)  

I

t
(b)

FIGURE 2.9
Distortion of exciting current due to saturation: (a) B–H curve indirectly relating voltage to exciting current and 
(b) exciting current proportional to H vs time.
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later. Here R and L are the resistance and leakage reactance of the transformer, respectively, 
including any contributions from the system. The voltage is given by

 V V tp= +( )sin w j  (2.30)

where φ is the phase angle, which can have any value, in general, since the fault can occur 
at any time during the voltage cycle. The circuit equation is
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Using Laplace transforms, the current transform is given by [Hue72]
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Taking the inverse transform, we obtain
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where β = tan−1(ωL/R).
The steady-state peak current amplitude is given by

 

I
V

R L R
p ss

p
,

/
=

+ ( )1 2w  

(2.34)

Using this and letting τ = ωt, ν = ωL/R, we can rewrite (2.33), using trigonometric identities, as
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where β = tan−1ν.
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FIGURE 2.10
Circuit for fault current analysis.
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To find the maximum amplitude for a given φ, we need to solve
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In addition, if we wish to determine the value of φ that produces the largest fault current, 
we need to solve

 

¶
¶

= -( ) -( ) - -( ) =-( )I
e

j
b j t b j tt ncos cos sin sin/ 0

 
(2.37)

From (2.36) and (2.37), we see that
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Equating the right-hand sides of both equations, we get
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Multiplying out the product in the last equation, we get
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From the last equation, we see that
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Thus, we find that solving (2.36) and (2.37) simultaneously leads to

 tan tanb j n b-( ) = =  (2.38)

 e-( ) - - =t n n t t/ sin cos 0 (2.39)
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Equation 2.38 shows that φ = 0 produces the maximum amplitude and the time at which 
this maximum occurs is given by the solution of (2.39) for τ > 0. Substituting into (2.35), 
we obtain
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But since cos β = 1/√[1 + (tan β)2] = 1/√(1 + ν2), we get
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(2.40)

This is the asymmetry factor over the steady-state peak amplitude with τ obtained by 
 solving (2.39).

The asymmetry factor is generally considered with respect to the steady-state rms cur-
rent value. This new ratio is called K in the literature and is thus given by substituting 
Ip,ss = √2Irms,ss in (2.40):
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We have expressed the ratio of leakage impedance to resistance as x/r. x and r are normal-
ized quantities, that is, the leakage reactance and resistance divided by a base impedance 
value, which cancels out in the ratio. Equation 2.41 has been parametrized as [IEE57]
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This parametrization agrees with (2.41) to within 0.7%. Table 2.1 shows some of the K val-
ues obtained by the two methods.

At φ = 0 where the asymmetry is greatest, Equation 2.35 becomes
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This is graphed in Figure 2.11 for ν = 10.

TABLE 2.1

Comparison of Exact with Parametrized K Values

ν = x/r K (Exact) K (Parametrized)

1 1.512 1.509
2 1.756 1.746
5 2.192 2.184

10 2.456 2.452
50 2.743 2.743

1000 2.828 2.824
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The lowest Fourier coefficients of (2.35) are
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The ratio of second harmonic to fundamental amplitude, a b a b2
2

2
2

1
2

1
2+( ) +( )/ , is tabu-

lated in Table 2.2 for a range of φ and ν values.
For power transformers, x/r is typically >20. We see from Table 2.2 that the second 

harmonic content relative to the fundamental is <4.3% for x/r > 20. On the other hand, 
the second-to-first harmonic ratio of the inrush current for power transformers is 
 generally >8%. Although inrush current waveforms are not as simple to characterize, 
a  glance at Figure 2.9 suggests that it would have a high second harmonic content. 

Fault current vs time

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

Time normalized

Cu
rr

en
t n

or
m

al
iz

ed

FIGURE 2.11
Fault current versus time for the case of maximum offset and ν = x/r = 10.
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Thus,  a comparison of this ratio is sometimes used to distinguish inrush from fault 
c urrents. In fact, x/r would need to fall below 10 before this method breaks down.

2.7  Optimal Core Stacking

As discussed in Section 1.4, cores for power transformers are normally constructed of 
stacks of thin laminations. These are often arranged to approximate a circular shape. 
Because of the limited number of lamination widths available, the circular shape consists 
of a finite number of stacks or steps, with all the laminations in a given step having the 
same width. Thus, the circular shape is not completely filled with flux-carrying steel. It is 
important to optimize the stacking pattern for a given number of steps in order to fill the 
circular area with as much core steel as possible. In addition, because of the insulating, 
nonferromagnetic coating applied to the laminations, the area of the lamination stacks 
must be corrected for this coating in order to arrive at the true flux-carrying area of the 
core. This correction or stacking factor is normally about 96%, that is, the actual core- 
carrying area is about 96% of the geometric stack area.

For a given number of steps, one can maximize the core area to obtain an optimal stack-
ing pattern. Figure 2.12 shows the geometric parameters, which can be used in such an 
optimization, namely, the x and y coordinates of the stack corners, which touch the circle 
of radius R. Only 1/4 of the geometry is modeled due to symmetry considerations.

TABLE 2.2

Ratio of Second Harmonic to Fundamental Amplitude of Fault Current for Various Values 
of the Reactance to Resistance Ratio and Voltage Phase Angle

ν = x/r φ = 0° φ = 30° φ = 45° φ = 90° φ = 120° φ = 135°

1 0.0992 0.0357 0 0.119 0.168 0.166
2 0.128 0.0752 0.0440 0.0752 0.152 0.167
3 0.127 0.0831 0.0566 0.0475 0.123 0.145
4 0.118 0.0819 0.0589 0.0323 0.101 0.124
5 0.109 0.0778 0.0576 0.0232 0.0543 0.107
6 0.0996 0.0731 0.0550 0.0175 0.0735 0.0941
7 0.0916 0.0684 0.0521 0.0137 0.0644 0.0835
8 0.0845 0.0641 0.0493 0.0110 0.0572 0.0750
9 0.0784 0.0601 0.0465 0.0090 0.0515 0.0680

10 0.0730 0.0565 0.0440 0.0075 0.0467 0.0622
15 0.0540 0.0432 0.0341 0.0036 0.0320 0.0434
20 0.0427 0.0347 0.0276 0.0022 0.0242 0.0333
25 0.0352 0.0290 0.0232 0.0014 0.0195 0.0270
50 0.0188 0.0158 0.0128 0.0004 0.0099 0.0138

100 0.0097 0.0083 0.0067 0.0001 0.0050 0.0070
500 0.0020 0.0017 0.0014 0 0.0010 0.0014

1000 0.0010 0.0008 0.0007 0 0.0005 0.0007
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The corner coordinates must satisfy

 x y Ri i
2 2 2+ =  (2.45)

For a core with n steps, where n refers to the number of stacks in half the core cross section, 
the core area, An, is given by
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where x0 = 0. Thus, the independent variables are the xi since the yi can be determined from 
them using (2.45). To maximize An, we need to solve the n equations
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We can show that
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so that the solution to (2.47) does represent a maximum. Applying (2.47) to (2.46), note that, 
in taking the derivative with respect to xi, this term occurs in two terms, one with xi and xi−1 
and one with xi+1 and xi. Isolating these terms in the sum in (2.46), we need to differentiate
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FIGURE 2.12
Geometric parameters for finding the optimum step pattern.
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Differentiating with respect to xi and setting the result to 0, we get
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Multiplying this last expression by the radical in the denominator, we get
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Transferring the radical to the right-hand side of the equation and squaring, we get, after 
some algebraic manipulation,
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In the first and last equations (i = 1 and i = n), we need to set x0 = 0 and xn+1 = R.
Since (2.49) represents a set of nonlinear equations, an approximate solution scheme 

such as a Newton–Raphson iteration can be used to solve them. At this point, it may be 
worthwhile to say a few words about this iteration method since it can be very useful in 
general in solving a set of nonlinear equations. Thus, given a set of n functions, fi in n 
unknowns, xi, we wish to solve

 f i ni x( ) = = ¼0 1, , ,  (2.50)

where we have put x in boldface type to indicate that it is an n-dimensional vector. Since x 
is unknown, we wish to solve these equations iteratively by letting x change by ∆x on each 
iteration and continue the iterations until ∆x is less than some small value. To determine 
∆x, we set

 f i ni x x+( ) = = ¼D 0 1, , ,  (2.51)

We now expand the function in a Taylor series to first order, obtaining
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This last equation can be rearranged to
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This can be written in matrix form as
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Applying this general procedure to the functions in (2.49), we note that each row of this 
matrix has only three entries for the derivatives of xi−1, xi, and xi+1. These are
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together with x0 = 0 and xn+1 = R.
To start the iterations, let the x’s be equally spaced initially. Note that these equations can 

be normalized by dividing by R4, so that the normalized solution coordinates xi/R are 
independent of R. Table 2.3 gives the normalized solution for various numbers of steps.

In practice, because only a limited number of standard sheet widths are kept in inven-
tory and because stack heights are also discretized, at least by the thickness of an individ-
ual sheet, it is not possible to achieve the ideal coverage given in the table. A practical 
method of handling this is to optimize, assuming continuous variables as was done here, 
and then to readjust the stack dimensions to correspond to the nearest discretized choices 
available. This must be done in such a way that the stacks do not fall outside the core circle. 
In addition, it is often necessary to allow room for the tie or flitch plates on the outside of 
the core stack. This is accomplished by fixing the value of xn in the equations given earlier. 
Simply set xn equal to a value necessary to accommodate the tie plates and drop the nth 
equation in (2.49). Core cooling ducts can also be accommodated by reducing the thickness 
of one of the neighboring stacks, near where the cooling ducts are to be located, by the 
thickness of the cooling duct. These adjustments will lower the core area from the maxi-
mized area but are necessary in practice.

TABLE 2.3

Normalized x Coordinates That Maximize the Core Area for a Given Number of Steps

Number of 
Steps, N

Fraction of Circle 
Occupied, An/πR2 Normalized x Coordinates, xi/R

1 0.6366 0.7071
2 0.7869 0.5257, 0.8506
3 0.8510 0.4240, 0.7070, 0.9056
4 0.8860 0.3591, 0.6064, 0.7951, 0.9332
5 0.9079 0.3138, 0.5336, 0.7071, 0.8457, 0.9494
6 0.9228 0.2802, 0.4785, 0.6379, 0.7700, 0.8780, 0.9599
7 0.9337 0.2543, 0.4353, 0.5826, 0.7071, 0.8127, 0.9002, 0.9671
8 0.9419 0.2335, 0.4005, 0.5375, 0.6546, 0.7560, 0.8432, 0.9163, 0.9723
9 0.9483 0.2164, 0.3718, 0.4998, 0.6103, 0.7071, 0.7921, 0.8661, 0.9283, 0.9763

10 0.9534 0.2021, 0.3476, 0.4680, 0.5724, 0.6648, 0.7469, 0.8199, 0.8836, 0.9376, 0.9793
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Circuit Model of a 2-Winding Transformer with Core

3.1  Introduction

Circuit models are often used when a transformer is part of a larger circuit such as a utility 
network. In this case, only the terminal characteristics of the transformer are usually of 
interest. We will primarily be concerned with transformers operating at steady-state power 
frequencies, that is, generally 50 or 60 Hz. In this case, capacitive effects can usually be 
ignored. When the core is operating sufficiently below saturation, core nonlinearity effects 
can also be ignored. For transient processes such as those occurring during switching or 
lightning strikes, a more detailed transformer model is needed. We will start by develop-
ing a circuit model of the core before considering the effects of adding the windings.

3.2  Circuit Model of the Core

We will consider a single-phase core and transformer. Usually, 3-phase cores and transform-
ers can be analyzed as three separate single-phase units. Interconnections among the phases 
can be added later. For simplicity, only a 2-winding transformer will be considered here, 
having a primary and secondary winding. The primary winding is normally understood as 
attached to the input power source, while the secondary winding feeds a load or loads.

If the secondary winding were open circuited, then the transformer would behave like an 
inductor with a high-permeability closed iron core. It would therefore have a high induc-
tance so that little exciting current would be required to generate the primary voltage or 
back emf. Some I2R loss will be generated by the exciting current in the primary winding; 
however, this will be small compared with the load current losses. There will, however, be 
losses in the core due to the changing flux. These losses are, to a good approximation, pro-
portional to the square of the induction, B2. Hence, they are also proportional to the square 
of the voltage across the core. Thus, these losses can be accounted for by putting an equiva-
lent resistor across the transformer voltage and ground, where the resistor has the value
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where
Vrms is the rms phase voltage
Wc is the core loss

3
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Here we are assuming that the primary voltage is sinusoidal, which is usually the case. 
The open-circuited inductance can be obtained from
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where Iex is the inductive component of the exciting current, which is assumed to be 
 sinusoidal with angular frequency ω. In general, this current can be sinusoidal or 
nonsinusoidal, depending on whether the core is operating linearly or nonlinearly. Since 
the voltage V is generally sinusoidal, the first expression in (3.2) would require Lc to be a 
nonlinear function of Iex when the core is operating nonlinearly. The second expression in 
(3.2) is valid when Iex is sinusoidal with angular frequency ω = 2πf, with f being the fre-
quency in Hz. So long as the core is operating reasonably far from saturation, it is generally 
a good assumption that Iex is sinusoidal and Lc is a constant inductance. Thus, the circuit so 
far will look like that shown in Figure 3.1. The resistance Rp is the resistance of the primary 
(or excited) winding. As saturation is approached, the inductance Lc and the resistance Rc 
will become nonlinear. If necessary, capacitive effects can be included by putting an equiv-
alent capacitance in parallel with the core inductance and resistance. Since the core losses 
are supplied by the input power source, there is a component of the total excitation current, 
Iex,tot, which generates the core loss. We labeled it Ic in the figure. It will be in quadrature, 
that is, at a 90° phase angle, with Iex.

A useful circuit model for the core when the excitation is sinusoidal and nonlinearities 
are ignored is shown in Figure 3.2.

Here Rc is the core resistance, accounting for the core loss, and Xc = ωLc is the magni-
tude of the core reactance, accounting for the magnetization of the core. j is the imaginary 
unit, which mathematically produces the 90° phase relation between resistance and 
reactance.

We will show how the parameters of this circuit model can be extracted from test data 
and then use them to obtain the core power factor, that is, the fraction of the core power 
that is dissipated as loss. As before, the resistance can be obtained from the calculated or 

V

Iex,tot

Iex Ic

Rp

Lc Rc

FIGURE 3.1
Transformer core circuit model with secondary open circuited.
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tested core losses as given by (3.1). This, in turn, allows the calculation of the current, IR, 
from the formula

 
I

V
R

R
c
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(3.3)

where V and I are assumed to be rms quantities.
Letting Zc equal the parallel combination of Xc and Rc, we have
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(3.4)

Hence,
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(3.5)

Rewriting and taking square roots, we have
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(3.6)

From a knowledge of V, taken as the reference phasor (a real quantity), and the magnitude 
of I, the input current, which is available from test data, we have
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jXc Rc
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IX IR

V

FIGURE 3.2
Transformer core circuit model with sinusoidal excitation.
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Thus, the magnitude of Zc can be obtained by inputting the required test data into the last 
formula. This allows us to calculate Xc from the previous formula. Knowing Xc, we can get 
the current IX from the formula
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(3.8)

The magnitude of the power into the core is given by V|I|, where |I| is the magnitude of 
the input current. The power dissipated in losses is given by VIR. Thus, the ratio of the 
power loss to the input power is the power factor:
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(3.9)

This is usually denoted by cos θ, where θ is the angle between the total current I and the 
real current IR in the complex plane.

As a numerical example, assuming a single-phase core, let V = 40,000 V, W = 2000 W, and 
I = 0.25 amps. Then we get
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3.3  2-Winding Transformer Circuit Model with Core

When the secondary circuit is connected to a load, the emf generated in the secondary wind-
ing by the changing core flux will drive a current through the secondary circuit. This addi-
tional current (amp-turns) would alter the core flux unless equal and opposite amp-turns 
flow in the primary winding. Since the core flux is determined by the impressed primary 
voltage, the net amp-turns must equal the small exciting amp-turns. Hence, the primary and 
secondary amp-turns due to load current, excluding the exciting current, must cancel out.

Figure 3.3 shows a schematic of the flux pattern in a 2-winding transformer under load. The 
currents are taken as positive when they flow into a winding, and the dots on the  terminals 
indicate that the winding sense is such that the induced voltage is positive at that terminal 
relative to the terminal at the other end of the winding when positive exciting current flows 
into the transformer. Notice that the bulk of the flux flows through the core and links 
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both windings. However, some of the flux links only one winding. When referring to flux 
linkages, we assume partial linkages are included. Some of these can be seen in the figure.

Faraday’s law for the voltage induced in a coil is based on the concept of flux linkages. 
Up to now, we have assumed that a flux Φ passing through a coil of N turns links all N 
turns so that the flux linkage is NΦ. As seen in the figure, except for the core flux, some of 
the flux linking a coil only links some of the turns or possibly only a fraction of a turn. At 
this point, we will assume that Φ is the flux linkage per turn so that NΦ does, in fact, equal 
the flux linkage, λ. Turning this around, we have Φ = λ/N.

As Figure 3.3 shows, some of the flux linking one of the coils is due to flux created by 
current in the second coil. We will define Φij as the flux per turn linking coil i due to current 
in coil j with a corresponding interpretation of λij. Thus, Φ11 is the flux per turn in coil 1 
linking coil 1 due to its own current and Φ12 is the flux per turn linking coil 1 due to current 
in coil 2. The corresponding flux linkages are λ11 and λ12. We will use λi with a single sub-
script to refer to the total flux linkage of coil i. Thus, we have
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(3.10)

It is useful to define the leakage flux per turn as
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(3.11)

In the following, we will usually refer to Φ, with or without subscripts, as a flux, but it 
should be understood that it is a flux per turn. Thus, the leakage flux for coil 1 is the 

~ LoadCore

Yoke

I1
I2

V2

N1N2

V1

FIGURE 3.3
Schematic of a 2-winding single-phase transformer with leakage flux.



48 Transformer Design Principles

self-flux of coil 1 minus the flux linking coil 2 due to current in coil 1. Since the core flux 
links both coils, this flux is excluded from the leakage flux. The same applies to the leakage 
flux for coil 2. The word leakage flux gives the impression that this is flux that has leaked 
out of the core but in reality it is simply flux that does not link both coils. Most of this flux 
is in the medium surrounding the core, usually oil or air. Both oil and air are linear materi-
als with relative permeabilities close to 1. Thus, the inductances associated with this flux, 
which are given by
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(3.12)

are nearly unaffected by core nonlinearities. These are called single-winding leakage 
inductances and are essentially constant.

Combining (3.10) and (3.11), we have

 l F F F l F F F1 1 1 21 12 2 2 2 12 21= + +( ) = + +( )N N� �,  (3.13)

Let Φc = Φ12 + Φ21. As can be seen from (3.13), this is a common flux linking both coils and 
is therefore predominately core flux, Φc. From (3.12) and (3.13), we see that

 l F l F1 1 1 1 2 2 2 2= + = +L I N L I Nc c� �,  (3.14)

The voltage equations for the two windings are
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where λ1 and λ2 are the total flux linkages for windings 1 and 2 and R1, R2 their resistances. 
Substituting from (3.14), the voltage equations become
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(3.16)

Although Φc was obtained by adding fluxes produced by each coil acting separately, in 
reality, this common flux is produced by the simultaneous action of both coils. When the 
resultant flux is nonlinear, it can no longer be regarded as the simple addition of separate 
fluxes. Thus, when nonlinear effects are important, Φc requires a broader interpretation.

Figure 3.4 shows a circuit diagram for (3.16). It contains an ideal transformer with a turns 
ratio of N1/N2. This is the same as the voltage ratio between the primary and secondary 
sides as seen in the figure and given by
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The voltages E1 and E2 are voltages induced in the primary or secondary windings by the 
changing common flux, as required by Faraday’s law. Separating out this common flux 
provides the physical basis for the ideal transformer.
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The 2-winding circuit model so far has ignored details of the core excitation. We note 
that this excitation must come from the difference between the amp-turns of windings 
1 and 2 and is typically small. To account for this, it is customary to siphon off this amp-
turn difference from one of the windings and let it flow into the core circuit model of 
Figure 3.1, considered as a shunt branch off one of the windings. Typically, this branch is 
taken off the primary winding. For physical reasons, this core shunt branch should be 
placed after the primary winding resistance and leakage reactance since the exciting cur-
rent flows in the primary winding. The core shunt branch would then directly determine 
the core voltage E1.

Since this exciting current is small, the approximation is often made to place the core 
shunt branch at the terminal itself. This will be expedient for later developments, where it 
is desirable to have amp-turn balance in the main transformer circuit. This approximation 
can be improved by adding the winding resistance and leakage reactance to the core’s 
resistance and reactance. This circuit model with core is shown in Figure 3.5.

In this figure, the current into terminal 1 would be Iex,tot + I1. If desired, capacitive effects 
can be included by placing a capacitor in parallel with the core circuit.

E2 = N2

N1 : N2V1 V2

I1 I2

R1 Lℓ1 R2Lℓ2

dΦc
dt

E1 = N1 dt
dΦc

Iex,tot

Iex Ic

Lc Rc

FIGURE 3.5
Circuit model of a loaded 2-winding transformer, including a possibly nonlinear core and ideal transformer.

N1 : N2V1 V2

I1 I2

R1 Lℓ1 Lℓ2 R2

E1= N1 dt
dΦc

E2= N2 dt
dΦc

FIGURE 3.4
Circuit model of a loaded 2-winding transformer, including a possibly nonlinear ideal transformer.
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3.4  Approximate 2-Winding Transformer Circuit Model without Core

At this point, our main concern will be with the transformer circuit beyond the core shunt 
branch so we will drop this branch from further discussion here. We recognize that while 
V1 is still the voltage at the primary terminal, I1 is not the primary terminal current although 
it is very close to it. Provided V1 is sinusoidal, I1 will also be sinusoidal as long as the excit-
ing current is small.

Amp-turn balance in the ideal transformer requires that

 N N1 1 2 2 0I I+ =  (3.18)

Notice that our current convention that currents into the terminals are positive requires 
that I1 or I2 must be negative for (3.18) to hold. Since current is assumed to flow into the 
primary winding because this is taken as the power source, the current I2 must be negative. 
A negative current into a terminal is the same as a positive current out of the terminal.

Rewriting (3.16), we have
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Using (3.17) and (3.18), we can transform (3.19) to
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(3.20)

The circuit model for (3.20) is shown in Figure 3.6. Note that the ideal transformer is now 
a device for transforming the secondary voltage V2 to the primary side, accounting for the 
first term on the right-hand side of (3.20).

N1 : N2
V1

V2

I1
I2

R1 + (N1/N2)2R2 Lℓ1 + (N1/N2)2Lℓ2

FIGURE 3.6
Circuit model of a 2-winding transformer under load referred to the primary side.
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Here the resistances and inductances have been combined to give equivalent quantities:
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(3.21)

These are the 2-winding resistance and leakage inductance referred to the primary side. 
Although the equivalent resistance accounts for the I2R losses in the windings, it can also 
be modified to account for losses caused by the stray flux since these are proportional to 
the square of the current to a good approximation.

Transformers, and especially power transformers, generally operate with currents and 
voltages that are sinusoidal in time. These are often treated as complex quantities, called 
phasors. These will be treated in more detail in a later chapter. For now, we note that the 
time derivative of a phasor of angular frequency ω is given by
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(3.22)

where boldfaced quantities are used to denote phasors. Applying this to the time deriva-
tive in (3.20) and using (3.21), we get
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(3.23)

We can now define an equivalent impedance (2-winding impedance) by

 Z Req eq eq1 1 1, , ,= + j Lw  (3.24)

Using this, Equation 3.23 simplifies to

 V I E V E1 1 1 1 2 2= + =Z eq, ,  (3.25)

Here E1 and E2 simply denote voltages across the ideal transformer, with E2 = V2 and E1 = 
(N1/N2)E2. These are not the same voltages across the ideal transformer as those in 
Figure 3.4, although the same symbol is used. They obey the voltage ratio equation (3.17). 
Of course, the amp-turn balance equation (3.18) also holds for this ideal transformer. The 
equivalent circuit for (3.25) is shown in Figure 3.7.

Using (3.17) and (3.18), we can transform (3.25) to
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and defining
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where
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(3.29)

we can express (3.26) as

 V I E V E2 2 2 2 1 1= + ¢ = ¢Z eq, ,  (3.30)

We have placed a prime on the E’s to emphasize that these are different from the E’s in 
(3.26); however, they still obey the voltage ratio equation (3.17) for an ideal transformer. 
The circuit model for (3.30) is shown in Figure 3.8.

Note the symmetry between Figures 3.7 and 3.8. This is especially clear from a compari-
son of (3.21) and (3.29). We could have initially transferred impedances to the secondary 

N1 : N2V1 V2

I1
I2

Z1,eq

E1 E2

FIGURE 3.7
Simplified circuit model of a 2-winding transformer under load referred to the primary side.

N1 : N2 V2V1

I2
I1

Z2,eq

E1́ E2́

FIGURE 3.8
Simplified circuit model of a 2-winding transformer under load referred to the secondary side.
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side and arrived at (3.29) directly. From both of these equations, as well as from (3.28), we 
see that impedances are transferred across an ideal transformer by the square of the turns 
ratio or its reciprocal, depending on which way the transfer occurs.

3.5  Vector Diagram of a Loaded Transformer with Core

For increased accuracy, it is useful to add the core excitation circuit to the circuit model 
developed in the last section, where the leakage impedances were transferred to one side 
of the ideal transformer. This is a good approximation since the core excitation current is 
small compared with the load currents. In Figure 3.5, we placed the core excitation cir-
cuit at terminal 1. However, this could also be placed on the terminal 2 side of the ideal 
transformer. This, along with the 2-winding leakage impedance, will be placed on the 
terminal 2 side, since we want to explore the relationship between the load current and 
voltage and the excitation current and voltage. This leads to the circuit diagram shown 
in Figure 3.9.

For the vector (complex plane) diagram, we will assume that the positive sense of the 
secondary current is out of terminal 2, as it normally is. We are only looking at the second-
ary side, so this will not conflict with our normal sign convention. We also assume that 
the secondary ideal transformer voltage ¢E2 is the reference voltage and that all currents 
and voltages are sinusoidal. We note that the voltage drop, V, across a reactance, X, and 
current, I, through a reactance, are related by V = jXI. Since multiplication by j in the com-
plex plane corresponds to a counterclockwise rotation of 90°, the voltage drop across a 
reactance is in a perpendicular direction to the current direction. On the other hand, for a 
resistor, R, the voltage drop is V = IR so this voltage drop is in the direction of the current. 
For an impedance with resistive and reactive components, the voltage drop direction is 
determined by the relative magnitudes of the resistive and reactive components.

We will assume that the load impedance in Figure 3.9 is mostly resistive and is given by 
ZL = RL + jXL, whereas the leakage impedance is entirely reactive. The vector diagram 
 corresponding to Figure 3.9 is shown in Figure 3.10.

This diagram is not to scale. Usually, the exciting current is a much smaller vector rela-
tive to the load current. We should note that the core flux is in the direction of the exciting 

 N1 : N2 VV
I1

Z2,eq

E1́ E2́

I2́

ZL

IL

Xc Rc

Iex

IX IR

FIGURE 3.9
Circuit diagram of a loaded transformer with core excitation circuit on the secondary side.
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current, IX, whereas the leakage flux is in the direction of the load current, IL. These flux 
densities can overlap near the center of the core legs. For predominantly resistive load cur-
rents, their vector addition does not increase the magnitude of the resultant flux density 
very much. But for reactive load currents, the flux densities add directly. When reactive 
load currents are high, some consideration must be given to the possibility of saturating 
the center of the core legs due to this phenomenon.

3.6  Per-Unit System

Transformer impedances, along with other quantities such as voltages and currents, are 
often expressed in the per-unit (p.u.) system. In this system, these quantities are expressed 
as a ratio with respect to the transformer’s nominal or rated phase quantities. Thus, if the 
rated or base phase voltages are Vb1, Vb2 and the base currents are Ib1, Ib2, where 1 and 2 
refer to the primary and secondary sides, then the base impedances are
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(3.31)

The rated or base voltages, currents, and impedances are assumed to transfer from one 
side to the other by means of the ideal transformer relationships among voltages, currents, 
and impedances. These base quantities are all taken to be positive. Thus, the minus sign is 
neglected in the base current transfer across sides. From this, it can be shown that the base 
power, Pb, is the same on both sides of an ideal 2-winding transformer:

 P V I V Ib b b b b= =1 1 2 2 (3.32)
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FIGURE 3.10
Vector diagram showing the relationships between the voltages and currents in a loaded 2-winding transformer 
with core.
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In an actual transformer, the real power into a transformer is nearly the same as that leav-
ing it on the secondary side. This is because the transformer losses are a small fraction of 
the power transferred.

The p.u. base quantities of interest are current, voltage, and power. From (3.32), we see 
that these quantities are interdependent. Only 2 independent base quantities are needed in 
most applications. Of the 3, it is usual to specify the base power, Pb, which is the same on 
both sides of an ideal 2-winding transformer. It normally refers to the rated power per 
phase into a transformer and remains fixed regardless of the number of secondary wind-
ings, whether loaded or not. The other base quantity is the base voltage. This will differ 
from winding to winding or terminal to terminal. It is usually taken to mean the rated or 
no-load voltage of the winding or terminal, whichever is being considered.

The primary side voltage, V1, current, I1, and impedance, Z1, are expressed in the p.u. 
system, assuming power and voltage as base quantities, by
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(3.33)

and similarly for the secondary quantities. As indicated in (3.33), we use lowercase letters 
to denote p.u. quantities.

Often, the p.u. values are multiplied by 100 and expressed as a percentage. However, 
care must be taken in using percentage values in calculations, particularly in multiplica-
tions, since this can lead to errors.

Since the base voltages, currents, and impedances transfer across the ideal transformer 
in the same manner as their corresponding circuit quantities, the p.u. values of the circuit 
quantities are the same on both the primary and secondary sides. Although voltages, 
 currents, and impedances for transformers of greatly different power ratings can differ 
considerably, their p.u. values tend to be very similar. This can facilitate calculations since 
one develops a pretty good feel for the magnitudes of p.u. quantities such as resistances or 
reactances for any size transformer. Thus, the 2-winding leakage reactances when expressed 
in the p.u. system are generally in the range of 5%–15% for all power transformers. The 
exciting currents of modern power transformers are typically ~0.1% in the p.u. (%) system. 
This is also their percentage of the rated load current since this has the value of 100% in the 
p.u. system. The 2-winding resistances, which account for the transformer losses, can be 
obtained in the p.u. system by noting that modern power transformers are typically >99.5% 
efficient. This means that <0.5% of the rated input power goes into losses. Thus, we have
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(3.34)

We will use the symbol X for reactance magnitudes, where X = ωL, with L the inductance. 
Thus, x will be a p.u. reactance. Using (3.34) and the estimate of the leakage reactance given 
earlier in the p.u. system for power transformers, we can estimate the x/r ratio:
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(3.35)

Thus, 10 is probably a lower limit and, as previously shown, is high enough to allow 
 discriminating inrush from fault current on the basis of second harmonic analysis.
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3.7  Voltage Regulation

At this point, it is useful to discuss the topic of voltage regulation as an application of the 
transformer circuit model just developed and the p.u. system. In this context, the core char-
acteristics do not play a significant role so we will use the simplified circuit model of 
Figure 3.8. Voltage regulation is defined as the change in the magnitude of the secondary 
voltage between its open-circuited value and its value when loaded divided by the value 
when loaded with the primary voltage held constant. We can represent the load by an 
impedance, ZL. The relevant circuit is shown in Figure 3.11. In the figure, we have shown a 
load current, IL, where IL = −I2.

It is convenient to perform this calculation in the p.u. system, using lowercase letters to 
represent p.u. quantities. Thus, since base quantities transfer across the ideal transformer 
like their corresponding physical quantities, we have
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(3.36)

Therefore, the ideal transformer can be eliminated from the circuit in the p.u. system since 
voltages and currents in this system are the same on both sides of the ideal transformer. 
Also, since z2,eq = z1,eq, we can drop the numerical subscript and denote the equivalent 
transformer p.u. impedance by

 z r jx= +  (3.37)

where
r is the p.u. 2-winding resistance
x the p.u. 2-winding leakage reactance

N1 : N2V1

I1

Z2,eq

I2

V2

ZL

IL

E2́E1́

FIGURE 3.11
Circuit model of a 2-winding transformer with a load on the secondary side.
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Similarly, we write
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(3.38)

The p.u. circuit is shown in Figure 3.12.
Thus, when the secondary terminal is open circuited so zL and its ground connection are 

missing in Figure 3.12, we obtain for the open-circuited value of v2

 v voc2 1, =  (3.39)

We assume that v1 is a reference phasor (zero-phase angle) and v1 is therefore its magni-
tude. When the load is present, we have

 v i v i2 1= = +( )L L L Lz z z,  (3.40)

From (3.40), we have
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Hence, the voltage regulation is given by, using (3.39),
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At this point, it is customary to express the complex number zL in its polar form:
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FIGURE 3.12
The circuit of Figure 3.11 shown in the p.u. system.
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We note, from (3.40), that the magnitude of zL is also given by
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where the magnitudes of v2 and iL are represented by the symbols in ordinary type. Keeping 
the Cartesian representation of a complex number for z, we have for the ratio
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(3.44)

Substituting (3.44) into (3.42), we get
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(3.45)

Since z is generally small compared with zL, the terms other than unity in (3.45) are small 
compared to unity. Using the approximation for small ε,
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the regulation is given to second order in z/zL by
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Reactance and Leakage Reactance Calculations

4.1  Introduction

The leakage reactance calculations performed here apply to a single phase unit or to 
one phase of a 3-phase transformer. The phase can have multiple windings intercon-
nected in such a way that only 2 or 3 terminals (external or buried) result. Thus 
 autotransformers, with or without tertiary, are included as well as transformers with 
separate tap windings. The calculations for windings that are interconnected are 
based on 2-winding leakage reactances. These reactances can be obtained from a sim-
ple analytical formula, which will be presented here, from finite element calculations 
or from more complicated analytical methods, such as Rabins’ method, which will be 
presented in a later chapter. We will also be giving the per-unit expressions for these 
reactances.

It is usually desirable to design some reactance into a transformer in order to limit any 
fault current. These currents flow in the transformer windings when, for example, a ter-
minal is shorted to ground. When this happens, the internal impedance of a transformer, 
which is mainly reactive, is primarily responsible for limiting this current. In addition, 
these reactances determine the voltage regulation of the unit. Hence, it is  desirable at the 
design stage to be able to calculate these reactances based on the  geometry of the coils 
and core and the nature of the (single phase) winding interconnections.

Although impedances have a resistive component, winding resistances are usually not 
too difficult to calculate, especially d.c. resistances. Complications arise from eddy cur-
rent contributions, generated usually by time-varying flux from neighboring windings. 
Eddy currents produced by the current within the winding itself are usually kept small, if 
necessary, by subdividing the cross-sectional area of the winding into multiple parallel 
strands and then transposing these. For power transformers, the resistances are usually 
small compared with leakage reactances but should be taken into account when greater 
accuracy is desired.

We begin by discussing the general theory of inductance calculations. Reactances are 
obtained from the inductances by multiplying by the angular frequency under sinusoidal 
conditions, which are assumed here. The following references have been used in this chap-
ter: [Del94], [MIT43], [Lyo37], [Blu51], [Wes64].

4
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4.2  General Method for Determining Inductances 
and Mutual Inductances

Self- and mutual inductances are usually defined in terms of flux linkages between 
circuits. However, it is often more convenient to calculate them in terms of magnetic 
energy. In this section, we show the equivalence of these methods and develop useful 
formulas for the determination of these inductances in terms of the magnetic field 
values.

Consider a set of stationary circuits as shown in Figure 4.1a. We assume that we 
slowly increase the currents in them by means of batteries with variable control. In 
calculating the work done by the batteries, we ignore any I2R or dissipative losses or, 
more realistically, we treat these separately. Thus, the work we are interested in is the 
work necessary to establish the magnetic field. Since losses are assumed to be zero, this 
work will equal the magnetic energy stored in the final field. Because of the changing 
flux linking the different circuits, electro-motive forces (emf’s) will be induced in them 
by Faraday’s law. We assume that the battery controllers are adjusted so that the  battery 
voltages just balance the induced voltages throughout the process. Because the circuits 
can have finite cross-sectional areas as shown in the figure, we imagine subdividing 
them into infinitesimal circuits or tubes carrying an incremental part of the total cur-
rent, dI, as in Figure 4.1b.

J
dτ

dS

B

dA

Surface encircled by loop

dI = J dSInfinitesimal current 

Circuit 1

Circuit i

Circuit j

(a) (b)

FIGURE 4.1
Method of circuit subdivision used to calculate self- and mutual inductances: (a) collection of circuits subdivided 
into infinitesimal current loops and (b) infinitesimal current loop which is part of a system of circuits.
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4.2.1  Energy by Magnetic Field Methods

The incremental energy, dW, which the batteries supply during a time interval, dt, is

 

dW dt VdI dt VJdS
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= =ò ò
 

(4.1)

Here, the integrand is the infinitesimal power flowing through the infinitesimal circuit or 
loop carrying current dI and along which a voltage V is induced. We have also substituted 
the current density J times the infinitesimal cross-sectional area dS for the incremental cur-
rent in the loop so that the last integral is over the cross-sectional area of the circuits. From 
Faraday’s law for a single-turn circuit,
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where Φ is the flux linked by the circuit. Substituting into (4.1)
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By definition,
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(4.4)

In (4.4) we have introduced the vector potential, A, where

 B A= Ñ´  (4.5)

We have also made use of Stoke’s theorem [Pug62]. We are denoting vectors with bold-
faced quantities here. Since we will not be using phasors in this chapter, no confusion 
should arise.

In (4.4), the surface integral is over the surface encircled by the wire loop, and the line 
integral is along the loop as shown in Figure 4.1b. n is the unit normal to the surface encir-
cled by the loop, and dτ is the infinitesimal distance vector along the loop. Note that dτ 
points in the same direction as J considered as a vector. Since the current loops are fixed, 
we find by taking the differential of (4.4)
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Substituting this into (4.3), we get
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Since J points along dℓ and since the volume element dV = dτ dS, we can rewrite (4.7)
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(4.8)

In changing to a volume integral, we are simply recognizing the fact that the integral over 
the cross-sectional area of the circuits combined with an integral along the lengths of the 
infinitesimal circuits amounts to an integration over the volume of the circuits. The total 
work done to establish the final field values, recognizing that the circuit remains stationary 
during this process, is
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(4.9)

where the last equality follows if A increases proportionally with J as we build up the 
fields.

It is sometimes more convenient for calculational purposes to express (4.9), or more gen-
erally (4.8), in terms of the field values directly. First of all the volume integration in both 
of these equations could be taken over all space since the current density is zero every-
where except within the circuits. (By all space we mean the solution space of the problem 
of interest.) For this, we use one of Maxwell’s equations in SI units, ignoring displacement 
currents:

 Ñ´ =H J (4.10)

where H is the magnetic field. Substituting into (4.8), we get
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Using the vector identity for general vector fields P, Q [Pug62],

 Ñ× ´( ) = × Ñ´( ) - × Ñ´( )P Q Q P P Q  (4.12)

we have, upon substitution into (4.11) with the identification P → H, Q → dA,
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In this equation, we have used the definition of A given in (4.5) and the Divergence Theorem 
to convert the last volume integral into a surface integral. The surface integral generally 



63Reactance and Leakage Reactance Calculations

vanishes since the boundary surface is usually at infinity where the fields drop to zero. 
Thus we can drop it to get
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The total work done to establish the final field values is
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where the last equality follows for the situation where B increases proportionally with 
H. Either (4.9) or (4.15) can be used to calculate the magnetic energy.

4.2.2  Energy from Electric Circuit Methods

We now show how the magnetic energy can be related to inductances or leakage induc-
tances from circuit considerations. The voltages induced in the circuits of Figure 4.1a can 
be written in terms of inductances and mutual inductances as
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where Mij is the mutual inductance between circuits i and j. When j = i, Mii = Li, where Li is 
the self-inductance of circuit i. The incremental energy for the circuits of Figure 4.1a can be 
expressed, making use of (4.16) as
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For linear systems, it can be shown that Mij = Mji. Thus the second sum in (4.17) can be writ-
ten as
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The first equality in this equation is a matter of changing the index labels in the sum, and 
the second equality results from the symmetric nature of Mij for linear systems. The third 
equality results from the double counting, which happens when i and j are summed inde-
pendently. Substituting (4.18) into (4.17), we get
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Integrating this last equation, we obtain
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Thus, (4.20) is another expression for the magnetic energy in terms of inductances and 
mutual inductances. As an example, consider a single circuit for which we want to know 
the self-inductance. From (4.20),
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where W can be calculated from (4.9) or (4.15) with only the single circuit in the geometry. 
W is usually obtainable from finite element codes. If we have 2 circuits, then (4.20) becomes
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If these two circuits are the high (label 1) and low (label 2) voltage coils of a 2-winding ideal 
transformer with N1 and N2 turns respectively, then we have I2/I1 = −N1/N2 so that (4.22) 
becomes
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The expression on the left is the 2-winding leakage inductance referred to the high-voltage 
side [MIT43]. The magnetic energy on the right side can be calculated from (4.9) or (4.15) 
with the 2 windings in the geometry and with the Ampere-turns balanced. Multiplying by 
ω = 2πf produces the leakage reactance.

The mutual inductance between two circuits is needed in detailed circuit models of 
transformers where the circuits of interest are sections of the same or different coils. We can 
obtain this quantity in terms of the vector potential. By definition, the mutual inductance 
between circuits 1 and 2, M12, is the flux produced by circuit 2, which links circuit 1, divided 
by the current in circuit 2. Circuits 1 and 2 could be interchanged in this definition without 
changing the value of the mutual inductance for linear systems. We use the infinitesimal 
loop approach as illustrated in Figure 4.1 to obtain this quantity. Each infinitesimal loop 
represents an infinitesimal fraction of a turn. For circuit 1 with a single turn, an infinitesi-
mal loop carrying current dI1 represents a fractional turn dI1/I1. Therefore, the flux linkage 
between this infinitesimal turn due to the flux produced by circuit 2, dλ12, is
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(4.24)

where Stokes’ theorem has been used. Note also that the flux linkage λ is flux times turns 
and this is what is used in Faraday’s law when dealing with circuits.
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Integrating this expression over the cross-sectional area of circuit 1 and using the fact 
that dI1 = J1 dS1 and that J1 as a vector points along dτ1, we can write
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where we have used the same integration devices as were used previously. Thus, the 
mutual inductance between these single-turn circuits is given by
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This formula reduces to the formula for self-inductance when 1 and 2 are the same 
circuit and letting M11 = L1.

We should note that the mutual inductance calculation (4.26), together with the self-
inductance calculation (4.21), could be used to determine the leakage inductance from 
 formula (4.23). However, when an iron core is involved, L1, L2, and M12 tend to be large 
quantities so that the subtractions in (4.23) can lead to large errors unless the inductances 
are determined with high accuracy.

4.3  2-Winding Leakage Reactance Formula

Although the 2-winding leakage reactance is needed to model a 2-winding transformer, 
the 2-winding leakage reactances between pairs of windings in a multi-winding trans-
former are useful for modeling these transformers as well. Therefore, this is an important 
quantity to determine. This can be calculated by advanced analytical techniques such as 
Rabins’ method [Rab56] or finite element methods, which solve Maxwell’s equations 
directly. These methods are especially useful if the distribution of amp-turns along the 
winding is nonuniform, due, for example, to tapped out sections or thinning in sections of 
windings adjacent to taps in neighboring windings. However, simpler idealized calculations 
have proven adequate in practice, particularly at the early design stage. Such a  calculation 
will be discussed here.

The simple reactance calculation assumes that the amp-turns are uniformly distributed 
along the windings. It also treats the windings as if they were infinitely long solenoids 
insofar as the magnetic field is concerned, although a correction for fringing at the ends is 
included in the final formula.

The magnetic field inside an infinitely long solenoid can be found from symmetry con-
siderations using Maxwell’s equation (4.10) expressed in integral form:

 
H d× =ò t I�  

(4.27)

where the integral is around a closed loop enclosing a current I through the surface of the 
loop. For an ideal, infinitely tall solenoid with N turns per height h uniformly distributed, 
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an application of this formula, together with symmetry considerations, tells us that there is 
a uniform axially directed field inside the solenoid with the magnitude H = NI/h and a 
zero field outside the solenoid.

We can apply this formula to the 2-winding transformer considered here. The param-
eters of interest are shown in Figure 4.2. The windings have a finite thickness so the 
amp-turns are a function of the radius parameter r. The total amp-turns are assumed to 
sum to zero for the 2 windings as is necessary for a leakage reactance calculation. Then 
the magnetic field as a function of radius can be found by applying (4.27) to a rectangu-
lar loop in a plane that passes through the center line of the solenoid, which encloses 
both windings with the vertical side of the rectangle outside the windings kept fixed, 
while the inner vertical side is gradually shifted towards the outer side. This results in 
a magnetic field distribution proportional to the amp-turn distribution shown in 
Figure 4.2b, that is, in the SI system:
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where NI(r) is the function of r shown in the figure, linearly increasing from 0 through 
winding 1, remaining constant in the gap, and decreasing to 0 through winding 2. 
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FIGURE 4.2
Parameters used in 2-winding leakage reactance calculation: (a) geometric parameters and (b) electrical 
parameters.
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H is independent of the z-coordinate in this model and points vectorially in the 
z- direction. The flux density is therefore

 
B r H r

NI r
h

o o( ) = ( ) = ( )
m m

 
(4.29)

The permeabilities of the materials in or between the winding are essentially that 
of vacuum, μo = 4π × 10−7 in the (SI) system. B also points in the z-direction. We can take 
h = (h1 + h2)/2 as an approximation.

For calculation purposes, we need to express B as a function of r analytically. First of all, 
since the total amp-turns is zero, we have, ignoring the signs of the currents, N1I1 = N2I2 = NI. 
Therefore, we get for B(r), referring to Figure 4.2 for an explanation of the symbols,
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(4.30)

The 2-winding leakage inductance of winding 1 with respect to winding 2, Lℓ12, can be 
obtained from the magnetic energy in the leakage field by means of the expression
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Here the order of the subscripts is important. Substituting (4.30) into the integral, we get
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(4.32)

In terms of mean radii Rm, thicknesses b, and gap g shown in Figure 4.2, Equation 4.32 can 
be written as
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(4.33)

Thus using (4.31), we find for the leakage inductance
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Often, the last two terms in (4.34) are dropped since they approximately cancel. The leak-
age reactance magnitude is Xℓ12 = 2πfLℓ12, so we get
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The per-unit impedance of winding 1 is
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where
(VI)b1 is the base volt-amps (power) per phase
Vb1/N1 is the base Volts/turn for winding 1

Letting x denote the per-unit reactance, where x = Xℓ12/Zb1, we get
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We left the subscripts off x because the per-unit reactance does not depend on the order of the 
windings. This is because the base power rating (VI)b and the base volts per turn (Vb/N) are 
the same for both windings. In contrast the leakage reactance, as opposed to the per-unit 
value, is proportional to the square of the winding turns in the first winding as seen in (4.35).

In order to correct for flux fringing at the winding ends, it has been found that a good 
approximation is to increase h by the amount

 s R Ro c= -( )0 32.  (4.38)

where
Ro is the outer radius of the outermost coil
Rc is the core radius

A fringing correction factor has also been developed by W. Rogowski that is widely used 
[Blu51]. Thus we obtain
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(4.39)

for the per-unit 2-winding reactance.
These analytical formulas such as (4.39) are useful for providing insight into achieving 

the required transformer reactances. For example, if one wants to increase the high to low-
voltage windings reactance in order to reduce the fault currents and hence the forces on 
these windings during a fault, this could be achieved by increasing the high to low gap, g, 
or reducing the overall winding height, h. Similarly if a tertiary winding is present, which 
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could experience a fault, it may be desirable to increase the high- or low-voltage winding 
to tertiary winding reactance to mitigate the effects of this fault. In this case the height of 
the tertiary winding could be reduced without affecting the high to low-voltage winding 
reactance. This is generally possible since tertiary windings usually have fewer turns than 
the high or low-voltage windings. However, caution is necessary here since the fringing 
field of the tertiary winding, which produces losses in the tie plate or core, would now be 
inside the innermost vertical oil channel where the cooling is probably less efficient than if 
it occurred outside this channel for a taller winding.

4.4  Ideal 2-, 3-, and Multi-Winding Transformers

Since leakage reactances are part of a circuit, which includes an ideal transformer, it is use-
ful to discuss the ideal transformer first, particularly one which can have more than two 
windings. We will consider a single phase ideal transformer with 2 or more windings per 
phase. The phase could be one phase of a 3-phase transformer, provided the phases can be 
treated independently. Although much of the discussion concerns 2- or 3-winding trans-
formers, the extension to ideal multi-winding transformers is straightforward. We also 
look at the ideal autotransformer, where the voltages of 2 windings are combined to pro-
duce the high-voltage at one terminal with the voltage of one of the windings providing 
the low voltage at the other terminal.

For a 2-winding transformer, the ideal conditions are
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(4.40)

where
the E’s are the voltages across the 2 windings with turns N1 and N2

the I’s are the rated currents through the windings

We use the convention that the currents are positive into the winding. From (4.40), we can 
show that

 E I E I1 1 2 2 0+ =  (4.41)

Since EI is the power, this says that the net power into the ideal transformer is zero, that is, 
the power into winding 1 equals the power out of winding 2. Thus an ideal transformer is 
lossless.

For a 3-winding transformer, Equation 4.40 generalizes to
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(4.42)

From (4.42), it follows that

 E I E I E I1 1 2 2 3 3 0+ + =  (4.43)

that is, the net power into a 3-winding ideal transformer is zero. These latter equations 
extend readily to multi-winding transformers.
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We also note that impedances are transferred across an ideal transformer by the equation
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An ideal 2-winding transformer is depicted in Figure 4.3.
It is often convenient to work with per-unit quantities. That is, we choose base values 

for voltages, currents, etc. and express the actual voltages, currents, etc. as ratios with 
respect to these base values. Only two independent base values need to be chosen and 
these are usually taken as power or VI and voltage V. The base power is normally taken 
as the VI rating of the unit per phase and so has a fixed value for a given transformer. 
The base voltage is taken as the open-circuit-rated phase voltage of each terminal. Thus 
we have a (VI)b = (VI)b1 = (VI)b2 and Vb1, Vb2, where b denotes base value. From these, 
we derive base currents of
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and base impedances
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Letting small letters denote per-unit quantities, we have
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Note that the base voltages are the actual voltages under rated conditions for the ideal 
transformer. Therefore, they satisfy the voltage equations in (4.40) and (4.42) so that we have

 

V
V

N
N

etc
I
I

N
N

etc
Z
Z

V
V

N
N

b

b

b

b

b

b

b

b

1

2

1

2

1

2

2

1

1

2

1

2

2
1

2
= = = æ

è
ç

ö

ø
÷ = æ, . , .

èè
ç

ö

ø
÷

2

, .etc
 

(4.48)
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N1 N2E1
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FIGURE 4.3
Ideal 2-winding transformer with a load on its secondary terminals.
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since everything is on a common VI base. Note that the base quantities are always positive. 
The signs in the per-unit quantities are determined by the signs of the underlying quantity. 
Since all the windings are put on the same power base, Equations 4.41 and 4.43 are not 
applicable to base quantities.

In terms of per-unit quantities, we have for an ideal transformer
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and, from (4.42) and (4.48)
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Therefore,

 i i i1 2 3 0+ + =  (4.51)

Thus, an ideal 3-circuit transformer can be represented by a one-circuit description as 
shown in Figure 4.4, if per-unit values are used. Equation 4.51 can also be extended to more 
than three windings.

E1

I1

E2

I2

E3

I3

(a)

i1 i2

i3

e = 1

(b)

FIGURE 4.4
Ideal 3-circuit transformer schematic: (a) standard quantities and (b) per-unit quantities.



72 Transformer Design Principles

4.4.1  Ideal Autotransformer

The ideal 2-terminal autotransformer is shown in Figure 4.5. The two coils, labeled s for 
series and c for common, are connected together so that their voltages add to produce the 
high-voltage terminal voltage E1. Thus E1 = Es + Ec. The secondary or low-voltage terminal 
voltage is E2 = Ec. Similarly, from the figure, I1 = Is and I2 = Ic − Is = Ic − I1. Using the expres-
sions for a 2-winding unit, which are true regardless of the interconnections involved,
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we find
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Thus
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(4.54)

so that the effective turns ratio as seen by the terminals is n = (Nc + Ns)/Nc. Any imped-
ances on the low-voltage terminal could be transferred to the high-voltage circuit by the 
square of this turns ratio.

The co-ratio is defined as
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FIGURE 4.5
Ideal autotransformer.
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where r ≤ 1. We note here that, since E1 = Es + Ec and E2 = Ec, an alternative definition 
of r is
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The terminal power rating of an autotransformer is E1I1 = E2I2, but the power rating of each 
coil is EsIs = EcIc. The ratio of these power ratings is
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Thus, since r ≤ 1, the terminal rating is always greater than or equal to the single-coil rat-
ing. Thus, for a conventional transformer with the same terminal rating as an autotrans-
former, the windings of an autotransformer have a lower rating than the conventional 
transformer windings, and this can result in smaller and less expensive windings.

4.5  Leakage Reactance for 2-Winding Transformers Based 
on Circuit Parameters

Although a 2-winding circuit model was developed previously from magnetic flux consid-
erations, we consider here a model based on circuit parameters such as inductances and 
mutual inductances. This will allow us to extend the 2-winding model to 3 and eventually 
to a multi-winding model.

We will start with the terminal equations developed previously in Chapter 3:
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where
λ1 is the total flux linkage of coil 1
R1 its resistance and similarly for coil 2

If we let Φc = the common flux linking all turns of both coils, which is mainly core flux, we 
can write

 l l F F l l F F1 1 1 1 2 2 2 2= -( ) + = -( ) +N N N Nc c c c,  (4.58)

The quantity (λi − NiΦc) is the leakage flux of coil i. It exists mainly in the oil or air and 
conductor material but not in the core to any great extent. Thus it exists in nonmagnetic, 
that is, linear, materials and therefore should depend linearly on the currents. Thus we can 
write very generally
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or, assuming sinusoidal quantities,
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where
I1 and I2 are phasors
X11 = 2πf L1 and X12 = 2πf M12, where f is the frequency, and j is the imaginary unit

We do not distinguish phasors by boldfaced type here, since they all have the same phase. 
Using similar expressions for λ2, Equation 4.57 becomes
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where E1 = −N1dΦc/dt is the no-load terminal voltage of terminal 1, etc., for E2 so that 
E1/E2 = N1/N2. We have also used the fact that X12 = X21 for linear systems.

We are going to ignore the exciting current of the core since this is normally much 
smaller than the load currents. Thus, using the amp-turn balance condition in (4.40), we 
can rewrite (4.61)

 

V I R j X
N
N

X E

V I R j X
N
N

X

1 1 1 11
1

2
12 1

2 2 2 22
2

1
12

= + -æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú +

= + -æ

è
ç

öö

ø
÷

é

ë
ê

ù

û
ú +E2

 

(4.62)

or, more succinctly,
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where Z1 and Z2 are single-winding leakage impedances. These last equations correspond 
to those encountered in the last chapter. We have two impedances on either side of an ideal 
transformer. We can transform one of the impedances across the transformer by means of 
(4.40). In particular, we let V2 = ¢E2 = I2Z2 + E2. Then, since E1/E2 = N1/N2 and I1/I2 = 
−N2/N1, ¢ = -( ) + ( )E N N I Z N N E2 1 2 1 2 2 1 1/ /  so that solving for E1,
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(4.64)

Substituting into the first equation in (4.63), we get
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(4.65)

The impedances in (4.63) have been transformed into a single impedance called the 2- winding 
leakage impedance, Z12, which depends on which of the single-winding impedances was 
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transferred across the ideal transformer so that Z12 ≠ Z21. Simplifying the notation in (4.65), 
we have

 V I Z E V E1 1 12 1 2 2= + ¢ = ¢,  (4.66)

where we defined
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We can convert this equation to a per-unit basis by the following process:
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or

 v i z v1 1 12 21 1= + =,  (4.67)

The equivalent circuit for (4.66) is shown in Figure 4.6 along with the per-unit version.
We note that ¢ ¢ =E E N N1 2 1 2/ /  but that ¢ ¹E E1 1 and ¢ ¹E E2 2 except at no-load.
Thus a 2-winding transformer is characterized by a single value of leakage impedance 

Z12, which has both resistive and reactive components:

 Z R X12 12 12= + �  

i1 i2

é

z12

(b)

E1́ E2́

Z12

V1

I1 I2

(a)

FIGURE 4.6
Circuit models of a 2-winding transformer with leakage impedance: (a) circuit with a single effective 2-winding 
leakage impedance and (b) single circuit using per-unit quantities.



76 Transformer Design Principles

where
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and
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referring to the primary winding. We can obtain expressions for referring quantities to the 
secondary winding by interchanging 1 and 2 in the said formulas. In large power trans-
formers, Xλ12 ≫ R12 so we are normally concerned with obtaining leakage reactances.

In terms of previously defined quantities from (4.62) and (4.63),
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(4.69)

Note that the leakage reactance of (4.69) corresponds to the leakage inductance of (4.23) by 
multiplying by ω. We will usually use the symbol Z12 when referring to leakage reactance 
and ignore the resistive component. The leakage reactance is often calculated by finite ele-
ment energy methods, using (4.23) and multiplying by ω.

We should note that another method of obtaining the 2-winding leakage impedance, 
which corresponds with how it is measured, is to short-circuit terminal 2 and perform an 
impedance measurement at terminal 1. Thus
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Setting V2 = 0 in (4.63), we get E2 = −I2Z2. Substituting into the V1 equation in (4.63) and 
using (4.40), we find

 
V I Z

N
N

Z1 1 1
1

2

2

2= + æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú 

(4.71)

so that, from (4.70), we get Z12 = Z1 + (N1/N2)2 Z2 as before.

4.5.1  Leakage Reactance for a 2-Winding Autotransformer

The circuit model for a 2-winding autotransformer can be constructed from separate 
windings as shown in Figure 4.7. From the method of obtaining leakage impedance 
given in (4.70), we measure the impedance at the H terminal with the X terminal shorted. 
But this will yield the same leakage impedance as that of an ordinary 2-winding trans-
former so that ZHX = Z12, that is, the terminal leakage impedance of a 2-winding 
 autotransformer is the same as that of a transformer with the same windings but not 
autoconnected.
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On a per-unit basis, however, the terminal leakage impedance of an autotransformer  differs 
from that of a regular 2-winding transformer. We see from (4.46) that the base impedance is 
equal to the voltage squared divided by the rated power. Keeping the power base the same, 
since this is usually determined by the external circuit, the base impedance is proportional to 
the terminal voltage squared. For an autotransformer, the autoconnected terminal voltage is 
the voltage of the series winding divided by the coratio, r, which is the terminal voltage of a 
nonautoconnected transformer primary winding divided by r. Thus, the base impedance of an 
autotransformer is 1/r2 times that of a regular transformer. Since the per-unit impedance is the 
impedance in ohms divided by the base impedance, this equals r2 times the per-impedance of 
a regular 2-winding transformer on the same power base.

4.6  Leakage Reactances for 3-Winding Transformers

We can go through the same arguments for a 3-winding transformer, isolating the flux 
common to all coils, Φc, and expressing the leakage flux for each coil, which exists in non-
magnetic materials, in terms of self- and mutual inductances, which are constants. 
We obtain
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where the order of the suffixes doesn’t matter for linear materials (constant permeability) 
since Xij = Xji.

I1
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(I2 – I1)
X terminal

V1
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E2

Z1

Z2

I2

FIGURE 4.7
Circuit model of a 2-winding autotransformer with leakage impedance, based on a separate windings 
circuit model.
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Using the same assumptions as before concerning the neglect of core excitation, Equation 
4.42, we substitute I3 = −(N1/N3)I1 − (N2/N3)I2 in the first 2 equations and I2 = −(N1/N2)I1 − 
(N3/N2)I3 in the third equation of (4.72) to obtain
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(4.73)

Now add and subtract jI1(N1/N2)(X12 − (N1/N3)X23) from the first equation, add and sub-
tract jI2(N2/N1)(X12 − (N2/N3)X13) from the second, and add and subtract jI3(N3/N1)
(X13 − (N3/N2)X12) from the third equation of (4.73) to obtain
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(4.74)

Substituting for I3 = −(N1/N3)I1 − (N2/N3)I2 in the term in braces in the last equation, we 
obtain
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Comparing the terms in braces of the resulting V1, V2, and V3 equations, we find, using 
(4.42),
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Therefore, labeling the terms in brackets ¢ ¢ ¢E E E1 2 3, , , we obtain

 V I Z E V I Z E V I Z E1 1 1 1 2 2 2 2 3 3 3 3= + ¢ = + ¢ = + ¢, ,  (4.77)

where
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(4.78)

and
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Here, Z1, Z2, and Z3 are the single-winding leakage impedances and the applicable 
 multi-circuit model is shown in Figure 4.8a along with the per-unit circuit in Figure 4.8b. 

i1 i2

i3

é

z1 z2

z3

I1

É2

É3

É1

I2

I3

Z1

Z2

Z3

V1

V2

V3

(a) (b)

FIGURE 4.8
Circuit models of a 3-winding transformer with leakage impedance: (a) separate circuit description and (b) single 
circuit description in terms of per-unit values.
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This is possible because (4.79) implies ¢ = ¢ = ¢ = ¢e e e e1 2 3  and by Equation 4.51. This figure 
should be compared with Figure 4.4.

Since the single-winding leakage impedances are not directly measured or easily calcu-
lated, it is desirable to express these in terms of 2-winding leakage impedances. We will 
refer to these 2-winding leakage impedances as Z12, Z13, and Z23, which correspond to the 
notation Z12 used previously for the 2-winding case. Thus, to measure the 2-winding leak-
age impedance between windings 1 and 2, we short-circuit 2, open circuit 3, and measure 
the impedance at terminal 1:
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From (4.77), we see that this implies I Z E2 2 2 0+ ¢ = . Using the voltage and current equations 
in (4.42), we find for Z12 and similarly for Z13 and Z23
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(4.81)

We should note that the resistive and reactive components of (4.81) are the same as the cor-
responding components of the 2-winding resistance and leakage reactance formulas of 
(4.68) and (4.69) by substituting corresponding subscripts. The subscript ordering is cho-
sen so that the second subscript refers to the shorted winding. The expression changes if 
we reverse subscripts according to
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Solving (4.81) for the Zi’s, we get
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(4.83)

These equations are very useful for determining the single-winding leakage impedances 
from the 2-winding leakage impedances for a 3-winding transformer, since the 2-winding 
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impedances are fairly easily obtainable. This is not possible for a 2-winding transformer 
since there are two single-winding leakage impedances but only one 2-winding leakage 
impedance.

Using per-unit values, where Zb1 is the base impedance of circuit 1 so that z12 = Z12/Zb1, 
etc., and z1 = Z1/Zb1, etc., we find, using (4.48), that (4.83) can be expressed as
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(4.84)

Similarly (4.81) becomes, in per-unit terms,

 z z z z z z z z z12 1 2 13 1 3 23 2 3= + = + = +, ,  (4.85)

In the case of per-unit 2-winding leakage impedances, the order of the subscripts doesn’t 
matter. Again, small letters are used for per-unit values.

4.6.1  Leakage Reactance for an Autotransformer with a Tertiary Winding

The autotransformer with tertiary winding can be obtained by interconnecting elements 
of the 3-winding transformer circuit model as shown in Figure 4.9. Here, the  notation 
 corresponds to that of Figure 4.8a. The problem is to re-express this in terms of terminal 
quantities. Thus, the appropriate terminal H voltage is V1 + V2, and the appropriate 
t erminal X current is I2 – I1. Using (4.77),

 V V V I Z I Z E EH = + = + + ¢ + ¢1 2 1 1 2 2 1 2 (4.86)

I1
H terminal

V1

V2

E1́

E2́ E 3́

Z1

Z2

I2

V3

Z3 I3

X terminal
(I2 – I1)

Y terminal

FIGURE 4.9
3-Winding autotransformer circuit model, derived from the three separate winding circuit models.
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Substituting for I2 from the amp-turn balance equation in (4.42) into this equation, we 
obtain

 
V I Z

N
N

Z
N
N

I Z E EH = -æ

è
ç

ö

ø
÷ + - + ¢ + ¢é

ëê
ù

ûú
1 1

1

2
2

3

2
3 2 1 2

 
(4.87)

Similarly, using the amp-turn balance equation in (4.42), we can express IX = I2 – I1. Then we 
have IX = I2(1 + (N2/N1)) + (N3/N1)I3. Solving this for I2 and substituting into the V2 equation 
in (4.77), we obtain
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By adding and subtracting N I Z /N N N3
2

3 2 2 1 2+( ) from the V3 equation in (4.77), we get
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We see that the terms in brackets in (4.87) through (4.89) satisfy
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Labeling these terms in brackets EH, EX, EY, we can rewrite (4.87) through (4.89)

 V I Z E V I Z E V I Z EH H H H X X X X Y Y Y Y= + = + = +, ,  (4.91)

where VH = V1 + V2, VX = V2, VY = V3, IH = I1, IX = I2 – I1, IY = I3 are terminal quantities and
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(4.92)

Thus, the circuit model shown in Figure 4.10a looks like that of Figure 4.8a with H, X, and 
Y substituted for 1, 2, and 3.

In terms of the measured 2-terminal impedances, we have, as before,
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Rewriting the amp-turn balance equation in (4.42), we obtain

 N I N I I N I N I N N I N I N IH X Y1 1 2 2 1 2 1 3 3 1 2 2 3 0+ -( ) + + = +( ) + + =  (4.94)
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From (4.93) with (4.90), (4.91), and (4.94), we obtain
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(4.95)

At this point, it is worthwhile to revert to per-unit terminal quantities. Because of the auto-
connection, we have, again choosing as base quantities the VI per phase rating of the unit 
and the rated (no-load) terminal voltages per phase, (VI)b, VbH, VbX, VbY,
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(4.96)

since (VI)b is the same for each terminal. From (4.94), we have on a per-unit basis,

 i i iH X Y+ + = 0 (4.97)

iH iX

iY

e

zH zX

zY

ZH

ZX

ZY

EH

IH

EX

IX

EY

IY

VH

VH

VH

(b)(a)

FIGURE 4.10
Circuit models of a 3-winding autotransformer based on terminal parameters: (a) separate circuit description and 
(b) single circuit description in terms of per-unit values.
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Similarly from (4.90), on a per-unit basis,

 e e e eH X Y= = =  (4.98)

On a per-unit basis, Equation 4.95 becomes, using (4.96),

 z z z z z z z z zHX H X HY H Y XY X Y= + = + = +, ,  (4.99)

where the same VI base is used for all the terminals and small letters denote per-unit val-
ues. Note that the order of the subscripts for the 2-winding per-unit terminal impedances 
doesn’t matter. Solving these for zH, zX, and zY, we obtain a set of equations similar to (4.84):
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The per-unit circuit model is depicted in Figure 4.10b.
Equation 4.92 contains terminal impedances and single-coil impedances and the bases 

are different for these. It is sometimes convenient to express the per-unit terminal imped-
ances in terms of the per-unit winding impedances. We can rewrite (4.92)
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(4.101)

Keeping (VI)b the same for both per-unit values, we have
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Substituting (4.102) into (4.101), we get
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This equation expresses the per-unit terminal impedances in terms of the per-unit single-
winding impedances for a 3-winding autotransformer. In terms of the terminal turns ratio 
defined previously, n = (N1 + N2)/N2, these last equations can be written:
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(4.104)

The per-unit circuit model is depicted in Figure 4.10b. Note that from (4.83) or (4.84), the 
autotransformer circuit parameters can be derived from 2-winding leakage impedance 
values, which can be obtained from finite element methods or analytic formulas.

Using (4.99) and the expressions for z1, z2, and z3 in terms of per-unit 2-winding leakage 
reactances, we can obtain the terminal-to-terminal per-unit leakage reactances for the auto-
transformer in terms of the 2-winding per-unit leakage reactances. We find
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The first equation in (4.105) is the same as that found for the per-unit terminal impedance 
of a 2-terminal autotransformer in Section 4.5.1 since (n − 1)/n is the coratio. The last 
equation expresses the fact that the terminal impedance between the X and Y windings is 
 independent of the autoconnection.

4.6.2  Leakage Reactance between 2 Windings Connected in Series 
and a Third Winding

It is useful to calculate the impedance between a pair of windings connected in series and 
a third winding in terms of 2-winding leakage impedances, as shown in Figure 4.11. This 
can be regarded as a special case of an autotransformer with the X-terminal open. But this 
leakage impedance is just ZHY. From (4.95) and (4.92), we obtain

 
Z Z Z

N N
N

ZHY = + + +æ

è
ç

ö

ø
÷1 2

1 2

3

2

3

 
(4.106)

or, in per-unit terms, using (4.102) together with Zb3/ZbH = [N3/(N1 + N2)]2,
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(4.107)

These can be expressed in terms of 2-winding leakage impedances by means of (4.83) 
or (4.84).
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4.6.3  Leakage Reactance of a 2-Winding Autotransformer with X-Line Taps

X-line taps are taps connected to the X terminal of an autotransformer. They are used to 
regulate the low voltage without affecting the volts/turn of an autotransformer. Taps con-
nected to the neutral or ground end of the LV winding would affect the number of turns in 
both the high- and low-voltage windings. Since the high voltage input level is assumed 
fixed by the external circuit, the volts/turn would change and this would change the 
induction level of the autotransformer. According to Faraday’s law, assuming sinusoidal 
voltage and flux density at frequency f,
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(4.108)

where
Vrms is the rms voltage
N is the number of turns
Bp is the peak flux density
Ac is the core area

Since f and Ac are fixed, the flux density (induction level) is determined by the volts/turn. 
If neutral taps are used, this characteristic must be considered in their design.

A circuit model of a 2-winding autotransformer with X-line taps constructed from the 3 
separate winding circuit model is shown in Figure 4.12. The derivation of its 2-terminal 
leakage impedance uses (4.77) together with (4.42). In terms of terminal parameters, we 
have VH = V1 + V2, VX = V2 + V3, IH = I1, IX = I3. We also require that I2 = I1 + I3.

Thus
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FIGURE 4.11
Leakage impedance between two series-connected windings and a third winding.
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Substitute I3 =  − (N1/N3)I1 − (N2/N3)I2 into the VH equation and I1 =  − (N2/N1)I2 − (N3/N1)I3 
into the VX equation to obtain
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(4.110)

Add and subtract N2/(N2 + N3)I1Z2 from the VH equation, and add and subtract (N2/
(N1 + N2))I3Z2 from the VX equation to obtain, after some algebraic manipulations,
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(4.111)

Notice that the terms in brackets satisfy
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so that (4.111) can be rewritten:

 V I Z E V I Z EH H H H X X X X= + = +,  (4.113)
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FIGURE 4.12
Circuit model of a 2-winding autotransformer with X-line taps, derived from the three separate winding 
circuits.
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where
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and
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To obtain the 2-terminal leakage impedance, we use the definition
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From (4.42), we obtain
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The above equations are identical to those for a 2-winding transformer studied previously, 
except for labeling. Thus, from earlier work, we can solve (4.116) to get
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Substituting from (4.114), this becomes
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On a per-unit basis, using a fixed (VI)b and, noting that
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(4.120)

This is the two-terminal leakage impedance of a 2-winding autotransformer with X-line 
taps. It can be expressed in terms of the 2-winding leakage impedances via Equations 4.83 
or 4.84.
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Phasors, 3-Phase Connections, 
and Symmetrical Components

5.1  Phasors

Phasors are essentially complex numbers with a built-in sinusoidal time dependence. They 
are usually written as a complex number in polar form. A complex number, C = CRe + jCIm, 
can be expressed in polar form as
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(5.1)

Here |C| is the magnitude of the complex number, with real and imaginary components, 
CRe and CIm.

A sinusoidal voltage has the form V = Vpcos(ωt + φ), where ω = 2πf is the angular fre-
quency, with f being the frequency in Hz, and φ a-phase angle. Vp is the peak value of the 
voltage. This can be written as
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where Re[] means to take the real part of the expression following. In the complex plane, 
expression (5.2) is the projection on the real axis of the complex number given in the brack-
ets, as illustrated in Figure 5.1.

As time increases, the complex voltage rotates counterclockwise around the origin, with 
the real projection varying as the cosine function. Currents and other voltages in a linear 
system, considered as complex numbers, will also rotate around the origin with time at the 
same rate since ω is the same for these. Since these numbers are all rotating together, at any 
snapshot in time, they will all have the same relative position with respect to each other. 
Therefore, it is convenient to factor out the common time dependence and consider only 
the phase relationships between the numbers. This is possible because the circuit equations 
are linear and

 V = =+( )V e V e ep
j t

p
j t jw j w j

 (5.3)
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The complex number with time dependence is called a phasor and written in boldfaced 
type. Usually, however, the time dependence is understood or factored out and the quan-
tity without the time exponential factor is also called a phasor. We will mainly discuss 
phasors without explicitly including the time exponential. If time dependences are 
required, the quantity can be multiplied by the complex time factor ejωt and, if required, the 
real projection taken. Usually, this is not necessary because most calculations with phasors 
can be done without the common time-dependent factor. However, the time-dependent 
factor is important when performing time differentiation or integration. We note that 
dV/dt = jωV. This implicitly makes use of the built-in time dependence of the voltage pha-
sor V. We also sometimes refer to phasors as vectors since complex numbers behave in 
many respects like vectors in the complex plane and are usually depicted as directed 
arrows much like vectors as in Figure 5.1. It is usually clear from the context whether a 
complex number or a mathematical vector is meant.

The voltage phasor in (5.3) was written in terms of its peak magnitude, Vp. Often, how-
ever, root mean square (rms) values of voltages and currents are used in power system 
discussions. The square of the rms value of the voltage is given by
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where T is the period of the sinusoidal waveform, T = 1/f = 2π/ω. Letting θ = ωt in this 
integral, it becomes
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(5.5)

This quantity can be obtained from the phasor by the formula
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where * denotes the complex conjugate.
Another important quantity is the electrical power. This is the product of the voltage and 

current. At any instant in time, this gives the instantaneous power. But we are usually 
interested in the average power. Since the relative phase between the voltage and current 
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FIGURE 5.1
Voltage as the real projection of a complex number.
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doesn’t change with time, we can select our time origin so that the voltage has its  maximum 
value at t = 0, so that φV = 0 and the current phase leads the voltage by φI = φ. (If φI is 
 negative, then it would lag the voltage.) Then the average power is
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Letting θ = ωt, this can be written as
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In terms of rms voltage and current, Pave = VrmsIrms cos φ. In terms of phasors, Pave = Re[VI*]/2. 
This leads one to the definition of complex power:
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The imaginary power is associated with reactors and capacitors in the circuit. If it is nega-
tive, it is capacitive power since the current leads the voltage in a capacitor. If positive, it is 
inductive power since the current lags the voltage in an inductor. Because the complex 
conjugate of the current is taken in (5.9), a positive φ produces a negative imaginary power 
and vice versa for a negative φ. Here, leading and lagging refer to the time-dependent pha-
sors as they rotate counterclockwise with time in the complex plane. As time increases, the 
voltage vector passes a given point before the current vector for an inductor and vice versa 
for a capacitor. For a single capacitor or inductor, φ = ±π/2 so that the average power van-
ishes according to (5.8). Capacitors and inductors store power and then return it at various 
times during a cycle, but they do not consume power on average. For a resistor, φ = 0 so 
that the imaginary power vanishes and the average power consumption assumes its 
 maximum value.

Voltages and currents are often written as phasors having their rms magnitude. This is 
done since these are usually the quantities of interest in a power system and also so that the 
power expression in (5.9) can be written more simply as P = VI* for rms voltage and cur-
rent phasors. Equation 5.5 can be used to convert between these different expressions.

Power systems are 3-phase systems. This means that the voltages and currents come in 
triples. The voltages and currents in the 3 phases are shifted in time relative to each other 
by a third of a cycle. For a cycle of period T, the voltages are time shifted by 0, T/3, and 
2T/3. Since T = 1/f, where f is the frequency in Hz, we have ωT/3 = 2π/3 = 120° and 2ωT/3 = 
4π/3 = 240° = −120°. Thus, the 3 voltages can be written (in standard order) as

 

V t V t

V t V t
T

V t
T

a a

b a a

( ) = ( )

( ) = +æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
ú = +é

cos

cos cos

w

w w w2
3

2
3ëëê

ù
ûú
= - °( )

( ) = +æ
è
ç

ö
ø
÷

é

ë
ê

ù

û
ú = +

V t

V t V t
T

V t

a

c a a

cos

cos cos

w

w w

120

3
ww wT

V ta
3

120é
ëê

ù
ûú
= + °( )cos

 

(5.10)



92 Transformer Design Principles

Here, an arbitrary phase angle could be added to each. We have selected this arbitrary phase 
so that the a-voltage has its maximum value at time 0. They all have the same magnitude, 
and this is taken as the magnitude of the a-voltage. Expressed as phasors, these become

 V V Va a
j t

b a
j t

c a
j tV e V e V e

o

= = =
-( ) + °( )w w w, ,

120 120
 (5.11)

The phasors are written in boldfaced type but the magnitudes in regular type. At time 0, 
these can be represented in the complex plane as shown in Figure 5.2.

The phasors in Figure 5.2 are said to be balanced since Va + Vb + Vc = 0. This equation 
holds for every instant of time. These phasors are usually written with the time depen-
dence factored out. This ordering of the phasors is called positive sequence ordering. As 
the phasors rotate in time, the a-phasor is the first to cross the real axis (it’s already there), 
followed by the b-phasor and then the c-phasor. The Cartesian form for these phasors, 
normalized to have unit magnitude, is given by
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In this form, it can be seen immediately that they sum to zero.
The 3-phase system is convenient for the smooth operation of generators and motors, 

which require rotating flux for their operation, and this rotating flux can be established 
with 3-phase currents. Although 2 independent phasors could also be used, apparently 
3 phasors work better. Also, 2 independent phasors could not sum to zero, and this prop-
erty of summing to zero has useful implications for grounding.

5.2  Y and Delta 3-Phase Connections

There are two basic types of 3-phase connections in common use, the Y (Wye) and delta (Δ) 
connections as illustrated schematically in Figure 5.3. In the Y connection, all 3 phases are 
connected to a common point, which may or may not be grounded. In the Δ connection, 
the phases are connected end to end with each other. In the Y connection, the line current 
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FIGURE 5.2
Phasor representation of a 3-phase voltage system.
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flows directly into the winding where it is called the winding or phase current. Note that 
in a balanced 3-phase system, the currents sum to zero at the common node in Figure 5.3a. 
Therefore, under balanced conditions, even if this point were grounded, no current would 
flow to ground. In the Δ connection, the line and phase currents are different. On the other 
hand, the line-to-line voltages in the Y connection differ from the voltages across the wind-
ings or phase voltages, whereas they are the same in the Δ connection. Note that the coils 
are shown at angles to each other in the figure to emphasize the phasor relationships, 
whereas in practice they are usually side by side and vertically oriented, as shown in 
Figure 5.4 for the delta connection.

The line-to-line voltages are usually specified when a power company orders a trans-
former. For a delta connection, these are the same as the winding voltages. For a Y connec-
tion, these can be determined from the winding voltages and vice versa using phasor 
algebra. Here, as in later sections of this chapter, we are considering rated voltages and 
ignoring impedance drops. Let Va, Vb, Vc be the phase or winding voltages in a Y-connected 
set of transformer windings and let Vab denote the line-to-line voltage between phases a 
and b, etc. for the other line-to-line voltages. Then, these line-to-line voltages are given by

 V V V V V V V V Vab a b bc b c ca c a= - = - = -, ,  (5.13)
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Phase
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Line-to-line
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FIGURE 5.3
Basic 3-phase connections: (a) Y connection and (b) Δ connection.

Va Vb Vc
Ia Ib Ic

Iab Ibc Ica

FIGURE 5.4
Delta interconnections as they would appear for windings on a 3-phase core.
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Using a phasor description, these can be readily calculated. The line-to-line phasors are 
shown graphically in Figure 5.5. Figure 5.5a shows the vector subtraction process  explicitly, 
and Figure 5.5b shows the set of 3 line-to-line voltage phasors for the Y connection. The 
line-to-line voltage magnitude can be found geometrically as the diagonal of the parallelo-
gram formed by equal length sides making an angle of 120° with each other. Thus, we have
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We have used the fact that the different phase voltages have the same magnitude.
The graphical description of this process is useful for visualization purposes, but the 

math is simpler if the unit phasors of (5.12) are used. In this case, we have
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Thus, the magnitude of the line-to-line voltage is 3  times the phase voltage magnitude in 
Y-connected transformer coils, and they are rotated +30° relative to the phase voltages as shown 
in Figure 5.5b. Since the phase voltages are internal to the transformer and therefore impact the 
winding insulation structure, a more economical design is possible if these can be lowered. 
Hence, a Y connection is often used for the high voltage coils of a 3-phase transformer.

The relationship between the phase and line currents of a delta-connected set of wind-
ings can be found similarly. From Figure 5.3, we see that the line currents are given in terms 
of the phase currents by

 I I I I I I I I Ia ab ca b bc ab c ca bc= - = - = -, ,  (5.16)
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FIGURE 5.5
Phasor representation of line-to-line voltages and their relation to the phase voltages in a Y-connected set of 
3-phase windings: (a) vector subtraction and (b) line-to-line voltages.
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These are illustrated graphically in Figure 5.6. Note that, as shown in Figure 5.6b, the line cur-
rents form a positive sequence set rotated −30° relative to the phase currents. The magnitude 
relationship between the phase and line currents follows similarly as for the  voltages in a Y 
connection. However, let us use phasor subtraction directly in (5.16) to show this. We have
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where we have used Iab = Ica. Non-boldfaced quantities are magnitudes.
Thus, the magnitudes of the line currents into or out of a delta-connected set of windings 

are 3  times the winding or phase current magnitudes. Since low voltage terminal cur-
rents are typically greater than high voltage terminal currents, it is common to connect the 
low voltage windings in delta because lowering the phase currents can produce a more 
economical design although other considerations are often the deciding factor.

The rated power of a transformer is generally taken to be the 3-phase power and is 
expressed in terms of terminal voltages and currents. The terminal voltage is the voltage to 
ground or virtual ground in the case of a delta connection, and the terminal current is the 
current into the terminal. The rated voltage ignores any impedance drops in the trans-
former, and the current assumes a rated load at unity power factor. Therefore, the voltages 
and currents are in phase, and we need only to deal with magnitudes. For a Y-connected 
set of windings, the terminal voltage to ground equals the voltage across the winding and 
the line current equals the phase current. Hence, the total rated power into all three phases 
is 3 × the phase voltage × the phase current. In terms of the line-to-line voltages and line 
current, we have, using (5.14), that the total rated power is 3  × the line-to-line voltage × 
the line current. Expressed mathematically, we have
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FIGURE 5.6
Phasor representation of line currents and their relation to the phase currents in a delta-connected set of 3-phase 
windings: (a) vector subtraction and (b) line currents.
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For a delta-connected set of windings, the line-to-line voltages are the same as the phase volt-
ages, whereas the line current is 3  times the phase current according to (5.17). Therefore, the 
power can be expressed in terms of phase quantities or terminal quintiles according to
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Thus, the total rated power, whether expressed in terms of line quantities or phase 
 quantities, is the same for Y- and delta-connected windings and is given mathematically by 
these equations.

We also note that the rated input power is the same as the power flowing through the 
windings. This may be obvious here, but there are some connections where this is not the 
case, in particular the autotransformer connection as discussed previously.

An interesting 3-phase connection is the open delta connection. In this connection, one of 
the windings of the delta is missing although the terminal connections remain the same. 
This is illustrated in Figure 5.7. This could be used especially if the 3 phases consist of sepa-
rate units and if one of the phases is missing either because it is intended for future expan-
sion or it has been disabled for some reason. Thus, instead of (5.16) for the relationship 
between line and phase currents, we have

 I I I I I I Ia ab ca b ab c ca= - = - =, ,  (5.18)

But this still implies

 I I Ia b c+ + = 0 (5.19)

so that the terminal currents form a balanced 3-phase system. Likewise, the terminal voltages 
form a balanced 3-phase system. However, only 2 phases are present in the windings. As far 
as the external electrical system is concerned, the 3 phases are balanced. The total rated input 
or output power is, as before, 3  × line-to-line voltage × line current. But as (5.18) shows, the 
line currents have the same magnitude as the phase or winding currents. Since the windings 
are designed to carry a certain maximum current under rated conditions without overheating, 
this winding or phase current would be the same for a full or open delta. But for a full delta, 
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FIGURE 5.7
Open delta connection.
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the line current is 3  times the winding current. This means that, for an open delta, the line 
currents must be reduced by 1/ 3  times that of a full delta in order that the same phase cur-
rents flow in the windings. Therefore, since the line-to-line voltages are the same, the rated 
power for an open delta is 1/ 3  = 0.577 times that of a full delta.

5.3  Zig-Zag Connection

The zig-zag connection is often used as a grounding connection for unbalanced faults. In 
normal operation, it does not allow balanced 3-phase current to flow through the windings 
and so is an open circuit to this type of current. However, when an unbalanced fault occurs, 
it provides a path for currents that are all in phase with each other and have the same mag-
nitude. The connection is shown in Figure 5.8.

The lines are oriented to indicate the direction of the voltage phasor on a phasor diagram, 
with the arrows indicating the direction of current flow. Only the relative orientation mat-
ters. The voltages increase from the ground point to the terminals, opposite to the direction 
of current flow. The lines are all of equal length so their voltage magnitudes are all the same. 
A zig-zag connection requires 2 windings per phase for a total of 6 interconnected windings. 
The unprimed voltages in the figure are for the zig windings with the label a, b, or c, corre-
sponding to the phase to which they belong. The primed voltages are for the zag windings 
with the label associated with their phase. Note that the zag windings have the opposite 
voltage orientation to the zig windings in their phase. This winding interconnection, as it 
would appear for the set of 6 windings on a 3-phase core, is shown in Figure 5.9.

A phasor diagram of these voltages, choosing the Va phasor to be the reference phasor, is 
given in Figure 5.10. The voltage between the a-terminal and ground is shown graphically 
in the figure. Using the unit phasors of (5.12) and the fact that all the phasors have the same 
magnitude, the phasor addition can be done algebraically:
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Thus, we see that the terminal voltage to ground is 3  × the winding voltage and is 
shifted by −30°.

Va

Vc Vb

V́c
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FIGURE 5.8
Zig-zag connection. The arrows indicate the direction of current flow.
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We can see from Figure 5.8 that if a-phase current flows into the a-terminal and the 
a-zig winding, it would also have to flow into the zag winding of the c-phase. This can-
not occur since we could not get amp-turn balance with the c-phase current flowing into 
the c-zig winding. Therefore, no balanced phase currents can flow into the terminals. 
However, currents all of the same phase could flow into the terminals. In fact, we can see 
from the current directions in the figure and the fact that the windings all have the same 
number of turns (same voltage magnitudes) that we would have amp-turn balance in all 
the phases in this case.

5.4  Scott Connection

The Scott connection is used to convert voltages from a 2-phase system to a 3-phase bal-
anced system or vice versa. The 2-phase voltage phasors are assumed to be 90° apart on a 
phasor diagram and of equal magnitude. They are therefore independent phasors and any 
phasor can be constructed from these by a suitable vectorial combination. Before discuss-
ing the physical realization of this connection in terms of windings, it is useful to examine 
the phasor relationships directly. These are shown in Figure 5.11. The 2-phase voltages are 
labeled V1 and V2. The 3-phase voltages are labeled Va, Vb, Vc. These are constructed from 
components of the 2-phase voltages as shown in the figure.

Va Vb Vc

V́a V́b V́c

FIGURE 5.9
Zig-zag interconnected windings on a 3-phase core.
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FIGURE 5.10
Phasor diagram of the zig and zag voltages.
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Here, the voltage (turns) ratio between Va and V1 is n, where n = Va/V1. This allows for 
the possibility that the voltage can be stepped up or down in going from 2 to 3 phases. The 
3-phase voltages have components along the 2-phase voltages as shown in the figure. We 
are assuming that the magnitudes of V1 and V2 are the same and that V2 = jV1. This is 
expressed mathematically as
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(5.21)

In order to realize this with windings, we need 2 windings in the 2-phase system with volt-
ages V1 and V2. These would probably have to be on separate cores since they do not form 
a balanced system. This means that, for conventional core designs with legs and yokes, 
fluxes from the 2 phases would not cancel in the core yokes as they do for a 3-phase bal-
anced system of currents. However, there are examples where a single core could be used 
[Kra88]. We will use the 2-core realization given in [MIT43]. First of all, we note that the b 
and c-phases each have a voltage component that is ½ the magnitude of the a-phase volt-
age. Therefore, the a-phase could be constructed of 2 separate windings, each having the 
same number of turns. These windings would be on the phase 1 core. Each of the separate 
a-phase windings could then contribute half the a-phase voltage component to the b- and 
c-phase voltages. The b and c-phases also have a component along phase 2 of the same 
magnitude but opposite sign. These could both come from a single winding having a volt-
age magnitude of 3/2 × the a-phase voltage magnitude. This realization is shown in 
Figure 5.12.

As can be seen from the figure, the 3-phase voltages are composed of contributions from 
the secondary windings on different cores. The secondary voltage points on the different 
cores are labeled VA, etc. for convenience. The subscript will also be used to label the 

V1

V2

Va = nV1

Vb

Vc

60°
60°–nV1/2

√3nV2/2

–√3nV2/2

j

FIGURE 5.11
Scott connection from a 2-phase system of voltages, labeled 1 and 2, to a 3-phase voltage system, labeled a, b, c.
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winding ends, and a pair of these will label the winding. The 3-phase system has no real 
ground, as is the case for a delta connection. The A–B winding on phase 1 is center tapped, 
with the C–O winding on phase 2 connected to the center tap position. The C–O winding 
must have 3/2 times the turns in the full A–B winding. Assume the winding voltages for 
the a, b, c system increase from B to A on the core 1 winding and from O to C on the core 2 
winding. This is consistent with the V1 and V2 voltage directions for the 1, 2 system. The 
a-phase voltage starts at the B end of the winding and increases along both half windings 
to the A position so its voltage is the sum of the voltages from each half of the A–B winding. 
The b-phase voltage starts at position C and decreases along the C–O winding and then 
decreases from O to B along half the A–B winding. Its voltage is therefore minus the C–O 
winding voltage minus half the A–B winding voltage as required by vector addition on the 
phasor diagram. The c-phase voltage starts at the A position and decreases along half the 
A–B winding and then increases along the C–O winding. Its voltage is therefore minus half 
the A–B winding voltage plus the C–O winding voltage as required by the phasor diagram 
vector addition.

It is interesting to consider the winding currents in the a, b, c system. The terminal 
currents are shown in Figure 5.12. These should also form a balanced system and will 
therefore cancel at the center tap position O. Starting with the C–O winding, the c-phase 
current needs to balance the winding 2 current. The voltage turns ratio between these 
two windings is given by VC–O/V2 = 3n/2, where n was defined earlier as the turns 
ratio between the full A–B winding and winding 1. Therefore, for amp-turn balance, 
we have
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The currents as well as the voltages for the 2-phase system are at 90° with respect to each 
other on a phasor diagram. At the center node, we have
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FIGURE 5.12
Scott connection for 2-phase to 3-phase transformation, using windings on 2 separate cores.
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For amp-turn balance on the phase 1 core, we require
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Solving this set of equations, we get
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We see that these sum to zero and have amp-turn balance with the 1- and 2-phase 
windings.

5.5  Symmetrical Components

The balanced 3-phase system of voltages and currents we have discussed so far is called 
a positive sequence system. The phase ordering has been a, b, c in terms of which phasor 
crosses the real axis first as time increases. There is another 3-phase balanced system, 
called a negative sequence system with the phase ordering a, c, b. In addition, there is a 
zero sequence system that consists of 3 phasors of equal phase and magnitude. The zero 
sequence system is not balanced in the sense that the phasors in this system do not sum 
to zero but it is symmetric. The significance of these systems of phasors is that any 
3-phase collection of phasors can be written as a sum of phasors, one from each of these 
systems. The components of such a sum are called symmetrical components. This makes 
it possible to analyze an unbalanced 3-phase system by separately analyzing the sym-
metric sequence systems and then adding the results. This will require a systematic treat-
ment as discussed in the following.

In a balanced 3-phase electrical system, the voltage or current phasors are of equal mag-
nitude and separated by 120° as discussed previously. They are shown again in Figure 5.13a, 
in order to contrast them with the other sequence sets, and are labeled Va1, Vb1, Vc1, where 

120°

120°

120°

Vc1

Va1

Vb1
(a)

Vb2

Vc2

Va2

(b)

Va0
Vb0

Vc0

(c)

FIGURE 5.13
Symmetric systems of 3-phase phasors: (a) positive sequence, (b) negative sequence, and (c) zero sequence.
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1 denotes a positive sequence set by convention. The unit vectors for this set were given 
in (5.12). We will use a special notation for this set of unit vectors. The unit vector 1 stays 
the same, but the other 2 are denoted as follows:
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We see from this that
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(5.23)

Thus, for a balanced 3-phase positive sequence system, we have

 V V V V V Va a b a c a1 1 1
2

1 1 1= = =, ,a a  (5.24)

Notice that Va1 need not be along the positive real axis. α2 and α can be thought of as rota-
tion operators that rotate the phasor they multiply by 240° and 120°, respectively. This 
guarantees that Vb1 and Vc1 are 240° and 120° from Va1 regardless of its position in the 
complex plane. Also, these phasors are of equal magnitude since α and its powers are of 
unit magnitude.

A negative sequence set of balanced phasors is one with the phase ordering a, c, b as 
shown in Figure 5.13b where we see that

 V V V V V Va a b a c a2 2 2 2 2
2

2= = =, ,a a  (5.25)

where 2 refers to negative sequence quantities by convention. These are separated by 120° 
and have the same magnitude, which can differ from the positive sequence magnitude.

A zero sequence set of phasors is shown in Figure 5.13c. These are all in phase and have 
equal magnitudes, which can differ from the positive or negative sequence magnitudes. 
Thus,

 V V Va b c0 0 0= =  (5.26)

with 0 used to label zero sequence quantities. In addition, the relative phase between the 
a-phasor of each set can differ from zero.

We now show that it is possible to represent any unbalanced or unsymmetrical set of 
3 phasors by means of these symmetric sequence sets. Let Va, Vb, Vc be such an unbalanced 
set as shown in Figure 5.14. Since the positive, negative, and zero sequence symmetric sets 
are determined once Va1, Va2, and Va0 are specified, we need to find only these a-phase 
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components of the symmetric sets in terms of the original phasors to prove that this repre-
sentation is possible. Write
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Using (5.24) through (5.26), this can be written as
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In matrix notation, we have
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which is often abbreviated to

 V Vabc = A 012 (5.30)

where
Vabc and V012 are column vectors
A is the matrix in (5.29)

Va0, Va1, Va2 can be found uniquely if A has an inverse. This can be shown to be the case and 
the result is

 

V

V

V

V

V

V

a

a

a

a

b

c

0

1

2

2

2

1
3

1 1 1
1
1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
=

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

æ

è

ç
ç
ç

ö

ø

÷
÷a a

a a ÷÷
 

(5.31)

Vb Va

Vc

FIGURE 5.14
Unsymmetrical set of 3 phasors.
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as can be verified by direct computation, using the identities in (5.23). Equation 5.31 can be 
abbreviated to

 V V012
1= -A abc (5.32)

where A−1 is the matrix in (5.31) including the factor of 1/3. It is the inverse of the matrix A.
Thus, given any unsymmetrical set of phasors, the symmetric positive, negative, and 

zero sequence sets can be found. Conversely, given the symmetric sets or just one phasor 
from each symmetric set chosen customarily to be the a-phasor, the unsymmetrical set can 
be obtained.

Equations 5.29 through 5.32 apply equally well to currents. We can use them to compute 
the power in the two systems. The 3-phase power is given by
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Here T denotes transpose, which converts a column vector to a row vector or vice versa. 
It also transforms a matrix so that its rows become columns or equivalently its columns 
become rows. This is needed since Vabc and Iabc are column vectors and the dot product is a 
matrix product between a row and column vector. We have also used α* = α2 and α2* = α in 
Equations 5.29 and 5.31 to show that ATA* = 3I, where I is the unit matrix. Thus, the 3-phase 
power is also equal to the sum of the powers in the 3 sequence networks. The factor of 
3 enters because the last expression in (5.33) only contains the representative a-component 
of the sequence networks.

The virtue of using symmetrical components is that an unsymmetrical 3-phase set of 
phasors can be analyzed in terms of 3 symmetrical systems of phasors. Since the com-
ponent systems are symmetrical, only one phase from each symmetrical system need 
be analyzed, in the same manner that we need only consider one phase of a conven-
tional balanced 3-phase system. However, the circuit model applying to each sequence 
may differ from the normal 3-balanced phase circuit model. This latter circuit model 
applies generally only to the positive sequence circuit. The negative sequence circuit 
may differ from the positive, particularly if there are generators or motors in the sys-
tem. Since generated voltages are usually of positive sequence, voltage sources are 
absent from the negative sequence circuit. For transformers, the impedances are inde-
pendent of phase order so that the positive and negative sequence circuit impedances 
are identical.

The zero sequence circuit model can differ considerably from the positive or negative 
one. For example, a balanced set of currents can flow into the terminals of a 3-phase sys-
tem, even without a path to ground, because the currents add to zero. Thus, an effective 
ground point can be assumed. Since zero sequence currents are of equal magnitude and 
phase, they do not sum to zero and therefore cannot flow into the terminals of a 3-phase 
system unless they there is a path to ground. Thus, for zero sequence currents to flow in a 
Y-connected set of windings, for example, a path to ground is necessary. Thus, in the zero 
sequence circuit model for a Y connection without ground, an infinite impedance to ground 
must be placed in the circuit. Similarly, zero sequence currents cannot flow into the 
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terminals of a delta connection since there is no path to ground. However, such currents 
can circulate within the delta if they are induced there for amp-turn balance with another 
set of windings.

Since we alluded to the fact that the sequence impedances may differ in the 3 sequence 
networks, it is necessary to consider under what conditions these networks are uncoupled 
so that they can be analyzed separately. Let us start with the assumption that the 3-phase 
balanced networks for transformers are uncoupled and the same for all 3 phases. Even for 
a 3-phase core, the mutual reactances between windings are significant only for windings 
on the same leg of the core and tend to be small between windings on different legs. We 
also generally assume that the self-inductances are the same for windings on different legs, 
even though there are slight differences due to the fact that the magnetic environment of 
the center leg differs from that of the outer legs. This similarity also applies to leakage 
reactances. Consider the voltages across a circuit element having impedances of Za, Zb, and 
Zc in the 3 phases. The 3-phase voltages across these elements are given by
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(5.34)

Let Z denote the impedance matrix in (5.34). Using (5.30) and (5.32), we can convert the 
V and I vectors in the abc system to the 012 system to obtain

 A A ZA- -= =1
012

1
012V V Iabc  (5.35)

If the impedances Za, etc., are unequal, then the matrix A−1ZA contains off-diagonal terms 
that couple the sequence networks. However, if the impedances are equal, then we obtain 
a diagonal matrix and the sequences are uncoupled as shown in (5.36):
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(5.36)

We see, in this case, that all the sequence impedances are the same. Therefore, this situation 
does not allow for the possibility that the zero sequence impedances can differ from the 
positive or negative sequence impedances. Let us examine the situation from the point of 
view of uncoupled sequence circuits, each having their own impedance. The sequence 
voltages across a given element are now given by
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(5.37)

Letting Z represent the matrix in (5.37) and applying (5.30) and (5.32) to convert to the abc 
system, we get

 A AZAV V I012
1= = -

abc abc (5.38)
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For transformers, we noted previously that Z1 = Z2. For this situation, the matrix in (5.38) 
is given in (5.39):
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We note that when Z0 = Z1, this becomes a diagonal matrix with all diagonal elements 
equal to Z1 after multiplying by the factor of 1/3 in front of the matrix.

Thus, when analyzing an unbalanced fault condition in transformers with zero sequence 
impedances that differ from the positive and negative sequence impedances, we can 
 analyze the separate sequence circuit models using (5.37). We can then use the A matrix to 
convert to the abc system. On the other hand, if we wish to analyze an unbalanced fault 
condition from an abc circuit system approach, then we need to use the coupled set of 
impedances given in (5.39) when the zero and positive sequences differ [Bra82]. This would 
also apply to the case where all the sequence impedances were different, except that, when 
transforming to the abc system, the impedance matrix would be more complicated than in 
(5.39) unless some special conditions were placed on the sequence impedances.
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Fault Current Analysis

6.1  Introduction

It is necessary to design transformers to withstand various possible faults, such as a short 
to ground of one or more phases. The high currents accompanying these faults, approxi-
mately 10–30 times normal, produce high forces and stresses in the windings and support 
structure. Also, depending on the fault duration, significant amounts of heat may be 
 generated inside the unit. The design must accommodate the worst case fault that can 
occur from both the mechanical and thermal standpoints.

The first step in designing transformers to withstand faults is to determine the fault 
currents in all the windings, which is the subject of this chapter. Since this is an electrical 
problem, it requires a circuit model that includes leakage impedances of the transformer 
and also relevant system impedances. The systems are typically represented by a volt-
age source in series with an impedance, since we are not interested here in detailed fault 
currents within the system external to the transformer. The transformer circuit model 
considered here is that of a 2- or 3-terminal-per-phase unit with all pairs of terminal 
leakage reactances given either from calculations or measurement. We ignore core exci-
tation since, for modern power transformers, its effects on the fault currents are 
negligible.

The transformers considered here are 3-phase units and the fault types treated are 
3-phase line to ground, single-phase line to ground, line to line, and double line to ground. 
These are the standard fault types and are important because they are most likely to occur 
on actual systems. The transformer must be designed to withstand the worst of these fault 
types, or rather each coil must be designed to withstand the worst (highest current) fault it 
can experience. Note that each fault type refers to a fault on any of the single-phase termi-
nals. For example, a 3-phase fault can occur on all the high-voltage (HV) terminals (H1, H2, 
and H3), all the low-voltage (LV) terminals (X1, X2, X3), or all the tertiary voltage terminals 
(Y1, Y2, Y3), etc., for the other fault types. Note also that faults on a single-phase system can 
be considered as 3-phase faults on a 3-phase system, so these are included automatically in 
the analysis of faults on 3-phase systems.

Since the fault types considered include faults that produce unbalanced conditions in a 
3-phase system, one of the most efficient methods of treating them is by the use of sym-
metrical components. In this method, an unbalanced set of voltages or currents can be 
represented mathematically by sets of balanced voltages or currents, called sequence volt-
ages or currents. These latter can then be analyzed by means of sequence circuit models. 

6
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The final results are then obtained by transforming the voltages and currents from the 
sequence analysis into the voltages and currents of the real system. This method has been 
introduced in the last chapter and we will use those results here. For easy reference, we 
will repeat the transformation equations between the normal-phase abc system and the 
symmetrical component 012 system.
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(6.2)

It should also be noted that the circuit model calculations discussed here are for steady-
state conditions, whereas actual faults would have a transient phase where the currents 
can exceed their steady-state values for short periods of time. These enhancement effects 
are included by means of an asymmetry factor. This factor takes into account the resistance 
and reactance present at the faulted terminal and is considered to be conservative from a 
design point of view. This enhancement factor was calculated in Chapter 2. The following 
references have been used in this chapter: [Ste62a], [Lyo37], [Blu51].

6.2  Fault Current Analysis on 3-Phase Systems

We assume that the system is balanced before the fault occurs, that is, any prefault volt-
ages and currents are positive sequence sets. Here we consider a general electrical sys-
tem as shown on the left side of Figure 6.1. The fault occurs at some location on the 
system where fault-phase currents Ia, Ib, and Ic flow. They are shown as leaving the sys-
tem in the figure. The voltages to ground at the fault point are labeled Va, Vb, and Vc. The 
system, as viewed from the fault point or terminal, is modeled by means of Thevenin’s 
theorem. First, however, we resolve the voltages and currents into symmetrical compo-
nents so that we need only analyze one phase of the positive, negative, and zero sequence 
sets. This is indicated on the right-hand side of Figure 6.1, where the a-phase sequence 
set has been singled out.

By Thevenin’s theorem, each of the sequence systems can be modeled as a voltage source 
in series with an impedance, where the voltage source is the open-circuit voltage at the 
fault point and the impedance is found by shorting all voltage sources and measuring or 
calculating the impedance to ground at the fault terminal. Note that, in applying Thevenin’s 
theorem, the fault point together with the ground point is the terminal that is associated 
with the open-circuit voltage before the fault. The load when the fault occurs is typically 
set to zero but may include a fault impedance. The resulting model is shown in Figure 6.2. 
No voltage source is included in the negative and zero sequence circuits, since the stan-
dard voltage sources in power systems are positive sequence sources.
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The circuit equations for Figure 6.2 are

 V E I V I V Ia a a a a aZ Z Z1 1 1 1 2 2 2 0 0 0= - = - = -, ,  (6.3)

Since E1 is the open-circuit voltage at the fault terminal, it is the voltage at the fault point 
before the fault occurs and can be labeled Vpf, where pf denotes prefault. We can omit the 
label 1 since it is understood to be a positive sequence voltage. We will also regard this as 
a reference phasor and use ordinary type for it. Thus

 V I V I V Ia pf a a a a aV Z Z Z1 1 1 2 2 2 0 0 0= - = - = -, ,  (6.4)

If there is some impedance in the fault, this could be included in the circuit model. However, 
because we are interested in the worst case faults (highest fault currents), we assume that 

System a
Va

Ia

Phase  a

System b
Vb

Ib

Phase  b

System c
Vc

Ic

Phase  c

System 1
Va1

Ia1

Positive
sequence

System 2
Va2

Ia2

Negative
sequence

System 0
Va0

Ia0

Zero
sequence

FIGURE 6.1
Fault at a point on a general electrical system.
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FIGURE 6.2
Thevenin equivalent sequence circuit models.
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the fault resistance is zero. If there is an impedance to ground at a neutral point in the 
transformer as, for example, at the junction of a Y-connected set of windings then 3× its 
value should be included in the single-phase zero sequence network at that point. This is 
because all three zero-sequence currents flow into the neutral resistor, but only one of them 
is represented in the zero sequence circuit.

The types of faults considered and their voltage and current constraints are shown in 
Figure 6.3.

6.2.1  3-Phase Line-to-Ground Fault

3-phase faults to ground are characterized by

 V V Va b c= = = 0  (6.5)

as shown in Figure 6.3a. From (6.5), together with (6.2), we find

 V V Va a a0 1 2 0= = =  (6.6)

Therefore, from (6.4) we get
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FIGURE 6.3
Standard fault types on 3-phase systems: (a) 3-phase line-to-ground fault, (b) single-phase line-to-ground fault, 
(c) line-to-line fault, and (d) double-line-to-ground fault.
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Using (6.7) and (6.1) applied to currents, we find

 I I I I I Ia a b a c c= = =1
2

1 1, ,a a  (6.8)

Thus the fault currents, as expected, form a balanced positive sequence set of magnitude 
Vpf/Z1. This example could have been carried out without the use of symmetrical compo-
nents, since the fault does not unbalance the system.

6.2.2  Single-Phase Line-to-Ground Fault

For a single-phase-to-ground fault, we assume, without loss of generality, that the a-phase 
is faulted. Thus we have

 V I Ia b c= = =0 0,  (6.9)

as indicated in Figure 6.3b. From (6.2) applied to currents, we get
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From (6.9), (6.10), and (6.4), we find

 V V V V Ia a a a pf aV Z Z Z= + + = - + +( ) =0 1 2 1 0 1 2 0  

or

 
I I Ia

pf
a a

V
Z Z Z

1
0 1 2

2 0=
+ +( )

= =
 

(6.11)

Using (6.9) and (6.10), we get
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However, we will keep both Z1 and Z2 in our formulas even though they are equal for 
transformers where Z1 = Z2.

Using these equations, we can also find the short-circuited phase voltages.
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(6.13)

We see that if all the sequence impedances were the same then, in magnitude, Vb = Vc = Vpf. 
However, their phases would differ.
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6.2.3  Line-to-Line Fault

A line-to-line fault can, without loss of generality, be assumed to occur between lines b and c 
as shown in Figure 6.3c. The fault equations are

 V V I I Ib c a c b= = = -, ,0  (6.14)

From (6.2) applied to voltages and currents, we get

 V V I I Ia a a a a1 2 0 2 10= = = -, ,  (6.15)

Using (6.4) and (6.15), we find

 

V V V V I

I I I

a a a pf a

a
pf

a a

Z Z

or
V

Z Z

0 1 2 1 1 2

1
1 2

2 0

0 0

0

= - = = - +( )

=
+( )

= - =

,

,
 

(6.16)

Using (6.1) applied to currents, (6.15), and (6.16), we obtain
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We can also find the short-circuited phase voltages by these methods.
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(6.18)

We notice that the fault analysis does not involve the zero-sequence circuit, that is, there 
are no zero-sequence currents. The fault currents flow between the b and c-phases. Also for 
transformers, Z1 = Z2 so Va = Vpf.

6.2.4  Double Line-to-Ground Fault

The double line-to-ground fault, as shown in Figure 6.3d, can be regarded as involving 
lines b and c without loss of generality. The fault equations are

 V V Ib c a= = =0 0,  (6.19)

From (6.19) and (6.2), we find
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Using (6.4) and (6.20),
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so that, using  (6.4),
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Substituting into (6.1) applied to currents, we obtain
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From (6.23), the fault phase voltages are given by
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(6.24)

We see that if all the sequence impedances were equal, then Va = Vpf.

6.3  Fault Currents for Transformers with Two Terminals per Phase

A 2-terminal transformer can be modeled by a single leakage reactance that we call zHX 
where H and X indicate high- and low-voltage terminals. All electrical quantities from this 
point on will be taken to mean per-unit quantities and will be written with small letters. 
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This will enable us to describe transformers, using a single circuit without the ideal trans-
former for each sequence.

The high- and low-voltage systems external to the transformer are described by system 
impedances zSH and zSX and voltage sources eSH and eSX. In per-unit terms, the 2-voltage 
sources are the same. The resulting sequence circuit models are shown in Figure 6.4. 
Subscripts 0, 1, and 2 are used to label the sequence circuit parameters since they can differ, 
although the positive and negative circuit parameters are equal for transformers but not 
necessarily for the systems. We have shown a fault on the X terminal in Figure 6.4. By inter-
changing subscripts, the H terminal faults can be obtained. In addition to the voltage 
source on the H system, we also show a voltage source attached to the X system. This could 
be a reasonable simulation of the actual system or it can simply be regarded as a device for 
keeping the voltage va1 at the fault point at the rated per-unit value. This also allows one to 
consider cases where zSX is small or zero in a limiting sense.

In order to use the previously developed general results, we need to compute the 
Thevenin impedances and prefault voltage at the fault point. From Figure 6.4, we see that
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(6.25)

and, since we are ignoring prefault currents,

 v epf SH= =1 1  (6.26)

where the prefault (pf) voltages are all positive sequence. The prefault voltage at the fault 
point will be taken as the rated voltage of the transformer and, in per-unit terms, is equal 
to 1. Figure 6.4 and the previously mentioned formulas assume that both terminals are 

zSX0

iSX0iHX0
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va0zHX0zSH0

(c)

zSX2zHX2

iSX2iHX2
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ia2
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(b)

zSX1zHX1

iSX1
iHX1

eSH1

zSH1

ia1

va1

eSX1

(a)

FIGURE 6.4
Sequence circuits for a fault on the low voltage, X, terminal of a 2 terminal-per-phase transformer, using per-unit 
quantities: (a) positive sequence, (b) negative sequence, and (c) zero sequence.
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connected to the HV and LV systems. If it is desired not to consider the LV system attached 
beyond the fault point, then the Thevenin impedances become

 z z z z z z z z zHX SH HX SH HX SH1 1 1 2 2 2 0 0 0= + = + = +, ,  (6.27)

On the computer, this could be accomplished by setting zSX1, zSX2, and zSX0 to large values 
in (6.25), that is, open circuited. Thus, considering the LV system not attached beyond 
the fault point amounts to assuming that the faulted terminal is open circuited before 
the fault occurs. In fact the terminals associated with all three phases of the faulted 
 terminal or terminals are open before the fault occurs. After the fault, one or more 
 terminals are grounded or connected, depending on the fault type. The other terminals, 
corresponding to the other phases remain open when the system is not connected 
beyond the fault point.

It is sometimes desirable to let the system impedances equal zero. This increases the 
severity of the fault and is sometimes required for design purposes. This is not a problem 
mathematically for the system impedances on the nonfaulted terminal. But with zero- 
system impedances on the faulted terminal, Equation 6.25 shows that the Thevenin imped-
ances would all equal zero unless one considered the system not attached beyond the fault 
point and used (6.27). Therefore, in this case, if one wants to consider the system attached 
beyond the fault point, one must give the system impedances very small values. In this 
way, continuity is assured when transitioning from rated system impedances to very small 
system impedances. Otherwise, there could be a discontinuity in the fault currents if one 
abruptly switches to a system connected to one not connected beyond the fault point just 
because the system impedances become small.

Much simplification can be achieved when the positive and negative system impedances 
are equal, since z1 = z2 implies zHX1 = zHX2 for transformers. We will calculate the sequence 
currents for the general case where all the sequence impedances are different. One can then 
apply (6.1) expressed in terms of currents to get the phase currents for the general case. 
However, in this last step, we will assume the positive and negative impedances are the 
same. This will simplify the formulas for the phase currents and is closer to the real situa-
tion for transformers.

To obtain the currents in the transformer during the fault, according to Figure 6.4, we 
need to find iHX1, iHX2, and iHX0 for the standard faults. Since ia1, ia2, and ia0 have already been 
obtained for the standard faults, we must find the transformer currents in terms of these 
known fault currents. From Figure 6.4, using (6.26), we see that
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Substituting the per-unit version of (6.4) into (6.28), we obtain
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6.3.1  3-Phase Line-to-Ground Fault

For this fault case, we substitute the per-unit version of (6.7) into (6.29) to obtain
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Then, using (6.1) applied to currents, we find

 i i i i i iHXa HX HXb HX HXc HX= = =1
2

1 1, ,a a  (6.31)

that is, the fault currents in the transformer form a positive sequence set as expected.

6.3.2  Single-Phase Line-to-Ground Fault

For this type of fault, substitute the per-unit versions of (6.11) into (6.29), to obtain
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(6.32)

If the system beyond the fault point is neglected, Equation 6.32 becomes, using (6.27),
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Substituting (6.32) into (6.1) applied to currents, we obtain the phase currents, assuming 
the positive and negative system impedances are equal or zero,
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If we ignore the system beyond the fault point, Equation 6.34 becomes upon substituting 
from (6.27),
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This can also be seen directly from (6.33). This makes sense because according to (6.12), we 
see that all the fault current flows through the transformer and none is shared with the 
system side of the fault point.

Note that, if the system impedance beyond the fault point is not ignored, there is fault 
current in phases b and c inside the transformer even though the fault is on phase a. These 
b and c fault currents are of lower magnitude than the phase a fault current.

6.3.3  Line-to-Line Fault

For this type of fault, we substitute the per-unit versions of (6.16) into (6.29) to obtain
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If we ignore the system beyond the fault point, this becomes, using (6.27),
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Using (6.1) applied to currents and (6.36), we obtain for the phase currents, assuming the 
positive and negative system impedances are equal or zero,
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If we ignore the system beyond the fault point, Equation 6.38 becomes
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In this case, with the fault between phases b and c, phase a is unaffected. Also, as seen from 
(6.36) and (6.37), no zero sequence currents are involved in this type of fault.

6.3.4  Double Line-to-Ground Fault

For this fault, we substitute (6.22) expressed in per-unit terms, into (6.29),
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If we ignore the system beyond the fault point, Equation 6.40 becomes
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Using (6.1), applied to currents, and (6.40) we get for the phase currents, assuming equal 
positive and negative system impedances or zero system impedances,
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(6.42)

If we ignore the system beyond the fault point, using (6.27) and (6.41), (6.42) becomes
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6.3.5  Zero-Sequence Circuits

Zero-sequence circuits require special consideration since certain transformer 3-phase con-
nections, such as the delta connection, block the flow of zero sequence currents at the ter-
minals and hence provide an essentially infinite impedance to their passage. This is also 
true of the ungrounded Y connection. The reason is that the zero sequence currents, being 
all in phase, require a return path in order to flow. The delta connection provides an inter-
nal path for the flow of these currents, circulating around the delta, but blocks their flow 
through the external lines. These considerations do not apply to positive- or negative-
sequence currents which sum to zero vectorially and so require no return path.

For transformers, since the amp-turns must be balanced for each sequence, in order for 
zero-sequence currents to be present, they must flow in both windings. Thus in a grounded 
Y-Delta unit, for example, zero-sequence currents can flow within the transformer but can-
not flow in the external circuit connected to the delta side. Similarly, zero-sequence cur-
rents cannot flow in either winding if one of them is an ungrounded Y.

Figure 6.5 shows some examples of zero-sequence circuit diagrams for different trans-
former connections. These should be compared with Figure 6.4c that applies to a grounded 
Y/grounded Y connection. Where a break in a line occurs, imagine that an infinite imped-
ance is inserted. Mathematically, this is accomplished by letting the impedance approach 
infinity as a limiting process in the formulas or set to a very large value.

For the connection in Figure 6.5a, because the fault is on the delta side terminals, no zero 
sequence can flow into these terminals. The Thevenin impedance, looking in from the fault 
point, is z0 = zSX0. In this case, no zero sequence current can flow in the transformer and 
only flows in the external circuit on the LV side.

For the connection in Figure 6.5b, we find z0 = zHX0zSX0/(zHX0+zSX0), that is, the parallel 
combination of zHX0 and zSX0. In this case, zero-sequence current flows in the transformer, 
but no zero-sequence current flows into the system impedance on the HV side.

In Figure 6.5c, because of the ungrounded Y connection, no zero sequence current flows 
in the transformer. This would be true regardless of which side of the transformer has an 
ungrounded Y connection. In Figure 6.5d, no zero sequence current can flow into the trans-
former from the external circuit so effectively no zero sequence current flows in the 
transformer.

Another issue is the value of the zero sequence impedances themselves when they are 
fully in the circuit. These values tend to differ from the positive sequence impedances in 
transformers because the magnetic flux patterns associated with them can be quite 

zSH0 zHX0 zSX0

(a)

zSH0 zHX0 zSX0

(b)

zSH0 zSX0zHX0

(c)

zSH0 zSL0zHX0

(d)

FIGURE 6.5
Some examples of zero-sequence impedance diagrams for 2-terminal transformers. The arrow indicates the fault 
point. (a) Yg/delta, (b) delta/Yg, (c) Yg/Yu, and (d) delta/delta. Yg = grounded Y and Yu = ungrounded Y.



120 Transformer Design Principles

different from the positive sequence flux pattern. This difference is taken into account by 
multiplying factors that multiply the positive sequence impedances to produce the zero 
sequence values. For 3-phase core-form transformers, these multiplying factors tend to be 
≈0.85; however, they can differ for different 3-phase connections and are usually found by 
experimental measurements.

We should also note that if there is an impedance between the neutral and ground, for 
example, at a Y connected neutral, then 3 times this impedance value should be added to 
the zero-sequence transformer impedance. This is because identical zero-sequence current 
flows in the neutral from all three phases, so to account for the single-phase voltage drop 
across the neutral impedance, its value must be increased by a factor of 3 in the  single-phase 
circuit diagram.

6.3.6  Numerical Example for a Single Line-to-Ground Fault

As a numerical example, consider a single line-to-ground fault on the X terminal of a 
24 MVA 3-phase transformer. Assume the H and X terminals have line-to-line voltages of 
112 and 20 kV respectively and that they are connected Delta and grounded-Y. Let 
zHX1 = 10%, zHX0 = 8%, zSH1 = zSX1 = 0.01%, zSH0 = 0%, and zSX0 = 0.02%. The system imped-
ance on the HV side was set to zero because it is a Delta winding. It is perhaps better to 
work on per-unit values by dividing these impedances by 100. But if we work with per-
unit impedances in percentages, then we must also set vpf = 100%, assuming it has its rated 
value. This will give us fault currents in per unit (not percentages). Then we get from 
(6.25), assuming the system connected beyond the fault point, z1 = 9.99 × 10−3% and 
z0 = 1.995 × 10−2%. Solving for the currents from (6.34), we get iHXa = 11.24, iHXb = 3.746, 
iHXc = 3.746. These currents are per-unit values and are not percentages. For a 45 MVA 
3-phase transformer with a high voltage Delta-connected winding with a line-to-line volt-
age of 112 kV, the base MVA per phase is 15, and the base winding voltage is 112 kV. Thus 
the base current is (15/112) × 103 = 133.9 amps. Thus, the fault currents on the high voltage 
side of the transformer are IHXa = 1505 amps, IHXb = 501.7 amps, and IHXc = 501.7 amps.

If we assume the system is not connected beyond the fault point, then we get from (6.27) 
z1 = 10.01% and z0 = 8% so that from (6.35), we get iHXa = 10.71 and IHXa = 1434 amps. The 
other phase currents are zero. This a-phase current is a bit lower than the a-phase current 
when assuming the system is connected beyond the fault point.

6.4  Fault Currents for Transformers with Three Terminals per Phase

A 3-terminal transformer can be represented in terms of three single winding impedances. 
Figure 6.6 shows the sequence circuits for such a transformer where H, X, and Y label the 
transformer impedances and SH, SX, and SY label the associated system impedances. Per-
unit quantities are shown in the figure. The systems are represented by impedances in 
series with voltage sources. The positive sense of the currents is into the transformer termi-
nals. Although the fault is shown on the X-terminal, by interchanging subscripts, the for-
mulas that follow can apply to faults on any terminal. As before, we label the sequence 
impedances with subscripts 0, 1, and 2 even though the positive- and negative-sequence 
impedances are equal for transformers. They are not necessarily equal for the systems. The 
zero-sequence impedances usually differ from their positive-sequence counterparts for 
transformers as well as for the systems.
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We will calculate the sequence currents assuming possible unequal sequence impedances; 
however, we will calculate the phase currents assuming equal positive- and  negative-system 
impedances. This is true for transformers and transmission lines. This would also be true 
for the case where small or zero-system impedances are assumed. This latter situation is 
often a requirement in fault analysis. Equation 6.1 could be applied to the sequence cur-
rents to get the phase currents if it is desired to obtain the fault currents for the case where 
all the sequence impedances are unequal.

From Figure 6.6, the Thevenin impedances, looking into the circuits from the fault 
point, are
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FIGURE 6.6
Sequence circuits for a fault on the X terminal of a 3-terminal per phase transformer, using per-unit quantities: 
(a) positive-sequence circuit, (b) negative-sequence circuit, and (c) zero-sequence circuit.
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If the system beyond the fault point is ignored, the Thevenin impedances become

 z z w z z w z z wX X X1 1 1 2 2 2 0 0 0= + = + = +, ,  (6.45)

where the w’s remain the same. This amounts mathematically to setting zSX1, zSX2, and zSX0 
equal to large values. When it is desired to set the system impedances to zero, then, as was 
the case for 2-terminal transformers, the system impedances must be set to small values if 
we wish to consider the system connected beyond the fault point.

At this point, we should consider some common transformer connections or condi-
tions that require special consideration, including changes in some of the said imped-
ances. For example, if one of the terminals is not loaded, then this amounts to setting the 
system impedance for that terminal to a large value. The large value should be infinity, 
but since these calculations are usually performed on a computer, we just need to make 
it meaningfully large compared with the other impedances. If the unloaded terminal is 
the faulted terminal, then this results in changing z1 and z2 to the values in (6.45). In other 
words, this is equivalent to ignoring the system beyond the fault point. If the unloaded 
terminal is an unfaulted terminal, then w1 and w2 will be changed when zSH1 and zSH2 or 
zSY1 and zSY2 are set to large values. This amounts to having an open circuit replace that 
part of the positive- or negative-system circuit associated with the open terminal. If the 
open terminal connection is a Y connection, then the zero-sequence system impedance 
should also be set to a large value and the zero-sequence circuit associated with the 
unloaded terminal becomes an open circuit. This will change w0. However, if the open 
circuit is delta connected, as for a buried delta connection, then the system zero sequence 
impedance should be set to zero. This will also change w0 but only slightly. This is 
because zero-sequence currents can circulate in delta-connected windings even with an 
open terminal situation, whereas zero-sequence currents cannot flow in Y-connected 
windings if the terminals are unloaded.

Working in the per-unit system, the prefault voltages are given by

 v e e epf SH SX SY= = = =1 1 1 1 (6.46)

We are ignoring prefault currents, which can always be added later. We assume all the 
prefault voltages are equal to their rated values or 1 in per-unit terms. We also have

 i i iH X Y+ + = 0 (6.47)

This last equation applies to all the sequence currents. From Figure 6.6, the sequence volt-
ages at the faulted terminal are
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Solving (6.48), together with (6.44), (6.46), (6.47), and (6.4) expressed in per-unit terms, for 
the winding sequence currents in terms of the fault sequence currents, we obtain
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(6.49)

If we ignore the system beyond the fault point, using (6.45), we get for (6.49)
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(6.50)

We now use these equations, together with the fault current equations to obtain the cur-
rents in the transformer for the various types of fault. Equation 6.1, applied to currents, 
may be used to obtain the phase currents in terms of the sequence currents.

6.4.1  3-Phase Line-to-Ground Fault

For this type of fault, we substitute the per-unit version of (6.7) into (6.49) to obtain
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If we ignore the system beyond the fault point, we get the same sequence equations as 
(6.51). Thus, the system beyond the fault has no influence on 3-phase fault currents. The 
phase currents corresponding to (6.51) are
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(6.52)

These form a positive sequence set as expected for a 3-phase fault.

6.4.2  Single-Phase Line-to-Ground Fault

For this fault, we substitute the per-unit version of (6.11) into (6.49) to get
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These equations simplify by omitting the second term on the right side of each of the equations 
in (6.53) if the system beyond the fault point is ignored. We give them here for completeness:
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Using the per-unit version of (6.1), we can obtain the phase currents from (6.53), assuming 
equal positive- and negative-system impedances,
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We have used the fact that α2 + α + 1 = 0, along with w1 = w2 and z1 = z2 to obtain (6.55).
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For the case where the system beyond the fault point is ignored, again, restricting our-
selves to the case where the positive- and negative-sequence impedances are equal, the 
phase currents are given by using (6.54):
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(6.56)

6.4.3  Line-to-Line Fault

For this fault condition, substitute the per-unit version of (6.16) into (6.49), to obtain
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Ignoring the system beyond the fault point, Equation 6.57 becomes
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(6.58)

Using the per-unit version of (6.1), we can obtain the phase currents from (6.57), assuming 
equal positive- and negative-system impedances:
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(6.59)

For the case where we ignore the system beyond the fault point, we can obtain the phase 
currents from (6.58):
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6.4.4  Double Line-to-Ground Fault

For this fault, substitute the per-unit version of (6.22) into (6.49) to get
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(6.61)

where Δ = z0z1 + z0z2 + z1z2.
For the system not attached beyond the fault point, Equation 6.61 becomes, using (6.45),
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The phase currents, for the case where the system is connected beyond the fault point and 
assuming equal positive- and negative-sequence impedances are obtained from (6.61) and 
(6.1) applied to currents:
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For the case where the system is not connected beyond the fault point, Equation 6.63 
becomes, using (6.45),
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6.4.5  Zero-Sequence Circuits

Figure 6.7 lists some examples of zero-sequence circuits for 3-terminal transformers. An 
infinite impedance is represented by a break in the circuit. When substituting into the pre-
ceding formulas, a large enough value needs to be used. Although there are many more 
possibilities than shown in Figure 6.7, they can serve to illustrate the method for account-
ing for the different 3-phase connections. The zero-sequence circuit in Figure 6.6c repre-
sents a transformer with all grounded Y terminal connections.

In Figure 6.7a, we have zX0 → ∞, so that no zero-sequence current flows into the trans-
former. This can also be seen from the formulas in (6.49).

In Figure 6.7b, we see that zH0 → ∞ since no zero-sequence current flows into an 
ungrounded Y-connected winding. This implies that w0 = zY0 + zSY0, that is, the parallel 
combination of the H and Y impedances is replaced by the Y impedances.

In Figure 6.7c, no zero-sequence current flows into or out of the terminals of a delta 
winding so the delta terminal system impedance must be set to zero. This, however, allows 
current to circulate within the delta.

In Figure 6.7d, we see that zero-sequence current flows in all the windings but not out of 
the HV delta winding terminals. We just need to set zSH0 = 0 in all the formulas. This only 
affects w0.
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6.4.6  Numerical Example

At this point, let us calculate the fault currents for a single line-to-ground fault on the X 
terminal. This is a common type of fault. Consider a Grounded-Y (H), Grounded-Y (X), 
buried Delta (Y) transformer. The transformer has a 3-phase MVA = 45 (15 MVA/phase). 
The line-to-line terminal voltages are H: 125 kV, X: 20 kV, Y: 10 kV. The base winding cur-
rents are, therefore, IbH = 15/72.17 × 103 = 207.8 amps, IbX = 15/11.55 × 103 = 1299 amps, and 
IbY = 15/10 × 103 = 1500 amps.

The winding-to-winding leakage reactances are given in Table 6.1.

zSH0 zH0

zSX0

zY0 zSY0

(a)

zSH0

zX0 zSX0

zY0 zSY0

(b)

zSH0 zH0

zX0 zSX0

zY0 zSY0

(c)

zSH0 zH0

zSX0

zY0 zSY0

zX0

(d)

FIGURE 6.7
Some examples of zero-sequence circuit diagrams for 3-terminal transformers. The arrow indicates the fault 
point. (a) Yg/Yu/Yg, (b) Yu/Yg/Yg, (c) Yg/Yg/delta, and (d) delta/Yg/Yg. Yg = grounded Y, Yu = ungrounded Y.
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From these, we calculate the single winding leakage reactances as
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We are dropping the subscript 1 in these calculations for the positive/negative reactances. We 
are assuming that the zero-sequence reactances are 0.85 times the positive/negative reac-
tances. This factor can vary with the winding connection and other factors and is usually 
determined by experience. The zero-sequence reactances can also be measured.

Because the Y winding is a buried delta, no positive- or negative-sequence currents can 
flow into the terminals of this winding. Therefore, it is necessary to set zSY to a large value 
in the formulas. Zero sequence current can circulate around the delta, so zSY0 is set to zero.

We do not want to consider system impedances in our calculations. However, if we con-
sider the system connected beyond the fault point, we need to set them to very small val-
ues as discussed previously. Considering the system not attached beyond the fault point 
amounts to having the faulted terminal unloaded before the fault occurs. We will do the 
calculation both ways.

We will assume system impedances of
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Again, the large value for zSY and zero value for zSY0 are necessary because it is a buried 
delta. We are assuming here that the system zero sequence reactances are a factor of 2 times 
the system positive/negative sequence reactances. This is a reasonable assumption for 
transmission lines since these constitute a major part of the system [Ste62a]. Using these 
values, we obtain, from (6.44)

 w w1 011 00088 5 23663= =. %, . % 

TABLE 6.1

Leakage Reactances for a Yg, Yg; Delta Transformer

Winding 1 Winding 2 Pos/Neg Leakage Reactance (%) Zero Seq Leakage Reactance (%)

H X 12 zHX 10.2 zHX0

H Y 25 zHY 21.25 zHY0

X Y 15 zXY 12.75 zXY0
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For the system connected beyond the fault point, we get from (6.44)

 z z1 00 001 0 002= =. %, . % 

and for the system not connected beyond the fault point we obtain from (6.45)

 z z1 012 00088 6 08663= =. %, . % 

Using these values, along with the impedances in Table 6.1, we can calculate the per-unit 
phase and phase currents in the transformer from (6.53) through (6.56) for the two cases. 
Since we are working with percentages, we need to set vpf = 100%. These currents are given 
in Table 6.2 for the two cases.

The per-unit values in Table 6.2 are not percentages. They should sum to zero for each 
phase. These values would differ somewhat if different multiplying factors were used to 
get the zero-sequence winding impedances.

The currents are somewhat lower for the system not connected beyond the fault point 
compared with the currents for system connected beyond the fault point. In fact, the delta 
winding current is significantly lower. These results do not change much as the system 
impedances increase towards their rated values in the 1% range. Thus, the discontinuity in 
the currents between the two cases remains as the system sequence impedances increase. 
If the system is considered connected while its impedance has its rated value, it would 
appear awkward to consider the system disconnected when the system impedances 
approach zero.

TABLE 6.2

Per-Unit and Phase Currents Compared for System Connected or Not Connected 
beyond the Fault Point and Small System Impedances

Phase a Phase b Phase c

System connected beyond fault
Per-unit currents
H 8.766 2.516 2.516
X −12.380 −6.130 −6.130
Y 3.614 3.614 3.614

Phase currents
H 1822 523 523
X −16,082 −7,963 −7,963
Y 5422 5422 5422
System not connected beyond fault
Per-unit currents
H 8.508 −1.463 −1.463
X −9.971 0 0
Y 1.463 1.463 1.463

Phase currents
H 1768 −304 −304
X −12,952 0 0
Y 2194 2194 2194
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These currents do not include the asymmetry factor, which accounts for initial transient 
effects when the fault occurs. This is discussed in the next section.

6.5  Asymmetry Factor

A factor multiplying the currents calculated above is necessary to account for a transient 
overshoot when the fault occurs. This factor, called the asymmetry factor has been dis-
cussed in Chapter 2. It is given by
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(6.65)

where
x is the reactance looking into the terminal
r is the resistance
ϕ = tan−1(x/r) in radians

Usually, the system impedances are ignored when calculating these quantities so that for a 
2 terminal unit,
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while for a 3-terminal unit with a fault on the X terminal,
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with corresponding expressions for the other terminals should the fault be on them. When 
K in (6.65) multiplies the rms short-circuit current, it yields the maximum peak short- 
circuit current.
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Phase-Shifting and Zigzag Transformers

7.1  Introduction

Phase-shifting transformers are used in power systems to help control power flow and line 
losses. They shift the input voltages and currents by an angle, which can be adjusted by 
means of a tap changer. They operate by adding a voltage at ±90° to the input voltage, that 
is, in quadrature. For 3-phase transformers, the quadrature voltage to be added to a given 
phase voltage can be derived by interconnecting the other phases. The many ways of doing 
this give rise to a large number of configurations for these transformers. We will deal with 
only a few common types here. Phase shifting capability can be combined with voltage 
magnitude control in the same transformer. This results in a more complex unit, involving 
two sets of tap changers, which we do not discuss here.

An example of their use can be seen by considering the feeding of a common load from 
two voltage sources, which could be out of phase with each other as shown in Figure 7.1. 
Solving for the currents, we get
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(7.1)

where K = Z1Z2 + Z1ZL + Z2ZL. The current into the load, IL, is
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(7.2)

and the voltage across the load, VL, is

 
V V I V VL

LZ
Z
K

Z Z= - = +( )1 1 1 1 2 2 1
 

(7.3)

Thus, the complex power delivered to the load is
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(7.4)

where * denotes complex conjugation.
Consider the case where Z1 = Z2 = Z, V1 = V, V2 = Vejθ. Then (7.4) becomes
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Thus, it can be seen that the maximum power is transferred when θ = 0. In this case, a-phase-
shifting transformer could be used to adjust the phase of V2 so that it equals that of V1.

In modern power systems, which are becoming more and more interconnected, the need 
for these devices is growing. Other methods for introducing a quadrature voltage are being 
developed, for instance by means of power electronic circuits in conjunction with ac–dc 
converters. These can act much faster than on-load tap changers. However, at present they 
are more costly than phase-shifting transformers and are used primarily when response 
time is important. (Electronic on-load tap changers are also being developed for fast 
response time applications.)

In this chapter, we develop a circuit model description for three common types of phase-
shifting transformer. This is useful in order to understand the regulation behavior of such 
devices, that is, how much the output voltage magnitude and phase change when the unit 
is loaded as compared with the no-load voltage output. In the process, we also find how 
the phase angle depends on tap position, a relationship that can be nonlinear. In addition 
to the positive sequence circuit model, which describes normal operation, we also deter-
mine the negative and zero sequence circuit models for use in short-circuit fault current 
analysis. The latter analysis is carried out for the standard types of fault for two of the 
phase-shifting transformers.

Very little has been published on this subject in the open literature beyond general inter-
connection diagrams and how they are used in specific power grids. However, two 
 references that emphasize basic principles are [Hob39], [Cle39]. Other useful references are 
[Kra98], [Wes64].

7.2  Basic Principles

The basic principles have been discussed in earlier chapters, but we repeat some of them 
here for easier reference. We neglect exciting current and model the individual phases in 
terms of their leakage impedances. For a 2-winding phase, we use the circuit model shown 
in Figure 7.2. Z12 is the 2-winding leakage impedance referred to in side 1. Most of the 
development described here is carried out in terms of impedances in ohms. Because of dif-
ferences in per-unit bases for the input and winding quantities, per-unit quantities are not 
as convenient in the analysis. At the appropriate place, we indicate where per-unit quanti-
ties might prove useful. The currents are assumed to flow into their respective windings. 

V1 V2

Z1 Z2

ZL

I1 I2

FIGURE 7.1
Two possibly out-of-phase sources feeding a common load.
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With N1 equal to the number of turns on side 1, and N2 the number of turns on side 2, the 
ideal transformer voltages satisfy
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and the currents satisfy
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For 3 windings per phase, we use the model shown in Figure 7.3. In this case, the ideal 
transformer voltages satisfy
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and the currents satisfy

 N N N1 1 2 2 3 3 0I I I+ + =  (7.9)

The single-winding impedances are given in terms of the 2-winding impedances by
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Here, the 2-winding impedances are referred to the winding corresponding to the first 
subscript, and the second subscript refers to the winding, which would be shorted when 
 measuring the impedance. To refer impedances to the opposite winding, use
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V1

Z12

E1 E2

I1 I2N1 : N2

FIGURE 7.2
Model of a 2-winding transformer phase.
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For a 3-phase system, the positive sequence quantities correspond to the ordering of the 
unit phasors shown in Figure 7.4. Letting

 
a = = - +°e jj120 1

2
3

2  
(7.12)

the ordering is 1, α2, α. This corresponds to the phase ordering a, b, c for the windings and 
1, 2, 3 for the terminals. Negative sequence ordering is 1, α, α2, which corresponds to the 
phase ordering a, c, b or 1, 3, 2. This is obtained by interchanging two phases. Note that
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Zero sequence quantities are all in phase with each other.
Our interconnections will be chosen to produce a positive phase shift at a positive tap 

setting. By interchanging two phases, a negative phase shift can be produced at a positive 
tap setting. Interchanging two phases is equivalent to inputting a negative sequence set of 
voltages. This implies that negative sequence circuits have the opposite phase shift to posi-
tive sequence circuits. Zero sequence circuits have zero phase shift. By positive phase shift, 
we mean that output voltages and currents lead input voltages and currents, that is, output 
quantities are rotated counterclockwise on a phasor diagram relative to input quantities.

V1

Z1

E1

I1 N1

V2

Z2

E2

I2 N2

V3

Z3

E3

I3 N3

FIGURE 7.3
Model of a 3-winding transformer phase. The vertical lines connecting the circuits represent the common core.
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7.3  Squashed Delta-Phase-Shifting Transformer

One of the simplest phase shifters to analyze is the squashed delta configuration shown in 
Figure 7.5. In the figure, S labels the source or input quantities and L the load or output quan-
tities. The input and output set of voltages and corresponding currents form a balanced 
 positive sequence set. In this study, we are taking the S currents as positive into the terminals 
and the L currents as positive out of the terminals. The input and output voltage phasor dia-
gram is shown in Figure 7.5b. These are voltages to ground. The currents form a similar set 
but are not shown. Similarly, the internal voltages and corresponding currents form a posi-
tive sequence set as shown in Figure 7.5c for the voltages. Note that Figure 7.5b and c could 
be rotated relative to each other if shown on a common phasor diagram. a and a′, etc., refer 
to windings on the same leg, with the prime labeling the tapped winding. The 2-winding 
impedances will be referred to the unprimed coil, that is, Zaa′, etc. Since these impedances are 
all the same for the different phases, we need only this one symbol. This transformer can be 
designed with a single 3-phase core and is referred to generically as a single core design.

Using the 2-winding-per-phase model described in the last section, adapted to the pres-
ent labeling scheme, and concentrating on one input–output pair, we can write
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In these equations, the 2-winding leakage impedance is assigned to the unprimed side of 
the transformer. We also have the transformer relations
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where we have defined n = Na/Na′, the turns ratio. We also have the following relationships:
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FIGURE 7.4
Positive sequence unit phasors.
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It is worthwhile going into the details of the solution of these equations since we will need 
some of the intermediate results later. We assume that VS1 and IS1 are given. From (7.14) 
and (7.15), we obtain
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We also have
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Since n is determined by the tap position, this shows that θ is a nonlinear function of the 
tap position, assuming the taps are evenly spaced.

VS1
VL1

VS3
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Ea΄

Eb΄
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IS1 IL1
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IL2

Ia΄

Ib
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Ib΄

Ic΄

Ic

(a)
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Ea΄

Ec

Ec΄

Eb Eb΄

(c)

VS1

VL1

VL2

VS2

VS3

VL3

θ

(b)

FIGURE 7.5
Squashed delta configuration with phase quantities labeled. The ideal transformer voltages, E, increase in the 
opposite direction to the assumed current flow. θ is a positive phase shift angle. (a) Circuit, (b) input and output 
phasors, and (c) internal phasors.
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Adding Equations 7.16 and using (7.14),
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Solving for Ec, using (7.17),
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Combining with the first of Equations 7.14 and 7.15, we obtain
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where θ is given in (7.18). Although the current is shifted by θ in all cases, in general the 
voltage is shifted by θ only under no-load conditions.

The circuit model suggested by (7.20) is shown in Figure 7.6. This applies to all three phases 
with appropriate labeling. The equivalent impedance shown in Figure 7.6 is given by
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Figure 7.6 is a positive sequence circuit model. The negative sequence model is obtained 
simply by changing θ to −θ with Zeq unchanged.

While the input power per phase is Pin S S
*= V I1 1, the transformed or winding power per 

phase, Pwdg, is somewhat less. Ignoring impedance drops, we have from (7.17) and (7.19)
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where the factor of j shows that the transformed power is in quadrature with the input 
power. As a numerical example, let θ = 30°. Then, from (7.18) and (7.22),
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VS1

Zeq
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IS1 IL11: ejθ

FIGURE 7.6
Circuit model of one phase of a-phase-shifting transformer. This is for positive sequence. For negative sequence, 
change θ to −θ.
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We can express (7.20) in per-unit terms; however, because of the difference between the 
input power and voltage base and that of the windings, we must be careful to specify the 
base used. As usual, the power base is taken to be the terminal power base. This is the ter-
minal power per phase. Thus the rated input power base is Pb,in. The rated input voltage, 
Vb,in, and the rated input current, which can be derived from the power and voltage base, 
Ib,in = Pb,in/Vb,in. Similarly, the input impedance base can be derived from the power and 
voltage base, Zb,in = Vb,in/Ib,in = (Vb,in)2/Pb,in. Because the transformation ratio is 1:1 in terms 
of magnitude, the output base values are the same as the input base values. Thus (7.20) can 
be written as
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where small letters are used to denote per-unit quantities.
Assuming the rated input power per phase is the common power base, the winding 

impedance and input impedance bases are proportional to the square of the respective 
voltages magnitudes. Using (7.19), and ignoring impedance drops,
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Thus, zeq can be expressed as, using (7.21),
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where
zeq is on an input base
zaa′ is on a winding base

Note that the winding base depends on the turns ratio as indicated in (7.25). Thus, this base 
is perhaps most useful for design purposes when n refers to the maximum phase angle. At 
the other extreme, with θ = 0, we have n = ∞, so that Zeq = zeq = 0. In this case, the input is 
directly connected to the output, bypassing the coils.

7.3.1  Zero Sequence Circuit Model

The zero sequence circuit model may be derived with reference to Figure 7.5, but assuming 
all quantities are zero sequence. Thus, Figure 7.5b and c should be replaced by diagrams with 
all phasors in parallel. Using a zero subscript for zero sequence quantities, we can write
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and
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Since Ib,0 = Ic,0, Equation 7.27 shows that

 I IL S1 0 1 0, ,=  (7.29)

so the current is not phase shifted. We also have
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Solving the above zero sequence equations, we obtain
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and
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The circuit model for this last equation is shown in Figure 7.7, where we have defined
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This has a different dependence on n from the positive sequence circuit. It becomes infinite 
when n = 1. This is reasonable, because from (7.28) Ia′,0 = −Ic,0 when n = 1 so that from (7.27) 
IS1,0 = 0. Thus, no zero sequence current can flow into the squashed delta transformer when 
n = 1. Internal current can, however, circulate around the delta. From (7.18), θ = 60° when 
n = 1.

VS1,0

Zeq,0

VL1,0

IS1,0 IL1,0

FIGURE 7.7
Zero sequence circuit model of one phase of a squashed delta-phase-shifting transformer.
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Equation 7.32 can be written in per-unit terms referring to the same input base as used 
for positive sequence.

 v v iL S eq Sz1 0 1 0 0 1 0, , , ,= -  (7.34)

Using the positive sequence winding base for the 2-winding zero sequence impedance, 
Zaa′,0 we can write

 
z

n

n n n
zeq aa, ,0

2

2 2 0
3

1 1
=

+ +( ) -( )
¢

 
(7.35)

We postpone a discussion of regulation effects and short-circuit current calculations until 
other types of phase-shifting transformers are treated. This is because the positive,  negative, 
and zero sequence circuit diagrams for all the cases treated will have the same appearance, 
although Zeq or zeq and θ will differ among the various types.

7.4  Standard Delta-Phase-Shifting Transformer

As opposed to the squashed delta design, the standard delta design utilizes a regular delta 
winding but is still a single 3-phase core design. The connection diagram is given in 
Figure 7.8. The two tap windings are on the same core phase as the corresponding parallel 
delta winding in the figure. The taps are symmetrically placed with respect to the point of 
contact at the delta vertex. This assures that there is no change in current or no-load voltage 
magnitude from input to output. It also means that Ea′ = Ea″, etc., for the other phases. Each 
phase consists of three windings, the two tap windings and the delta winding opposite 
and parallel in the figure, where primes and double primes are used to distinguish them. 
Thus a 3-winding-per-phase model is needed. Za, Za′, Za″ will be used to label the single-
winding impedances for phase a. Since all the phases have equivalent impedances by sym-
metry, these same designations will be used for the other phase impedances as well. The 
same remarks apply to the phasor diagrams as for the squashed delta case. Although not 
shown, the current phasor diagrams have the same sequence order as their corresponding 
voltage phasor diagrams; however, the two diagrams could be rotated relative to each 
other.

In Figure 7.8a, V1, V2, V3 designate the phasor voltages to ground at the delta vertices. 
Thus we have, using Ea′ = Ea″, etc. and Ia′ = IS1, Ia″ = IL1, etc.,
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In addition, we have the transformer relations
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FIGURE 7.8
Standard delta configuration with phase quantities labeled. The ideal transformer voltages, E, increase in 
the  opposite direction of the assumed current flow. (a) Circuit, (b) input and output phasors, and (c) inter-
nal phasors.
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where we have defined the turns ratio n as the ratio between the turns in one of the delta 
windings to the turns in one of the tap windings. Both tap windings have the same number 
of turns. Solving for Ia in the last equation in (7.36) and inserting into the last equation in 
(7.37), we obtain
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We also have
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From the these equations, we obtain
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and
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with θ as given in (7.38). θ is the no-load phase angle shift. This conforms to the circuit 
model shown in Figure 7.6 with
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or in terms of 2-winding impedances, using (7.10),
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This is the positive sequence circuit. As before, the negative sequence circuit is found by 
changing θ to −θ without change in Zeq.

Let us again determine the winding power per phase, Pwdg, in terms of the input power 
per phase, Pin = VS1IS1

*. Ignoring impedance drops, we get
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where j indicates that the transformed power is in quadrature with the input power. Using 
trigonometric identities, it can be shown that

 P j Pwdg in= sinq  (7.45)

with θ as given in (7.38). Thus for θ = 30°, |Pwdg| = 0.5|Pin|.
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In per-unit terms, based on input quantities, Equation 7.41 can be cast in the form of 
(7.24). For this, we need to determine the relation between the winding bases and the input 
base for impedances. The 2-winding impedances given earlier are referred to either the a 
or a′ winding. Their bases are related to the input base by keeping the power base the same 
as the input power per phase:
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Thus, in per-unit terms, Zeq in (7.43) becomes
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Again, this is primarily useful in design when n refers to the maximum phase angle. At 
zero phase shift where n = ∞, Equation 7.47 indicates that zeq = 0. At this tap position, the 
tap windings are effectively out of the circuit and the input is directly connected to the 
output.

7.4.1  Zero Sequence Circuit Model

The zero sequence circuit model can be derived with reference to Figure 7.8 but with all 
phasors taken to be zero sequence. Rewriting (7.36) and (7.37) with this in mind and 
appending a zero subscript, we get
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Solving, we find

 I IL S1 0 1 0, ,=  (7.49)

so that the zero sequence current undergoes no phase shift. We also have
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and
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Thus the voltage undergoes no phase shift at no-load. The circuit model of Figure 7.7 
applies with
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or, in terms of 2 winding impedances,
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On a per-unit basis, using rated input quantities, Equation 7.51 has the same appearance as 
(7.34). The equivalent per-unit impedance is given by

 
z

n
z z zeq aa aa a a, , , ,0 2 0 0 0

3
3

2=
+

æ
è
ç

ö
ø
÷ +( ) -éë ùû¢ ¢¢ ¢ ¢¢

 
(7.54)

At zero phase shift, the output is directly connected to the input as was the case for positive 
sequence.

7.5  2-Core Phase-Shifting Transformer

For large power applications, phase shifters are often designed as two units, the series unit 
and the excitor unit, each having its own 3-phase core and associated coils. Depending on 
size, the two units can be inside the same tank or be housed in separate tanks. This construc-
tion is largely dictated by tap changer limitations. A commonly used circuit diagram is 
shown in Figure 7.9. The phasor diagrams refer to positive sequence quantities and although 
the phase ordering is consistent among the diagrams, their relative orientation is not speci-
fied. Currents have the same phase ordering as their associated voltages. A 3-winding model 
is needed for the series unit, while a 2-winding model applies to the excitor unit. We have 
used two different labeling schemes for the series and excitor units. Letter subscripts are 
used for series quantities (a, a′, a″), and number subscripts for excitor quantities (1, 1′). Primes 
and double primes are used to distinguish different windings associated with the same 
phase. Note that the input–output coils in the figure are part of the series unit but are attached 
to the excitor unit at their midpoints. The input and output voltages are voltages to ground 
as before. We assume the input voltage and current phasors are given.

Following an analysis similar to that of the last section for the series unit, we can write, 
using Ea′ = Ea″, etc.,
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We also have the transformer relations,
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FIGURE 7.9
Circuit diagram of a 2-core phase-shifting transformer. The ideal transformer voltages, the E’s, increase in the 
opposite direction to the assumed current flow. (a) Circuit, (b) input and output phasors, (c) internal phasors for 
series, and (d) internal phasors for excitor.
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where we have defined the turns ratio of the series unit, ns, as the ratio of the turns in a coil 
of the delta to the turns in the first or second half of the input–output winding, that is, from 
the input to the midpoint or from the output to the midpoint. We have also defined the 
excitor winding ratio, ne, as the ratio of the turns in the winding connected to the midpoint 
of the input–output winding to the turns in the tapped winding. This latter ratio will 
depend on the tap position. From (7.55), (7.56), and the phasor diagrams, we obtain
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Substituting I1 from (7.55) and Ia from (7.56) into (7.57), we get
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Thus, in terms of the known input current, we can write, using (7.55) and (7.56),
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(7.59)

From the initial set of equations, we also obtain
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Substituting (7.57) and (7.60) into the V1 equation in (7.55), we find
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Substituting into the first equation in (7.55) and using (7.56) and the first equation of (7.59),
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Adding the first two equations in (7.55) and using (7.62), we get
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where θ is given in (7.58). This can be represented with the same circuit model as 
Figure 7.6, with
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or, in terms of 2-winding impedances,

 
Z Z

n n
Z

n
Z Z n Zeq a a

e s

e
aa aa s a= +

( ) +

æ

è
ç
ç

ö

ø
÷
÷

+ + -¢ ¢¢ ¢ ¢ ¢¢ ¢ ¢¢
12

3 62 11

2
2

aa( )é

ë
ê

ù

û
ú
 

(7.65)

Using (7.59) and (7.60) and ignoring impedance drops, we can show that the winding 
power per phase is the same for the series and excitor units, that is,
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where Pin = VS1IS1
*. In terms of the phase shift θ given in (7.58), this last equation can be 

written

 P j Pwdg in= sinq  (7.67)

as was the case for the standard delta-phase shifter.
In per-unit terms, keeping the power base constant at the rated input power, Equation 

7.63 can be cast in the form of (7.24). To do this, we need to find the ratio of the impedance 
bases for both the series and excitor windings to the input or terminal impedance base. 
Using these formulas, we find
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Using these relations, the per-unit equivalent impedance can be written:
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The negative sequence circuit has the same equivalent impedance, but a-phase angle shift 
in the opposite direction to the positive sequence circuit.

7.5.1  Zero Sequence Circuit Model

The zero sequence circuit model is derived with reference to Figure 7.9 by assuming all 
quantities are in zero sequence. Thus we simply rewrite the basic equations, appending a 
zero subscript,
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and
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Solving, we find,

 

I I I I I

E I V E

1 0 1 0 1 0 0 1 0

0 1 0 0 1 0 1

0
2

2

, , , , ,

, , , ,

, ,

,

= = = -

= =

S L a
s

S

a
s

S a

n

n
Z ,,0

 

(7.72)

Notice that, even if both Y windings of the excitor were grounded, no zero sequence cur-
rent flows into the excitor because the secondary current from the tap winding would have 
to flow into the closed delta of the series unit, and this is not possible for zero sequence 
currents.

From the said formulas, we obtain
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Thus, we see that the zero sequence current and no-load voltage have no phase angle shift 
and the circuit of Figure 7.7 applies with
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or, in terms of 2-winding impedances,
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Using the same basis as for positive sequence, the per-unit version of this is
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7.6  Regulation Effects

Because all the phase-shifting transformers examined, have the same basic positive 
sequence (as well as negative and zero sequence) circuit, Figure 7.6, with different expres-
sions for Zeq or zeq and θ, the effect of a load on the output can be studied in common. The 
relevant circuit model is shown in Figure 7.10.

Since all phases are identical, we drop the phase subscript for the impedances. We use 
per-unit quantities for this development since a common base employing rated input 
quantities can be used for the various quantities in the figure. The ideal transformer is 
included in the figure to account for the phase shift. From the figure, we see that
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where zL is the per-unit load impedance. Solving for iS, we find
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Thus, any-phase angle or magnitude shift from no-load conditions is due to a nonzero 
zeq/zL. Since zeq is almost entirely inductive, a purely inductive or capacitive load will not 
affect θ but will result only in a magnitude change in the voltage. On the other hand, a 
resistive or complex load will lead to both magnitude and phase angle shifts.

Under no-load, or NL, conditions (zL = ∞), Equation 7.79 shows that

 v vL NL S
je, = q
 (7.80)

Thus taking ratios, we see that
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FIGURE 7.10
One phase of a-phase-shifting transformer under load, using per-unit quantities.
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Thus the presence of a load will lower the magnitude and shift the phase, depending on 
the phase of the previously mentioned ratio of impedances. This analysis is similar to that 
given previously in Chapter 3, except there, we ignored the shift in phase. Because these 
transformers are designed to shift the phase by a given amount under no-load conditions, 
it is important to find the additional shift in this phase caused by transformer loading. Let 
zeq/zL = pejβ. Then (7.81) becomes
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As an example, let zeq be a 10% inductive leakage impedance and zL be a 100% resistive 
load. Then zeq/zL = 0.1ej90° and vL/vL,NL = 0.995∠−5.71°, where ∠ indicates the angular 
dependence of the complex number. This angle of nearly 6° will subtract from the phase 
angle of the transformer output, so the behavior of the phase under load is quite important. 
In the said example, the magnitude will only be lowered by 0.5%. Since the transformer 
impedance varies with the tap setting (phase shift), the angle shift due to loading will also 
vary with the tap setting.

7.7  Fault Current Analysis

The phase-shifting transformers discussed here are all 2-terminal transformers, which can 
be characterized by a single reactance, Zeq or Zeq,0, for positive/negative and zero sequence 
circuits respectively. We will assume the positive and negative sequence reactances are the 
same and not distinguish them by subscripts. Thus, the theory developed in Chapter 6 can 
be applied to them with the recognition that negative sequence currents have the opposite 
phase shift from positive sequence currents. We will retain the source, S, and load, L, nota-
tion used previously instead of H and X. We assume the fault is on the L or output termi-
nal. The fault currents at the fault are the same for the various fault types as given in 
Chapter 6.

The faults of interest are

 1. 3-phase line-to-ground fault
 2. Single-phase line-to-ground fault
 3. Line-to-line fault
 4. Double line-to-ground fault

The fault currents for these faults are summarized next. We will use per-unit notation.
For fault type (1), we have
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For fault type (2), we assume that the a-phase line is shorted, so that
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For fault type (3), assuming the b and c lines are shorted together,
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For fault type (4), assuming the b and c lines are shorted to ground,
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We have, assuming equal positive and negative reactances for the transformer and the 
systems, for the Thevenin impedances
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The per-unit currents feeding the fault from the transformer side are given by
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Figure 7.11 shows the terminal circuit diagrams for the three sequences, which covers all 
the fault types. We assume for simplicity that no current flows in the prefault condition. 
These can always be added later.
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FIGURE 7.11
Sequence circuits showing system impedances and transformer equivalent impedances. The fault is on the 
load-side terminal: (a) positive sequence, (b) negative sequence, and (c) zero sequence.
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As shown in the figure, the per-unit currents flowing out of the transformer into the fault 
are on the load side of the transformer and are given by (7.88) in terms of the fault sequence 
currents. Thus, in terms of finding the fault currents in the individual windings, we need 
to find their expressions in terms of the load currents. However, in a-phase-shifting trans-
former, positive and negative sequence currents experience opposite phase shifts. This 
makes the analysis of fault currents inside these transformers quite different from fault 
currents in a standard 2-winding transformer.

We have already considered currents in the windings of a-phase-shifting transformer 
when we derived their equivalent impedance for positive, negative, and zero sequence 
circuits. We make use of these results now, together with the fact that negative sequence 
currents inside a-phase-shifting transformer can be obtained from positive sequence cur-
rents by changing their phase shift to its negative. Note that ieq equals iS1 in the previous 
formulas in per-unit terms. Although we have singled out the a-phase in the analysis, the 
equations could refer to any phase in our previous results for the different phase-shifting 
transformers, provided we maintain the correct phase ordering. We now apply the fault 
formulas to our previously studied phase-shifting transformers. Since we are using 
 per-unit notation, we need to express the formulas for the currents in per-unit terms. 
Because of the length of the formulas, we only present results for the winding sequence 
currents.

7.7.1  Squashed Delta Fault Currents

From (7.17), we see that
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Using (7.90), (7.89) can be manipulated to the form
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To convert this to per-unit form, we need the ratio of the current bases. These are the recip-
rocal of the ratio of the voltage bases, assuming the same power level for both bases. This 
is given by
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Using this, we can convert (7.91) to per-unit form
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Since this is a 2-winding transformer ia = −ia′.



157Phase-Shifting and Zigzag Transformers

For the zero sequence currents, we have from (7.28) and (7.31)
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The zero sequence current is the same in all the phases. Using the base transformation 
given in (7.92), this can be converted to per-unit form
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We also have ia0 = −ia′0.
Using (7.88) and the fact that negative sequence currents have the opposite phase shift 

from positive sequence currents, we can find the sequence currents in the windings
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Here ia1, ia2, and ia0 are the fault sequence currents for the various fault types as given in 
Chapter 6. These can then be transformed to the phase or winding currents by using (6.1).

7.7.2  Standard Delta Fault Currents

This transformer has 3 windings per phase. We have, from (7.39)
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where
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Converting to a per-unit system, we find for the ratio of current bases
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Using this, Equation 7.97 becomes in per-unit terms,
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We also have
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The ratio of current bases is the same for the currents in (7.101) and is given by
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Using this, Equation 7.101 becomes in per-unit terms,
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Using trigonometric identities and the formula for θ in (7.98), we can show that 
ia + ia′ + ia″ = 0

For the zero sequence currents, we get from (7.49) and (7.50)

 
I I I Ia L a L a L

n
I I, , , , , ,, ,0 1 0 0 1 0 0 1 0

2= - = =¢ ¢¢
 

(7.104)

Putting these on a per-unit basis, using the same current bases as for the positive sequence 
case,
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These zero sequence per-unit currents also sum to zero as expected.
Using (7.88) and noting that ieq corresponds to iL1, we get for the winding sequence 

currents
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The per-unit currents for the various fault types can be inserted for ia1, ia2, and ia0 as given 
in Chapter 6. One can then get the winding-per-unit phase currents via (6.1) for the various 
fault types.

7.7.3  2-Core Phase-Shifting Transformer Fault Currents

We will simply quote the results for this transformer based on the formulas in Section 7.5. 
This transformer has 5 windings labeled 1, 1′, a, a′, a″. The per-unit winding currents, 
expressed in terms of the output L1 current are given by
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The winding sequence currents are given by
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(7.108)

Substituting the ieq currents from (7.88) for iL1 in the formulas of (7.108), we can get the 
sequence currents in all the windings. Since j in the formula is a rotation by 90° in the com-
plex plane, in the negative sequence current formula it was replaced by −j for a 90° rotation 
in the opposite direction.
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7.8  Zigzag Transformer

A Delta HV (H) winding and zigzag LV (X) winding transformer is analyzed. The complex 
currents are calculated as well as the terminal positive/negative and zero sequence imped-
ances. Although explicit expressions for these impedances are given in terms of 2-winding 
impedances, they can also be obtained directly from a program, which calculates the mag-
netic field associated with complex currents. These impedances are then used to obtain 
fault currents for a short-circuit analysis.

The 3-phase connections for the delta primary and zigzag secondary are given schemati-
cally in Figure 7.12. Parallel lines denote windings on the same phase. The delta winding 
phases are denoted a, b, and c. The zigzag windings consist of windings from 2 phases 
connected in series. Thus, the zigzag X1 terminal is attached to a series combination of 
windings from the b and c-phases. The orientation of the zigzag windings in Figure 7.12 is 
such that the terminal voltage of the X terminals to ground is in phase with the terminal 
voltage of the delta terminals V to ground. This requires the two separate windings of the 
zigzag to have the same number of turns. A 180° phase shift between X and V could be 
achieved by winding the X windings in the opposite sense to the delta windings.

Figure 7.13 shows the positive sequence phasors associated with the winding and termi-
nal voltages of the delta winding. Ea, Eb, Ec are a positive sequence set of winding voltages 
and V1, V2, V3 are a positive sequence set of terminal-to-ground voltages. The E’s are no-
load voltages due to core excitation and the diagram in Figure 7.13 does not take into 
account the voltage drops caused by the currents and impedances. For these, we use a 
3-winding circuit model. The single-winding impedances will be the same for all three 
phases. Concentrating on the a-phase, the winding voltages are given by
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(7.109)

where the currents are taken as positive into the winding terminals. The E’s are propor-
tional to the winding turns and they increase in the opposite sense to the current 
direction.

a

b c
c΄

b˝

a˝
b΄ c˝

a΄

V1

V2V3

X1

X3 X2

FIGURE 7.12
3-Phase schematic connection diagram of the delta zigzag transformer.
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The winding connection diagram for all three phases is shown in Figure 7.14. The 
 subscripts a, a′, a″ refer to the delta, zig, and zag windings, respectively, of the a-phase. 
The b and c subscripts have the same significance for the b and c-phases. The zig and zag 
windings are connected in such a way that their phase voltages are subtractive. This gives 
the maximum net voltage across both windings.

7.8.1  Calculation of Electrical Characteristics

Like the voltages, the currents I1, I2, I3 and Ia, Ib, Ic, as shown in Figure 7.14, form a 3-phase 
set. From the figure, we have
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FIGURE 7.13
Phasor diagram of delta terminal and winding voltages.
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FIGURE 7.14
3-phase detailed connection diagram of the zigzag transformer with the electrical quantities labeled.
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We also have, from Figure 7.14,
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(Note that Za = Zb = Zc and similarly for Za′ and Za″, so we will only use the a, a′, a″ sub-
scripts on the Z’s.)

For the X1 terminal, we see from Figure 7.14 that

 V E I E IX c c a b b aZ Z1 = + - -¢ ¢ ¢ ¢¢ ¢¢ ¢¢ (7.112)

Letting N1 = the number of turns in the HV delta winding and N2 = the number of turns in 
the zig winding = the number of turns in the zag winding, we have
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where we have defined n as the ratio of turns in the delta winding to turns in the zig or zag 
winding. Because of the phase relationship among a positive sequence set, we can write

 
E E E E E¢ ¢¢ ¢ ¢

° - °- = -( ) = =c b a
j j

a ae e j j
n

120 120 3
3

 
(7.114)

From (7.111), we have
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Substituting from (7.114) and (7.115) into (7.112), we get
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By current continuity in the zig and zag windings, we must have
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so that (7.116) can be written:
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Since the currents form a balanced set, we have
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From amp-turn balance, we have
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From (7.117), we have
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Thus from (7.119) through (7.121), we get
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Using this last result, Equation 7.118 becomes
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From (7.110), we have
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Substituting into (7.123), we get
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Thus, under no-load conditions, we see from (7.125) that the terminal voltages are 
related by
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This shows that the H and X no-load terminal voltages are in phase, as desired. The current 
into the X1 terminal is, from (7.122) and (7.124),
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Thus we see that the power into the X1 terminal, ignoring the impedance drop, is

 V I V IX X
* *

1 1 1 1= -  (7.128)

where* indicates complex conjugation. This says that the power is flowing out of the X1 
terminal and that it equals the power into the V1 terminal. We also have, from (7.115) and 
(7.124), ignoring the impedance drop,

 E I V Ia a
* *= 1 1 (7.129)

so that the delta winding power equals the input power. The a-phase winding currents can 
be obtained from (7.120) and (7.121).
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Multiplying (7.125) by n/3, we get
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Thus, as seen from the high-voltage side, the effective impedance, Zeff, is given by
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7.8.2  Per-Unit Formulas

At this point, it is desirable to put everything on a per-unit basis. We will use the input 
power per phase as the power base. This also equals, by (7.129), the delta winding power. 
Thus Pb = V1I1 = EaIa. The asterisks are not needed since these quantities are real. Thus V1 
and I1 are the voltage and current bases for the H terminal. We label these Vb,1 and Ib,1. In 
terms of these, the X1 terminal base voltage and current are, from (7.126) and (7.127),
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Dividing (7.131) by Vb,1 and using (7.133), we find

 

n
V V V

Z
I
V

ZX

b b b
eff X

b

b
eff

3
1

1

1

1

1

1
1 1

1

1

V V I
v i

, , ,

,

,

æ

è
ç

ö

ø
÷ = - Þ -

æ

è
ç

ö

ø
÷

vv v i v v iX
eff

b
X eff

Z
Z

z1 1 1
1

1 1 1= - Þ = -
,  

(7.134)



165Phase-Shifting and Zigzag Transformers

where
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Since the H winding power equals the terminal power, we can resort to a winding base to 
calculate zeff. We have, from (7.115) and (7.124), ignoring impedance drops,
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We also have for the a′ and a″ windings, using (7.113) and keeping the power base the 
same,
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From (7.134) and (7.132), we can write
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Using (7.136) and (7.137), we can put each winding on its own base to get
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In terms of 2-winding-per-unit impedances, we have the standard formulas
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Substituting these into (7.139), we obtain
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Thus, the effective terminal impedance can be derived from the 2-winding impedances.
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7.8.3  Zero Sequence Impedance

We can go through a similar analysis to get the zero sequence impedance, using a zero 
subscript to label zero sequence quantities. Thus, instead of (7.112), we have

 V E I E IX c c a b b aZ Z1 0 0 0 0 0 0 0, , , , , , ,= + - -¢ ¢ ¢ ¢¢ ¢¢ ¢¢  (7.142)

But now Ec′,0 and Eb″,0 are in phase and have the same magnitude and therefore cancel in 
(7.142). In addition, using (7.117), which also applies to zero sequence currents, Equation 
7.142 becomes

 V IX c a aZ Z1 0 0 0 0, , , ,= +( )¢ ¢ ¢¢  (7.143)

From (7.117) and the equality of the zero phase currents in the three phases, we have

 I I I¢ ¢ ¢¢= = -a b a, , ,0 0 0 (7.144)

Hence, from (7.120) applied to zero phase currents, we have

 Ia,0 0=  (7.145)

Thus no zero sequence current flows in the delta HV winding. Since IX1,0 = Ic′,0, Equation 
7.143 becomes
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Reverting to per-unit quantities, we divide (7.146) by Vb,X1 to get
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and
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Substituting into (7.148) and using (7.140), we get
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(7.150)

Thus, the effective zero sequence impedance can be found from the per-unit 2-winding 
zero sequence impedance between the zig and zag windings. Normally, the positive 
sequence impedance is calculated, and this is adjusted via an empirical factor to get the 
zero sequence impedance.
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7.8.4  Fault Current Analysis

The phase sequence diagrams are shown in Figure 7.15. We will calculate the sequence 
 currents in the 3 windings in terms of the fault sequence currents, which will depend on 
the fault type. The phase currents can then be obtained by the transformation given in (6.1). 
We consider equal positive and negative sequence reactances for the transformer and 
the systems and will not distinguish them by subscripts. Also we will consider a fault on 
the X terminal, the fault being fed from the HV line.

The Thevenin impedances, in terms of those given in Figure 7.15 are
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(7.151)

zSH,0 must be set equal to zero in the formulas. The per-unit sequence currents feeding the 
fault from the transformer side are given by
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We need to find the per-unit fault sequence currents in the windings in terms of the fault 
sequence currents out of the X1 terminal. 1 preceded by a comma in (7.152) refers to posi-
tive sequence, etc., but X1 refers to X terminal number 1. From (7.124) and (7.127) and 
(7.130), we find
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(7.153)
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FIGURE 7.15
Sequence circuits for the zigzag transformer: (a) positive sequence, (b) negative sequence, and (c) zero sequence.
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From (7.133), (7.136), and (7.137), the current bases are related by
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Using these base current relations, Equation 7.153 can be written in per-unit terms
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(7.155)

The 3 per-unit currents sum to zero as expected.
Replacing X1 by X,1; X,2; and X,0 for the sequence currents obtained from (7.152) for the 

different fault types, one can obtain the fault sequence currents in the various windings 
from (7.155). From these, one can then obtain the phase currents from (6.1).
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Multiterminal 3-Phase Transformer Model*

8.1  Introduction

It has been shown in earlier chapters that it is possible to model 2- and 3-terminal trans-
formers using leakage inductances or reactances associated with the leakage flux. The 
2-winding leakage inductance is the self-inductance of the two windings, which takes into 
account that the sum of the amp-turns is zero. It is easily measured by applying a voltage 
to the first winding, shorting the second winding, and measuring the reactance, while 
keeping any other windings open circuited. It can also be calculated with finite element 
codes or analytic methods.

For a 2-winding transformer, all that is needed to model the circuit is an ideal transformer in 
series with the leakage inductance. For a 3-winding transformer, it is possible to combine the 
three pairs of leakage inductances in such a way that, together with an ideal transformer, a 
simple circuit without mutual couplings, called a T-equivalent circuit, results. For a 4-winding 
transformer, a similar process leads to a much more complicated circuit, again without mutual 
couplings [Blu51]. There does not appear to be a circuit model without mutual couplings for a 
transformer with any number of terminals or windings. However, there are methods that use 
only the 2-winding leakage inductances to model the transformer [Bra82], [deL92], [Mom02], 
[Shi63], [Aco89]. These have mutual couplings and assume an ideal or separately treated iron 
core. We explore such a method here and show how it lends itself naturally to matrix methods 
to obtain complicated connections among the windings on the same or different legs. The 
 single-winding resistances are also included in the model for greater generality.

The basic equations are derived here from first principles in order to highlight the 
assumptions in the model and to establish terminology. Most of the examples given are for 
2- or 3-terminal transformers in order to show that the formulas do reduce to the familiar 
formulas derived by previous methods. We restrict our discussion to sinusoidal conditions 
at power frequencies. The theory is developed initially for balanced conditions. It is then 
extended to account for unbalanced conditions, including short circuits. This latter devel-
opment requires inclusion of the core in order to get a solvable system. Both methods can 
be useful, depending on the type of problem to be solved.

For higher-frequency applications, capacitances must be included [deL92a]. The induc-
tances and, to a lesser extent, the leakage inductances also vary with frequency. The resis-
tances have a strong frequency dependence, and it also becomes necessary to consider 
mutual resistances at higher frequencies [Mom02]. However, here, we will only deal with 
the low-frequency inductive and resistive aspects of the windings.

* This chapter closely follows our published papers, [Del06], IEEE Trans. Power Deliv., 21(3), July 2006, 1300–1308. 
© 2006 IEEE, and [Del08], IEEE Trans. Power Deliv., 23(3), July 2008, 1439–1447. © 2008 IEEE.
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8.2  Theory

8.2.1  Two-Winding Leakage Inductance

Since we are concerned with transformer operation at a fixed frequency and sinusoidal 
conditions, we will most often be dealing with reactances in our circuit models. We use X 
to denote a reactance, where X = jωL, with L = inductance, j the imaginary unit, and ω = 2πf, 
where f is the frequency. We also use X = jωM to refer to mutual reactance. A subscript pair 
on X will distinguish self from mutual reactances. These quantities are constants, as they 
are associated with the leakage flux.

The general circuit equations for a 2-winding transformer can be written, ignoring resis-
tance, as

 

V I I E

V I I E
1 11 1 12 2 1

2 21 1 22 2 2

= + +
= + +

X X N
X X N  

(8.1)

Since the X’s are linear circuit elements, X12 = X21. E is the volts/turn and N the number of 
turns, so the terms EN refer to the voltages induced by the ideal transformer. V are the volt-
ages and I the currents. We are using phasor notation here. The currents are directed into 
the winding at the positive voltage end. Since the amp-turns sum to zero, we have

 N N1 1 2 2 0I I+ =  (8.2)

Substituting for I2 from (8.2) and E from the second equation in (8.1), we get
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(8.3)

The leakage reactance is
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The term in brackets in (8.4) is the leakage reactance between windings 1 and 2 in that 
order, denoted by Z12:
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(8.5)

The order is important, and we have
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(8.6)

We also note from (8.5) that Z11 = 0, that is, when the subscripts are equal, the 2-winding 
leakage reactance vanishes. The circuit model for a 2-winding transformer would consist 
of the leakage reactance in series with an ideal transformer.
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8.2.2  Multi-Winding Transformer

We use the same approach to model a multi-winding transformer. However, we will 
include the winding resistances for greater generality. The circuit equations are
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together with
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(8.8)

Here, n is the number of windings and the other symbols are the same as before.
Using (8.8), we can eliminate one voltage equation in (8.7), as was done for the 2-winding 

transformer, where the winding 2 equation was chosen for elimination. We choose the 
winding 1 equation here for elimination. In the following discussion, this will be taken as 
the primary winding. Substituting for I1 from (8.8) and E from the winding 1 equation of 
(8.7), we obtain, for the remaining equations,
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where
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Rewrite this as
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Add and subtract (Nj/Nk)Xkk + (Nk/Nj)Xjj from the term in parentheses in (8.11). After some 
rearrangement, we get
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Using the definition of 2-winding leakage reactance given in (8.5), we can rewrite (8.12) as
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where we have defined the quantity
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This is just the single-winding leakage impedance of winding 1 as part of a 3-winding sys-
tem, represented by a T-equivalent circuit. It is usually denoted by Z1 when there are only 
two other windings involved, which are understood to be 2 and 3. We need the additional 
subscript labeling here since there can be more than three windings. Substituting (8.13) 
into (8.9), the circuit equations become
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(8.15)

The circuit equations (8.15) contain only 2-winding leakage reactances via the term Z1jk. 
The first term, containing V1, expresses the voltage transfer across the ideal transformer. 
Winding 1, with voltage V1, is on one side of the ideal transformer and its voltage is 
assumed known. All the other windings are on the other side of the ideal transformer. They 
are coupled to each other via the cross terms in (8.15). The presence of winding 1 is reflected 
in these terms. It follows from (8.6), with j, k substituted for 1, 2, that

 Z Zjk kj1 1=  (8.16)

that is, Z1jk is symmetric in j and k. We should also note, from the discussion following (8.6), 
that

 Z Zjj j1 1=  (8.17)

that is, when the second and third indices are equal, Z1jj reduces to the 2-winding leakage 
reactance.

To simplify the notation further, we define a new quantity:
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so that (8.15) becomes
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W1jk is, in general, a complex quantity since it contains resistive and reactive elements. 
From (8.16), we see that

 W Wjk kj1 1=  (8.20)

so that it is symmetric in j and k. We also see, from (8.17), that when j = k,
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A circuit diagram, illustrating the meaning of (8.19), is shown in Figure 8.1 for a 4- winding 
and 4-terminal transformer. All the impedances are on the secondary side of the 
transformer.

Although the Z’s were treated as inductive elements, the derivations given earlier would 
be unchanged with the Z’s containing mutual resistances. This could be useful in high-
frequency work [Mom02].

It is often simpler to work in the per-unit system. Using lowercase letters for per-unit 
quantities, Equation 8.19 becomes in this system
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where
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FIGURE 8.1
Circuit model of a 4-winding transformer using only 2-winding leakage reactances and an ideal transformer. 
(From Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 2006. © 2006 IEEE.)
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We prefer to derive formulas in the regular system of units, since it is relatively easy to 
convert them to the per-unit system afterward. Much of the literature is written in the per-
unit system, which we will use later to perform calculations.

8.2.3  Transformer Loading

It is convenient in the following applications to consider winding 1 as the primary winding 
with known voltage. Windings j = 2, …, n will be regarded as secondary windings. When 
the secondaries are loaded, the voltages Vj are applied across a load ZLj. This can be, and 
often is, complex, containing resistive and reactive terms. The load current flows out of the 
secondary terminal and into the load. Since our convention has been that the winding cur-
rents flow into the terminal, the load current is the negative of the winding current used in 
the formulas given earlier. Therefore, we have

 V Ij Lj jZ= -  (8.24)

Substituting into (8.19), the circuit equations with load become
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This can be written as a matrix equation (complex and symmetric) and solved by standard 
methods. V1, the N’s, the resistances, the 2-winding leakage reactances, and the load 
impedances are assumed known. Therefore, the I’s can be solved for.

8.3  Transformers with Winding Connections within a Phase

Thus far, we have been discussing a single-phase transformer or one phase of a 3-phase 
transformer with uncoupled phases. Furthermore, the windings have been without inter-
nal interconnections. We now apply the theory to more complicated transformers, where 
the windings can be interconnected within a single phase. In general, a multiterminal 
transformer with n windings may have less than n − 1 secondary terminals. Since the num-
ber of equations to solve equals the number of secondary terminals, we may have fewer 
than n − 1 equations to solve.

8.3.1  Two Secondary Windings in Series

This is a common situation. For example, a tap winding is often connected to a secondary 
winding. There are also cases where two series-connected secondary windings are used. 
Let windings p and q be the series-connected secondaries. Let s denote the terminal to 
which one of these windings is attached. We have
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Adding the j = p and j = q equations in (8.19) yields for the resulting system
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Thus, the equations for windings p and q are eliminated and an equation for terminal s is 
added, resulting in one less equation.

As an example, consider a 3-winding system with windings 2 and 3 in series. Then (8.27) 
reduces to one equation, the s terminal equation, which becomes
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If we omit the resistance terms from the W’s in this equation, we obtain an effective reac-
tance on the secondary side, Zeff:
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This is the effective leakage reactance of this 2-terminal transformer on the secondary side. 
We obtained a formula for the reactance for this connection in Chapter 4. However, there 
the joined windings were windings 1 and 2. Here the joined windings are windings 2 and 3. 
By relabeling the indices and expressing the single-winding reactances in terms of 
2- winding reactances, the previous formula reduces to (8.29).

8.3.2  Primary Winding in Series with a Secondary Winding

This is also a fairly common situation. We could have two high voltage primary wind-
ings connected in series or a high voltage winding connected in series with a tap 
 winding. This requires special consideration, because we have singled out the primary 
winding in the treatment mentioned earlier. Let winding p be in series with winding 1. 
We have
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We have used the amp-turn balance condition here. Substituting for Ip in (8.19), we get
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We therefore get for Vs
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Solving (8.32) for V1 and substituting into the Vj equations,
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This last formula shows that the two windings in series are placed on one side of the ideal 
transformer and that their series voltage, Vs, is assumed known. The presence of both 
windings is reflected in the terms in (8.33) on the secondary side.

As an example, consider a 3-winding transformer with windings 1 and 2 in series. There 
is just one equation (8.33) for winding 3. Dropping the resistance terms in (8.33), we obtain 
an effective leakage reactance of
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This is similar to the previous example except that the joined windings are windings 1 and 2. 
The formula in Chapter 4 applies directly to this connection without relabeling the indices, 
except that the reactance must be transformed to the secondary side. This transference is 
done by the (N3/(N1 + N2))2 term in (8.34).

8.3.3  Autotransformer

An autotransformer connection is shown in Figure 8.2. We are letting winding 1 be the 
series or HV winding and winding p be the common or LV winding. The current at the 
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common terminal is positive into the terminal by the convention used here and is labeled 
ITp. The voltage at the HV terminal is labeled Vs.

From the diagram, we can see that
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where we have used amp-turn balance. Proceeding similarly as in the previous section, we 
find for the secondary terminal equations
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(8.37)

The primary terminal voltage, Vs, is assumed to be given. It is on one side of the ideal 
transformer. The secondaries, with their impedances and couplings, are on the other side 
of the ideal transformer. All the direct and coupling terms are expressed in terms of wind-
ing resistances and leakage reactances.

V1

Vp

Vs

I1

Ip

ITp

FIGURE 8.2
Autotransformer connection. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 2006. 
© 2006 IEEE.)
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8.4  Multiphase Transformers

At this point, some simplification in notation is useful. We will recast (8.19), using vector 
and matrix notation. Vectors will be denoted by boldfaced type and matrices by italicized 
type. Since the voltage and current vectors are vectors of phasors, this is consistent with 
our phasor notation; however, the elements of these vectors, although phasors, will be 
denoted in ordinary type. Other vectors such as the turns vector are not vectors of phasors 
but will still be denoted with boldfaced type. The vector notation will supersede our 
 previous phasor notation here. Let V, I, and N be vectors of winding secondary voltages, 
currents, and turns. The turns will be divided by N1:
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Here superscript T denotes transpose, which converts these row vectors to column vectors. 
Let R denote the diagonal matrix of secondary winding resistances:
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(8.39)

Let W denote the matrix, W1jk, with rows labeled j and columns k, for j, k = 2, …, n. Then 
(8.19) becomes

 V N I= + +( )V R W1  (8.40)

This equation refers to a single phase. For a 3-phase system, label the phases a, b, and c. 
The unit phasors, associated with these respective phases, are, as before, denoted by 1, α2, 
and α. They are 120° apart in the complex plane and, for convenience, are given here and 
diagramed in Figure 8.3:
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where j is the imaginary unit.
Using a, b, and c as subscripts to label the phase quantities, we need to expand (8.40) for 

a 3-phase system:
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The vectors of each phase are now considered as phasors. In particular, V1a = V1, V1b = 
V1α2, and V1c = V1α since V1 is the driving voltage, assumed known. However Va, Vb, Vc or 
Ia, Ib, Ic cannot be expressed so simply because of the complex nature of the matrix in (8.42). 
The V’s and I’s will still form a balanced 3-phase system, but there could be an overall 
phase shift from the input V1 system. The extended vectors shown earlier are of dimension 
3(n − 1) for an n-winding system. Equation 8.42 represents a system of uncoupled phases. 
We now explore several possibilities for coupling the phases and for which this matrix 
formalism is very useful. For our further discussion, the vectors V, NV1, and I will refer to 
the 3-phase system and the matrix R + W will be assumed to have the expanded form in 
(8.42). We now need to treat NV1 as a 3-phase vector entity, since V1 contains phase infor-
mation. This is why V1 is in boldfaced type here. Thus, in our abbreviated notation, 
Equation 8.42 is expressed as

 V NV I= + +( )1 R W  (8.43)

Writing (8.43) out for two secondary windings, it becomes
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Equation 8.43 is basically the same as (8.40), except that the vector quantities refer to 
all three phases and V1 is a phasor vector. We will normally be dealing with 3-phase 
quantities, unless otherwise noted, with V1 representing a balanced 3-phase system of 
phasors.

Phase a

Phase b

Phase c

1
α2

α

Real axis

Imaginary 

FIGURE 8.3
Unit phasors of a 3-phase system. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 2006. 
© 2006 IEEE.)
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8.4.1  Delta Connection

The delta connection diagram for a set of windings from three phases is shown in Figure 8.4. 
This is actually a −30° delta since the terminal voltages are shifted by −30° relative to the 
phase voltages.

The voltages at the terminals are labeled VT1, etc. The terminal voltages are assumed to 
be relative to ground potential. Since there is no ground point or reference voltage in the 
delta connection, one is assumed at the middle of the delta as shown in Figure 8.4b. Relative 
to this, the voltage relationships can be expressed in matrix form as
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(8.44)

VT1, etc., are phasors. By convention, we are assuming that positive currents flow into the 
terminals and, within the winding, opposite to the direction of voltage increase. The volt-
age representation in the first equation of (8.44) assumes balanced 3-phase delta voltages. 
It is not the inverse of the matrix in the second equation in (8.44), which applies to balanced 
or unbalanced voltages.

Labeling the terminal currents, IT1, etc., the winding and terminal currents are related by
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(8.45)

The second current equation in (8.45) assumes balanced 3-phase currents in the delta. The 
two matrices in (8.45) are not inverses. The first equation in (8.45) applies to balanced or 
unbalanced delta currents.

VT1 VT2 VT3

a b c

(a) (b)
Va

Vb Vc

VT1VT2

VT3

FIGURE 8.4
Delta connection: (a) winding phase and (b) phasor relationships. (From Del Vecchio, R.M., IEEE Trans. Power 
Deliv., 21(3), 1300–1308, July 2006. © 2006 IEEE.)
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Assume winding p is delta connected. Let MV be a unit diagonal matrix of dimension 
3(n − 1) for an n-winding system. Modify the p winding rows of MV for all three phases by 
inserting the entries from the first matrix in (8.44) in the appropriate slots, for example, 
place 1/3 in the p winding diagonal position for all three phases, place a –1/3 in the a-phase 
row and in the c-phase column for winding p, etc. For example, if the p winding were 
winding 3 of a transformer with two secondary windings, 2 and 3 (winding 1 is the pri-
mary winding that has been eliminated from the matrix), we would have
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(8.46)

Let MI be a similar matrix corresponding to the second matrix of (8.45) for the currents, for 
example, for winding 3 of a transformer with two secondaries:
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(8.47)

Thus, we have, assuming the expanded 3-phase notation,

 V V I IT V I T= =M M,  (8.48)

Here T as a subscript is labeling the terminal quantities. In the case of a delta connection, 
the number of terminals is the same as the number of windings. Applying these to (8.43), 
we get

 V NV IT V V I T= ( ) + +( )M M R W M1  (8.49)

This equation now applies to terminal quantities. We can impose a load on these, as was 
done in Section 8.2.3, and solve the resulting equations to get the terminal currents. The 
terminal voltages can then be found from (8.49) or from the load voltage drop equation 
(8.24). The phase voltages and currents can then be found by applying the appropriate 
matrix in (8.44) and (8.45) in expanded form.

8.4.2  Zigzag Connection

The zigzag connection is often used for grounding purposes. It affords a low impedance to 
zero sequence currents but a high impedance to balanced currents. The connection involves 
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interconnecting two secondary windings from different phases. The diagram is shown in 
Figure 8.5 where the secondary windings are labeled 2a, 2b, and 2c and 3a, 3b, and 3c.

The winding voltages are assumed to increase upward in the diagram. Therefore, the 
windings are connected so that their phasor voltages subtract. The currents in the con-
nected windings are of opposite sign based on our sign convention. It is also helpful to 
view this from the phasor diagram viewpoint as shown in Figure 8.6.

Assuming the transformer has only two secondary windings, the matrices connecting 
the terminal to the winding voltages and currents, MV and MI, as illustrated in (8.48), are
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(8.50)

These are no longer square matrices. The column dimension of MV is 6 since it operates on 
the voltages in the original configuration consisting of three phases with two secondary 

VT1 VT2 VT3

a b c

2a 2b 2c3a 3b 3c

FIGURE 8.5
Zigzag winding connection. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 2006. © 2006 
IEEE.)

2a
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2b

2c

3b

3c

VT1VT2

VT3

FIGURE 8.6
Zigzag phasor relationships. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 2006. © 2006 
IEEE.)
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terminal windings per phase. The row dimension is 3 since there are three phases with 
only one terminal per phase after the zigzag connection is made. The opposite is true for 
MI since this operates on the terminal currents after the zigzag connection is made to pro-
duce the currents in the two separate windings. We should note that windings 2 and 3 
should have the same number of turns in this connection. Let Nz = N2 = N3 be their com-
mon number of turns. Using this and the (8.50) equations in (8.49) and dropping the resis-
tance matrix, we find
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If we make use of the fact that the IT’s form a balanced set, that is, IT1 + IT2 + IT3 = 0, we find 
that this reduces to a set of three uncoupled equations. The first of these is
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Using the definition of the W’s and ignoring the resistance terms, the effective impedance 
term multiplying IT1 is
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(8.53)

This agrees with the formula found in Chapter 7 after that is expressed in terms of 2- winding 
reactances and transferred to the zigzag side of the ideal transformer.

After applying a load as in Section 8.2.3, the resulting equations may be solved for the 
terminal currents. Then the version of (8.51), which includes the resistance terms and pos-
sibly other secondary windings, in conjunction with the load voltage drop equation (8.24), 
can be used to find the terminal voltages. Applying MI to the terminal current vector, we 
can find the currents in the windings. Then, (8.42) can be used to find the voltages across 
the individual windings.

8.5  Generalizing the Model

The procedure outlined earlier for the multiphase transformers can be generalized. For 
example, the addition of two windings in series from the same phase can be accomplished 
by applying the appropriate matrices MV and MI to (8.40). In this case, we do not need to 
work with the expanded 3-phase version of Equation 8.43 since the phases are uncoupled. 
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For two secondary windings, labeled 2 and 3, with the terminal T1 at the positive end of 
winding 2, the appropriate matrix transformations are
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Naturally, if the two secondaries are part of a larger system of secondaries, the matrices MV 
and MI must be expanded with unit diagonal elements for the other windings and the 1’s 
in (8.54) need to be inserted into the appropriate slots.

In general, we can consider a series of winding interconnections for the secondaries, each 
described by matrices that we label 1, 2, …, s, corresponding to the order in which they are 
applied, where s is the number of separate connections. This results in the series
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In this case, the resulting matrices
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should be used in (8.49). Notice that the MV steps are applied in reverse order of the MI 
steps. Here, as previously, the matrices and Equation 8.49 could refer to a single phase if 
there are no phase-to-phase interconnections or to a system including all three phases if 
there are phase-to-phase interconnections.

This procedure will lead to a set of terminal equations to which the loads may be attached 
to get an equation for the terminal currents. Let the loading condition be given, in vector 
matrix form, by

 V IL L L= Z  (8.57)

where
VL is a vector of load voltages at the various terminals
IL is a vector of load currents out of the various terminals

In general, VL and IL can be 3-phase vectors. The load impedance matrix, ZL, can be in 
 general complex and may not necessarily be diagonal.

By our convention, IL = −IT, and setting VT = VL in (8.49) with MV and MI as in (8.56) for 
the particular connections involved, the terminal equations to solve are

 Z M R W M ML V I T V+ +( )éë ùû = - ( )I NV1  (8.58)
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Once the terminal currents are found, the winding currents can be found by applying MI 
to the terminal current vector. The terminal voltages can be found from (8.57) and the 
winding voltages by substituting the winding currents in (8.43) or (8.40) for a single-phase 
system.

By singling out a particular winding, for example, the high voltage winding, as winding 1, 
any interconnections involving this winding must be handled separately from the procedure 
mentioned earlier, as was done previously for the case of a winding in series with winding 1 
or in the case of an autotransformer. However, after this winding’s interconnections are 
accounted for, the procedure mentioned earlier can be applied to the modified equations to 
account for any additional interconnections among the secondaries.

We should note that MI is the transpose of MV. This was seen in (8.50) for the zigzag con-
nection, in (8.46) and (8.47) for a delta connection, as well as in (8.54). This follows from our 
convention regarding the current direction in a winding. Therefore, if R + W is symmetric, 
then MV(R + W)MI will also be symmetric.

8.6  Regulation and Terminal Impedances

Regulation effects can be obtained by comparing the output terminal voltages with the no-
load terminal voltages. The output terminal voltages can be found from (8.57) once the 
load currents are solved for. The no-load terminal voltages are given by the negative of the 
right-hand side of (8.58), which amounts to setting the currents to zero in (8.49), that is, 
VT,no-load = MV(NV1). One can obtain the voltage magnitude drop and angle shift from no-
load to load conditions from these voltage vectors.

As an example, consider a Y–Y autotransformer with X-line taps and a delta-connected 
tertiary. This is a 3-phase 60 MVA unit. The HV winding also has no-load taps within the 
winding. The 2-winding leakage reactances when the HV winding no-load taps are in the 
center position are, in per-unit %, given in Table 8.1.

Single-winding resistances in per-unit percent were also used in the calculation and are 
shown in Table 8.2.

Regulation effects at different power factor loads with the on-load taps out, expressed as 
a percent voltage drop from no-load conditions, are given in Table 8.3, where calculations 

TABLE 8.1

Winding to Winding (Wdg 1 to Wdg 2) Leakage Reactances

2-Winding Leakage Reactances

Wdg 1 Wdg 2 p.u. %

HV LV 23.12
HV Taps 44.22
HV TV 45.71
LV Taps 16.53
LV TV 19.44
Taps TV 11.77

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, 
July 2006. © 2006 IEEE.
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are compared with test results. The calculated results were obtained by the methods 
described here, using the per-unit reactances and resistances given in Tables 8.1 and 8.2. 
These per-unit quantities were converted to ohmic quantities for the calculation.

These regulation effects can also be obtained at other tap positions but were not mea-
sured. However, we can use them to get the terminal to terminal reactances at various tap 
positions, which were measured.

To obtain the terminal to terminal impedances, Ztt, the regulation, R, can be expressed as 
a voltage ratio, using the simplified model of Figure 3.12, where Z2,eq is replaced by Ztt:
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(8.59)

Here ZL is the load impedance, assumed known, which can be expressed in terms of its real 
and imaginary parts. Ztt contains unknown real and imaginary parts, so there are two 
unknowns. The no-load terminal voltages are known and the load terminal voltages are 
obtained by solving (8.58) and then using (8.57). The ratio of these two quantities, R, con-
tains magnitude and phase information. The magnitude is used to obtain the regulation 
expressed as a percentage drop as given in Table 8.3. The phase shift from the no-load 
condition is the phase of R. These two calculated quantities allow us to solve (8.59) for the 
two unknowns in Ztt. The imaginary part of Ztt is the terminal to terminal reactance. We 
compare this with test values of the HV to LV reactance in Table 8.4. Note that the 2- winding 
leakage reactances between the HV and the other windings change slightly at the different 
no-load tap settings, and these were used in the calculations in Table 8.4 for the All in and 
All out no-load tap positions.

The HV to TV terminal to terminal reactances can be found by the same methods. 
They are compared with test results in Table 8.5. They were only measured with the load 
taps out.

This type of calculated information can be valuable at the design stage to determine 
whether regulation and impedance requirements will be met.

TABLE 8.2

Single Winding Resistances

Winding Resistances (p.u. %)

Winding HV LV Taps TV
Resistance 0.391 0.254 1.3 0.62

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 
2006. © 2006 IEEE.

TABLE 8.3

Regulation as a Percent of Voltage Drop from No-Load 
Conditions

Regulation as % Drop

Power factor % 100 90 80 70
Calculation 0.47 3.55 4.63 5.36
Test 0.5 3.71 4.88 5.68

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 1300–1308, July 
2006. © 2006 IEEE.
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8.7  Multiterminal Transformer Model for Balanced 
and Unbalanced Load Conditions

Thus far, the multiterminal model developed required balanced loading when windings, 
such as a delta winding, are present. The model also singled out the input (HV) winding 
for special treatment. This leads to complications when the input winding is intercon-
nected with other windings. In this section, both of these issues are addressed so that a 
more general treatment emerges. This generalization can accommodate balanced or unbal-
anced loading, including unbalanced short circuits.

The starting point for the circuit model is the calculation (or measurement) of the  2-winding 
leakage reactances between all pairs of windings. Both the positive and zero sequence reac-
tances are needed, although the latter are often estimated from the positive sequence 
 reactances. This contrasts with the previous development where only the positive sequence 
reactances were needed. We assume that the positive and negative sequence reactances are 
equal, whereas the zero sequence reactances can differ. The 2-winding leakage reactances are 
combined to form a reduced reactance matrix. This matrix is called reduced because it 
excludes one of the windings. We also want to make this distinction because we will later be 
adding the excluded winding back so all the windings can be treated on the same footing. 

TABLE 8.4

HV to LV Percent Leakage Reactances at Different Tap 
Positions from Calculation and Test

HV–LV Terminal Reactances (p.u. %)

Load/No-Load Taps All In Center All Out

Boost 8.46 C 7.94 C 7.68 C
8.53 T 8.08 T 7.74 T

Out 8.11 C 7.56 C 7.28 C
8.04 T 7.56 T 7.20 T

Buck 8.05 C 7.48 C 7.16 C
8.07 T 7.56 T 7.16 T

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 
1300–1308, July 2006. © 2006 IEEE.

C, calc; T, test.

TABLE 8.5

HV to TV Percent Leakage Reactances at Several Tap 
Positions from Calculation and Test

HV–TV Reactances (p.u. %)

Load/No-Load Taps All In Center All Out

Out 29.35 C 28.81 C 28.54 C
29.54 T 29.05 T 28.58 T

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 
1300–1308, July 2006. © 2006 IEEE.

C, calc; T, test.
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This reduced matrix is the same matrix used earlier for the balanced model but is given a 
slightly different notation here. This matrix is then inverted to get an admittance matrix. An 
amp-turn balance condition is imposed on the admittance matrix, which extends it to a 
matrix involving all the windings. This full admittance matrix is singular.

Although one can work in the admittance representation, it is often convenient to solve 
problems in the impedance representation. In order to invert the full admittance matrix, 
the core excitation data are added. Since the resulting matrix is close to being singular, the 
inversion must be carried out with high accuracy.

Superposed on this overall scheme, we will be making winding interconnections as 
needed via voltage and current transfer matrices. We will then show how these transfer 
matrices can be used to obtain winding currents and voltages, after the terminal loading 
problem has been solved.

Our main concern here is with constant frequency steady-state a.c. applications. We will 
therefore work with reactances rather than inductances. We will include single-winding resis-
tances and ignore mutual resistances, which may be present at high frequencies [Mom02].

8.7.1  Theory

The starting point for this development is the formula relating voltages and currents devel-
oped earlier, where we singled out winding 1 (usually the HV winding) for exclusion. Including 
the single-winding resistances, the basic formula is given by (8.15), which we repeat here:
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where n is the number of windings. The Vj’s, Ij’s, Rj’s, and Nj’s are the single-winding volt-
ages, currents, resistances, and turns. Z1jk is a leakage reactance matrix element, derived 
from 2-winding positive sequence leakage reactances. It is given by
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(8.61)

where the Zij are the 2-winding positive sequence leakage reactances.
It is convenient to introduce separate matrices for the real and imaginary parts of (8.60). 

Since the R’s are real and the Z’s are imaginary, we define the reduced matrices as
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(8.62)

where δjk = 1 if j = k and 0 otherwise. The superscript r indicates a reduced quantity. 
Previously, W, without the superscript r, included the resistance of winding 1. Define the 
reduced vectors as
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Using this notation, Equation 8.60 becomes
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As before, italicized quantities represent matrices and boldfaced quantities vectors. We 
have inserted the imaginary unit j to take account of the complex nature of the reduced 
reactance matrix and therefore consider Wr to be real.

Extending this to three phases, labeled a, b, and c, we have
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(8.65)

The 0’s in (8.65) are zero matrices of the same size as the Wr’s and Rr’s.
At this point, since we are interested in unbalanced conditions in general, we need to 

include the zero sequence 2-winding leakage reactances, Z0,ij. Using these in an expression 
similar to (8.61), we obtain the analogous quantities, Z0,1jk, and the analogous matrix, W0

r, 
defined by an expression similar to Wr in (8.62). Following [Bra82], we need to modify the 
3-phase Wr matrix in (8.65). We do this by replacing the Wr matrices along the diagonal in 
(8.65) by
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(8.66)

We also replace the off-diagonal 0 matrices in (8.65) by
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(8.67)

The Rr matrices remain unchanged in this procedure. Thus, the 3-phase Wr matrix in (8.65) 
becomes
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(8.68)

This method is slightly different from that in [Bra82] in the way the matrix (8.68) is orga-
nized. For balanced conditions, set W W0

r r=  and the matrix in (8.68) reduces to that in 
(8.65). Labeling the quantities in (8.65) with a 3 superscript to indicate that three phases are 
involved, we rewrite it in simplified notation as

 
V N I3 1

3

1

3 3 3 3r r r r rV
N
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(8.69)

The relabeled vectors and matrices correspond to the expanded versions in (8.65), with W 3r 
given by (8.68).
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8.7.2  Admittance Representation

In order to include all the windings on a similar footing, it is necessary to invert (8.69). The 
matrices will then become admittance matrices. This requires the inversion of a complex 
matrix. This can be done, working with real matrix inverses only, via the formula

 M jM M M M M M M M MRe Re Re Re Re+( ) = +( ) - +( )- - - - -
Im Im Im Im Imj

1 1 1 1 1

 (8.70)

Here MRe and MIm are the real and imaginary components of a general complex matrix and 
both are assumed invertible. If either component matrix is zero, this reduces to the usual 
matrix inverse. If software is available for dealing with complex matrix algebra and 
inverses, then this procedure is unnecessary.

Complex matrices and vectors can be handled by treating them as enlarged real matrices 
and vectors according to
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where
MRe is the real part
MIm the imaginary part of the complex matrix and similarly for the vector V

Using these, matrix algebra can be carried out as if they were real matrices and vectors. The 
real and imaginary parts of vectors can then be extracted as needed, the real part at the top 
and the imaginary part at the bottom of the column vector.

Inverting (8.69), we get
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where Y3r is the complex inverse of R3r + jW3r in (8.69).
In order to include winding 1 on an equal footing with the other windings, we use amp-

turn balance to get its current. Thus,
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Using the following matrix, we can transform the reduced current vector in (8.63) to a full 
current vector, I:
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where A is an amp-turn balance matrix for one phase. This matrix has n rows and n − 1 
columns. By tripling it along the diagonal, we get a matrix that applies to all three phases. 
Calling this matrix A3 for a 3-phase amp-turn balance matrix, we can rewrite (8.74) as

 I I3 3 3= A r  (8.75)

where I3 stands for the full 3-phase current vector of dimension 3n.
Using the transpose of the matrix in (8.74), we can express one phase of the reduced volt-

age vector in (8.72) in terms of the full voltage vector:
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where the T superscript stands for transpose. By tripling the matrix in (8.76) along the diago-
nal so that it applies to all three phases and calling the resulting matrix A3T, we can write
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Here, V3 is the voltage vector for all the windings and all three phases of dimension 3n. Using 
these transformations, Equation 8.72 can be put in a form that includes all the windings:

 I V3 3 3 3 3= A Y Ar T  (8.78)

Letting Y3 = A3Y3rA3T, this equation can be written more succinctly as

 I V3 3 3= Y  (8.79)

where Y3 is a 3n × 3n complex matrix.
At this point, we will drop the superscript 3 since all the matrix equations we deal with 

from here on will involve all three phases, unless otherwise noted. Thus, Equation 8.79 
becomes simply

 I V= Y  (8.80)

8.7.2.1  Delta Winding Connection

As mentioned in the introduction, the matrix Y is singular. It is usual to add the core 
 excitation shunt admittances to Y3 to render it invertible as discussed in [Bra82]. However, 
at this point, it is natural to make the delta connections so that balanced loading need 
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not be assumed. Figure 8.7 shows a delta connection with the labeling convention assumed 
for the phase and terminal voltages and currents.

The terminal currents are positive into the terminals. The phase currents are opposite to 
the direction of phase voltage increase. With these conventions, the terminal and phase 
voltages and currents are related for the delta connection by
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(8.82)

These equations were given before in (8.44) and (8.45). However, they were not used for 
the balanced terminal model. They are needed here in order to allow unbalanced condi-
tions. Notice that the matrices in (8.81) and (8.82) are transposes of each other. This trans-
formation needs to be embedded in a general transformation matrix that includes all the 
other windings and all three phases. The other winding currents and voltages are left 
unchanged so they are transformed by a unit matrix. We thus embed the delta transforma-
tions in a unit matrix for the other windings. For example, if we have a 2-winding trans-
former and winding 2 is a delta winding, Equation 8.82 is embedded as
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(8.83)

Va

Vb Vc

VT1

VT3

VT2

IT3

IT2 IT1

Ia

Ib Ic

FIGURE 8.7
Delta winding connection with the phase and terminal quantities labeled. Subscript T labels terminal quantities 
and small letters the phase quantities. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 
2008. © 2008 IEEE.)
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Here all the windings in one phase are listed consecutively, followed by the next phase, etc. 
The corresponding voltage transformation in (8.81) is embedded by the transpose of the 
matrix in (8.83).

Calling the matrix in (8.83) My, where y indicates admittance representation, 
Equation 8.83 and the corresponding voltage transformation can be written to include all 
the windings as
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If there is more than one delta winding, say, K, label the transforming matrices, 
My1, My2, …, MyK. Then, the transformed currents and voltages become
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Combining these, we get
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where we have defined the product matrix MY. Then (8.80) becomes, after the delta 
transformations,

 I VTK Y Y
T

TK=M YM  (8.87)

Calling the resulting matrix in (8.87) Ymod to indicate that Y has been modified to include 
the deltas, we have simply

 I VTK TK= Ymod  (8.88)

The delta connection treated here is a −30° delta since the terminal voltages are shifted 
by −30° relative to the phase voltages. There is also a +30° delta connection that can be 
treated by a similar procedure.

If there are squashed delta windings, they should also be handled in the admittance 
 representation in order to allow unbalanced loading. This connection is discussed in 
Chapter 7. The transformations are a bit more complicated than the delta transformations 
and will not be dealt with here. We should also note that parallel winding connections 
should also be handled in this admittance representation.

8.7.3  Impedance Representation

Although one can work in the admittance representation, it is often convenient to make 
other types of winding connections and solve terminal equations in the impedance repre-
sentation. It should be noted that, even with the matrix transformation in (8.87), the result-
ing matrix is still singular. Therefore, to invert it, some modifications must be made. This 
is done, as in [Bra82], by adding the core excitation characteristics.



194 Transformer Design Principles

Let Yexc-1 and Yexc-0 be the positive and zero sequence core excitation shunt admittances. 
These are used to construct diagonal and off-diagonal admittances for unbalanced condi-
tions similar to Equations 8.66 through 8.68:
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These can be added to a single winding or 1/n times these to all the windings. It is added 
to the imaginary part of Ymod.

If the core losses are known, these can be used to obtain a core conductance, which also 
should be added to a single winding or 1/n times it to all the windings. This is a real quan-
tity and should be added to the diagonal terms in the real part of Ymod.

Once this is done, the matrix Ymod becomes invertible. Again, if this is a complex matrix, 
complex inversion must be used. Note that if Ymod has real and imaginary parts, both must 
be modified by the procedure mentioned earlier in order to get an invertible matrix. Thus, 
core losses are needed if winding resistances are included. Since the resulting matrix is 
close to being singular, a double-precision inversion may be needed.

Inverting (8.88) with these modifications, we get

 V ITK TK= Zmod  (8.90)

where Zmod is the inverse of the core modified version of Ymod and is an impedance matrix. 
It is in this representation that most of the other winding connections can be made more 
naturally without sacrificing unbalanced loading. These will be discussed in the next 
sections.

8.7.3.1  Ungrounded Y Connection

The ungrounded Y connection can be generalized to include Y connections with an imped-
ance connecting the neutral point to ground as shown in Figure 8.8. For a true ungrounded 
Y connection, this impedance is set to a large enough value to keep the neutral current 
close to zero. If it is too large, numerical instabilities may occur when the problem is solved.

VT1

VT2 VT3

IT1

IT3IT2

ZgVT0

IT0

FIGURE 8.8
Y connection grounded through an impedance. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–
1447, July 2008. © 2008 IEEE.)
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Another equation must be added to (8.90) to account for the additional branch to ground. 
It now becomes
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The vectors in (8.90) have been enlarged to include one more component and are of dimen-
sion 3n + 1. The matrix in (8.90) has also been enlarged to a 3n + 1 × 3n + 1 matrix. The 
current equation

 I I I IT T T T0 1 2 3= + +  (8.92)

can be added via the matrix
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(8.93)

We have relabeled the new terminal currents with S instead of T to distinguish the different 
terminal situations. As before, this must be embedded in a larger unit matrix to include all the 
other windings. The transformed voltages are given by the transpose of the matrix in (8.93):
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(8.94)

Here we see that the new terminal voltages are given in terms of the old by VS1 = VT1 + VT0, 
etc. We note that the matrices in (8.93) and (8.94) are not square matrices. In both cases, the 
new terminal voltage and current vectors have one less component than the original vec-
tors for the grounded Y connection.

We need to embed (8.94) in a larger matrix that leaves the other winding terminal volt-
ages unchanged and similarly for the currents in (8.93). Calling this enlarged matrix in 
(8.94) Mzu, with z standing for impedance representation and u for ungrounded Y, we can 
rewrite (8.93) and (8.94) to include all the windings as
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where the T superscript indicates transpose. Then (8.91) is transformed into
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The terminal voltage and current vectors in (8.96) include all the terminals and all three 
phases but exclude the neutral terminals. We are using the S label for the terminals in the 
transformed situation.
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The procedure mentioned earlier can be generalized for other ungrounded (or grounded 
through an impedance) Y-connected windings. Simply enlarge the matrix in (8.91) to include 
other grounding impedances along the diagonal, labeled Zg1, Zg2, etc., and enlarge the matrices 
Mzu and Mzu

T  appropriately. The resulting matrix as in (8.96) will be a 3n × 3n matrix, having the 
same terminals as before the grounding impedances were added. It is convenient to refer to the 
enlarged matrix in (8.96) as Zmod-g so that the equation can be written as

 V IS zu -g zu
T

S=M Z Mmod  (8.97)

If there are no ungrounded or impedance grounded Y’s, Zmod-g becomes Zmod and (8.97) 
reduces to (8.90).

8.7.3.2  Series-Connected Windings from the Same Phase

This is a common connection, particularly for tap windings. The windings can be con-
nected so that the voltages add or subtract. For simplicity, consider connecting windings 
1  and 2, with 1 retaining its terminal status. The case of voltage addition is shown in 
Figure 8.9. Here the label p, Sq refers to winding p in phase q.

The new terminal quantities will be labeled with U. They are V1,U1 = V1,S1 + V2,S1 and I1,S1 = 
I1,U1, I2,S1 = I1,U1. These can be expressed in matrix form, including the other phases, as
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The currents are transformed by the transpose of the matrix in (8.98) and are
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These matrices are not square. They reduce the size of the 3-phase voltage and current vec-
tors by 3. We need to embed the matrices in (8.98) and (8.99) into enlarged matrices that 

V2,S1 V1,S1

I1,S1I2,S1

FIGURE 8.9
Voltage addition of two windings of the same phase. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 21(3), 
1300–1308, July 2006. © 2006 IEEE.)
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include the other windings without changing their terminal voltages and currents, that is, a 
unit matrix. If different winding numbers are connected in series, then the patterns in these 
matrices must be inserted in the appropriate positions of the final full winding matrix. Call 
the enlarged matrix, corresponding to the voltage transformation matrix in (8.98), Mzs, where 
z refers to impedance representation and s to series connection. Then we have

 

V V

I I
U zs S

S zs
T

U

=
=

M

M  
(8.100)

This transforms (8.97) into

 V IU zs zu - zu
T

zs
T

Ug=M M Z M Mmod  (8.101)

This has fewer terminals than before the series addition.
If there are ungrounded Y connections, from (8.95) and (8.100), we see that
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If there are more series-connected windings, then these are handled in the same way, and 
we would end up with additional transformation matrices, for example, Mzs1, Mzs2, etc. 
Similarly, we could add more than 2 windings together by adding the additional windings 
to the previous ones by similar matrices operating on the previous terminal quantities.

We see the general pattern here. Voltages and currents are transformed by matrices that 
are typically transposes of each other and nonsquare. These also transform the terminal 
equations as in (8.101).

From here on, we will only calculate the transformation matrices M for the terminal volt-
ages and currents and assume that they are used as in the examples given earlier. To avoid 
notational difficulties, we will assume that the starting terminal quantities are labeled S 
and the transformed ones U. The S terminal quantities will be, in general, the result of 
multiple previous transformations.

8.7.3.3  Zigzag Connection

This is really a series connection involving two windings from different phases and is 
treated in a similar manner as in the previous section. The connection is shown in Figure 8.10, 

a b c

V1,S1 V1,S2 V1,S3V2,S1 V2,S2 V2,S3

FIGURE 8.10
Zigzag winding connection. The phases are labeled a, b, and c. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 
23(3), 1439–1447, July 2008. © 2008 IEEE.)
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where we are assuming that windings 1 and 2 are involved in the connection, with winding 
1 being the final terminal winding. This connection was given in Figure 8.5, but here the 
labeling is different and the HV or input winding can be part of the zigzag connection.

The connection is one of voltage subtraction and results in the elimination of the 
terminal voltages and currents associated with winding 2. The transformed voltages 
are given by
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and the transformed currents by the transpose
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Since the positive current direction is into the terminals, we see that the current in 
 winding 2 is the negative of the current into winding 1 to which it is connected. These 
matrices must be extended to include all the windings and are used to transform the termi-
nal equation as discussed previously. This will result in a terminal equation with three less 
terminals. Label the full voltage transformation matrix, corresponding to that in (8.104), 
Mzz, where the second z stands for zigzag connection.

8.7.3.4  Autoconnection

This connection involves two windings from the same phase as shown in Figure 8.11. We 
will assume, again without loss of generality, that windings 1 and 2 are involved in this 
connection.

V1,S1

V2,S1

V1,U1

I1,U1

I2,S1

I2,U2

I1,S1

FIGURE 8.11
Autotransformer connection. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 
2008 IEEE.)
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For simplicity, we will only consider the transformations for one phase as shown in the 
figure. The other phases will simply be repeats along the diagonal of the complete matrix. 
The voltage terminal transformation is
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and the currents are transformed by the transpose matrix
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This leaves the number of terminals unchanged. Label the full voltage transformation, 
including all the windings and phases, Mza, with a standing for auto.

Notice how much simpler the autotransformation is when all the windings are treated 
on the same footing as compared with the autoconnection discussed for the balanced 
model when the HV or input winding is the series winding in this connection.

8.7.3.5  Three Windings Joined

Here the three windings are connected at a common point. This is an important connection 
for phase shifting transformers or autotransformers with X-line taps. The three windings can 
be from different phases and the voltage connections can be additive or subtractive in gen-
eral. This is a transformation that can be performed in two steps. In the first step, join two of 
the windings but retain both terminals, as is done in the autoconnection outlined earlier. In 
the second step, join the third winding to one of the terminals of the first 2 joined windings 
as in a series connection. This can be generalized if the windings are on different phases.

8.7.4  Terminal Loading

The various winding connections have been represented by matrices, which transform the 
terminal voltages and currents. These matrices are typically transposes of each other. In the 
impedance representation, we have labeled these with a z for impedance and another letter 
to indicate the type of connection. Here, to generalize this, we will label these z1, z2, etc., 
with the number indicating the order in which they are applied. We will also label the ter-
minal vectors S1, S2, S3, etc., with the number corresponding to the matrix transformation 
order. For simplicity, we will ignore ungrounded Y connections, but their inclusion is 
straightforward as discussed in Section 8.7.3.1. Thus, we will start with (8.90).

In the impedance representation, the multiple voltage and current transformations 
result in
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We are considering a total of L transformations of various types. When applied succes-
sively, they result in
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Here we have defined the total transformation matrix MZ. The terminal equation (8.90) that 
we started with is transformed into

 V ISL Z Z
T

SL=M Z Mmod  (8.109)

If ungrounded Y’s are present, then Zmod-g should replace Zmod in (8.109) and VTK and ITK 
should be expanded to include VT0 and IT0 as in (8.95) or additional ones if more than one 
ungrounded Y is present.

We are assuming that terminal 1 is the input terminal having a given voltage although, 
in general, other terminals could be specified for this role. The noninput terminals are 
loaded with some impedance. In general, we can write

 V I VSL Ld SL Ld= - +Z  (8.110)

Here ZLd is a complex load matrix that is typically diagonal. The minus sign is necessary 
because the terminal currents are assumed to flow into the transformer while the load cur-
rents flow out of it. VLd is an applied voltage load vector that typically includes only a 
nonzero terminal voltage for the input terminal. However, there may be situations where 
it may be nonzero for other terminals.

As an example, if there are three terminals for a single phase, which we will label 1, 2, 
and 3, and terminal 1 was driven by a voltage Vo, Equation 8.110 would take the form, for 
one phase,
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This must be enlarged to include the other phases. The diagonal matrix entries are the 
complex load impedances for terminals 2 and 3. The voltage Vo will change for the different 
phases if, for example, the input is a 3-phase balanced set of voltages. The ZLd’s will be the 
same for the different phases under balanced conditions but will be different for unbal-
anced loading. In fact, for this, we would need to include the zero sequence load imped-
ances, if they differ from the positive sequence impedances, by the procedure given in 
(8.66) through (8.68).

Combining (8.110) and (8.109), we get

 M Z M ZZ Z
T

Ld SL Ldmod +( ) =I V  (8.112)

This is the terminal equation that must be solved. If a real matrix solver is used, then this 
must be cast in the form of (8.71) to separate the real and imaginary parts.

8.7.5  Solution Process

8.7.5.1  Terminal Currents and Voltages

Equation 8.112 is, in general, complex so complex solution techniques must be employed, 
unless the methods discussed in Section 8.7.2 are used. Most scientific or math libraries 
have matrix equation solvers. A double-precision one is recommended.
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Once the terminal currents, ISL, are found, the terminal voltages, VSL, can be found from 
(8.110) or (8.109). From these quantities, one can also obtain the power into and out of the 
various terminals. In addition, regulation effects and transformer terminal impedances can 
be obtained by the methods outlined for balanced loading.

8.7.5.2  Winding Currents and Voltages

Equation 8.108 can be used to obtain ITK from the terminal currents ISL. If ungrounded Y’s 
are present, then the IT0’s are also obtained. Then (8.90) or (8.91), depending on whether 
ungrounded Y’s are present, can be used to determine VTK from ITK. Equation 8.86 can then 
be used to obtain V from VTK, where V contains the winding voltages under load. Finally, 
Equation 8.80 can be used to get the winding currents I from V. This is summarized in the 
following steps:
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These are slightly modified if ungrounded Y’s are present. In this case, the neutral currents 
and voltages are also obtained.

8.7.6  Unbalanced Loading Examples

The examples given here will be for a single line to ground fault. If the unfaulted terminals 
are open, they are given a very high load impedance. For unfaulted loaded terminals, we 
assume that the load impedances are very low, about 0.01%, but that the load voltages are 
kept at their rated values. In general, a full or partial load could be added to the unfaulted 
terminals. For the faulted terminal, we assume that the load impedance and voltage are 
zero. Generally, the a-phase terminal is faulted. The b- and c-phase terminals correspond-
ing to the faulted terminal are given very low impedances, and their voltages are set to 
their rated values. These terminal conditions correspond to those used in the sequence 
analysis calculations for the case where the system is connected beyond the fault point. If 
the system were not connected beyond the fault point, then the b- and c-phase terminals 
corresponding to the faulted terminal would be given very high impedances to signify an 
unloaded condition. The results obtained by the methods discussed here will be compared 
with the results of the sequence analysis method.

It is also convenient to use per-unit impedance and admittance quantities as inputs for 
the computer program that performs the calculations given earlier. However, they are con-
verted to Ohms or Mhos before performing the analysis. We have also kept the exciting 
admittances low, typically about 0.05%, in order to minimize the influence of the core for 
better comparison with the sequence results. We also ignore resistance effects in this analy-
sis. The fault currents are rms amps with no asymmetry factor correction.

8.7.6.1  Autotransformer with Buried Delta Tertiary and Fault on LV Terminal

The autotransformer is a 3-phase 50 MVA unit, Y connected with a buried delta. The line–line 
voltages in kV are HV 154.63, LV 69.28, and TV 7.2. The per-unit winding to winding leakage 
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reactances are given in Table 8.6. Note that these are winding to winding leakage reactances 
and not terminal to terminal leakage reactances, since the method presented here is based on 
winding to winding leakage reactances. The relationship between winding to winding and 
terminal to terminal leakage reactances for autotransformers was given in Chapter 4.

The single line to ground fault is on phase a of the LV terminal. The terminal and wind-
ing currents by the present method are compared with the sequence analysis results in 
Table 8.7. Only the current magnitudes are given.

The neutral current is 8104 amps by the present method and 8117 amps by the sequence 
analysis method.

8.7.6.2  Power Transformer with Fault on Delta Tertiary

This is a 3-phase 16.8 MVA power transformer with line–line voltages in kV: HV 138, LV 
13.8, and TV 7.22. The HV and LV windings are Y connected and the TV is delta connected. 
The leakage reactances are given in Table 8.8.

The single line to ground fault is on phase a of the loaded delta tertiary. There are no line-
to-line loads present. The comparison of the fault currents by the present and sequence 
analysis methods is shown in Table 8.9. The current magnitudes only are given.

The terminal currents sum to zero for the delta. There are no neutral currents for either 
analysis method, since this would be a zero sequence current that cannot flow out of the 
delta. If the system were not connected beyond the fault point, there would be no short 
circuit currents in any of the windings, as was discussed in Chapter 6.

TABLE 8.7

Comparison of Terminal and Winding Fault Currents for the 50 MVA Autotransformer

Present Method Phase Sequence Analysis Phase

a b c a b c

Terminal
HV 2650 154 154 2654 154 154
LV 7401 1830 1830 7412 1833 1833
TV 0.27 0.27 0 0 0 0

Winding
Series 2650 154 154 2654 154 154
Common 4754 1678 1678 4759 1679 1679
TV 8274 8264 8264 8274 8274 8274

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 2008 IEEE.

TABLE 8.6

Winding to Winding Leakage Reactances in Per-Unit % for the 50 MVA Autotransformer

Positive Sequence Zero Sequence

Wdg1/Wdg2 LV TV LV TV

HV 24.518 40.428 20.842 30.508
LV 11.090 9.430

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 2008 IEEE.
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8.7.6.3  Power Transformer with Fault on Ungrounded Y Secondary

This is a 3-phase 40 MVA power transformer with line–line voltages in kV: HV 242.93, LV 
34.5, and TV 13.2. The HV is a grounded Y, the LV an ungrounded Y, and the TV a loaded 
delta. The leakage reactances are given in Table 8.10.

The single line to ground fault is on phase a of the ungrounded Y secondary. The termi-
nal and winding current magnitudes are given in Table 8.11 for both methods. There are no 
neutral currents in either method of analysis. If the system were not connected beyond the 
fault point, there would be no fault currents in the transformer, as discussed in Chapter 6 
and as shown by this method.

TABLE 8.8

Winding to Winding Leakage Reactances in Per-Unit % for the 16.8 MVA Power Transformer

Positive Sequence Zero Sequence

Wdg1/Wdg2 LV TV LV TV

HV 10.00 17.40 8.50 13.92
LV 7.10 6.39

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 2008 IEEE.

TABLE 8.9

Comparison of Terminal and Winding Fault Currents for the 16.8 MVA Power Transformer

Present Method Phase Sequence Analysis Phase

a b c a b c

Terminal
HV 8.7 0 8.7 8.6 0 8.6
LV 5,804 0.23 5804 5803 0 5803
TV 12,628 6314 6314 12627 6313 6313

Winding
HV 8.6 0 8.6 8.6 0 8.6
LV 5,803 0 5803 5803 0 5803
TV 6,314 0 6314 6313 0 6313

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 2008 IEEE.

TABLE 8.10

Winding to Winding Leakage Reactances in Per-Unit % for the 40 MVA Power Transformer

Positive Sequence Zero Sequence

Wdg1/Wdg2 LV TV LV TV

HV 8.45 12.62 7.18 10.10
LV 3.3 3.00

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 2008 IEEE.
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8.7.7  Balanced Loading Example

8.7.7.1  Standard Delta Phase Shifting Transformer

This type of transformer has been discussed in Chapter 7 so there are analytic expres-
sions for the phase shift, terminal and winding currents, and effective leakage reactance 
for comparison with the values determined by this method. The connection is shown in 
Figure 8.12.

The secondary windings are loaded with their rated terminal resistance on all three 
phases. The delta is a +30° delta. The current transformation corresponding to the +30° 
delta is
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(8.114)

IT2
IT1

Va

Vc Vb

VT1

VT2

VT3

IT3

Ia

Ic Ib

VS1 VL1

IS1 IL1

FIGURE 8.12
Standard delta phase shifter. S1 and L1 label the input and output terminals of the A phase. The other input and 
output terminals are not shown. The delta is a +30° delta. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 
1439–1447, July 2008. © 2008 IEEE.)

TABLE 8.11

Comparison of Terminal and Winding Fault Currents for the 40 MVA Power Transformer

Present Method Phase Sequence Analysis Phase

a b c a b c

Terminal
HV 854 427 427 852 426 426
LV 20,281 10,140 10,140 20,162 10,081 10,081
TV 32,300 32,300 0.2 32,063 32,063 0

Winding
HV 852 426 426 852 426 426
LV 20,167 10,084 10,084 20,162 10,081 10,081
TV 21,382 10,691 10,691 21,375 10,688 10,688

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 23(3), 1439–1447, July 2008. © 2008 IEEE.
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The voltages are transformed by the transpose of this matrix but with the voltage  vectors 
interchanged right to left. The −30° delta transformation was given in (8.82). Note that the 
S1 winding is connected negatively to the delta terminal, while the L1 winding is con-
nected positively.

The transformer is a 3-phase 75 MVA unit. Labeling the input and output windings 
S and L, respectively, and the delta winding T, the winding phase voltages are in kV: S 8.0, 
L 8.0, and T 38.0. The positive sequence leakage reactances are, in per-unit %, ZSL = 20, 
ZST = 10, and ZLT = 10. The zero sequence reactances are the same, since balanced loading 
is assumed.

The parameter n is the ratio of delta winding turns to turns in the S or L winding, 
which have equal numbers of turns. This turns ratio is 4.76 for this unit. The phase shift 
is given by
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For the value of n given, this is 40°. The present method gives the same value for no-load 
conditions but 38.66° for load conditions.

The magnitude of the terminal voltage is given by
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This is equal to 23.396 kV for this unit. The present method gives this value for no-load 
conditions but a value of 23.389 for load conditions. The angle and voltage magnitude shift 
under load conditions are what are termed regulation effects.

Based on the input power and terminal voltage, the terminal current S1 is 1068.6 amps. 
The current in the delta is given by
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This gives 421.9 amps compared with a value of 422.6 amps by the present method.
The winding power is smaller than the input power:

 P Pwdg in= sinq  (8.118)

For Pin of 75 MVA, Pwdg is 48.21 MVA. The present method gives 48.26 MVA.
The effective per-unit leakage reactance, as given in Chapter 7, is
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This gives 2.34%. Using the technique discussed in Section 8.6, we obtain 2.324% for this 
quantity by the present method of analysis.

8.7.8  Discussion

The multiterminal circuit analysis method presents a systematic way of modeling trans-
formers, especially the ones with complicated winding interconnections. The inputs 
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required are (1) the winding to winding positive and zero sequence leakage reactances, 
with only the positive ones required for balanced conditions, (2) winding turns, (3) the core 
excitation conditions for unbalanced loading, (4) winding resistances and core losses if 
desired, (5) terminal quantities such as MVA and voltages, and (6) the winding 
interconnections.

The method then permits the calculation of terminal voltages and currents and winding 
voltages and currents under load, regardless of whether the loading is balanced or unbal-
anced. This is particularly important for unbalanced faults since the winding currents are 
needed for subsequent force and stress analysis. For balanced conditions, the method can 
yield terminal to terminal leakage reactances and regulation effects. For the terminal to 
terminal per-unit leakage reactances, only two terminals should be loaded, one primary 
and one secondary, at its rated load. The other windings should be loaded with a very large 
impedance to simulate an unloaded condition.

The main purpose of the examples given earlier is to show that the method agrees with 
other types of analysis, where comparisons can be made. There is no claim that the meth-
ods proposed here are more accurate than other methods of analysis when they are feasible 
to perform. Rather, we expect that these methods are more general and can be applied to 
more complicated winding configurations than are possible or reasonable with more stan-
dard methods such as sequence analysis methods.

The terminal equation (8.112) could be integrated into a larger system for power flow 
analysis, for example. As part of a larger network, only the terminal quantities of the trans-
former are of interest. However, once the network equations are solved, one can obtain the 
internal winding currents by the methods described earlier, and these can be used, for 
example, for loss or short circuit analysis.

If transient analysis is desired, then inductance matrices can be used from the start 
instead of reactance matrices. The procedures described here can be carried out with induc-
tance matrices, eliminating the imaginary unit j. These matrices would then be incorpo-
rated into a differential matrix equation in time. Nonlinear core characteristics can be 
added as discussed in [Bra82]. These would mainly be used in transient analysis and are 
most easily inserted in the admittance representation. However, Reference [Bra82] also 
discusses a method for inserting nonlinear core characteristics in the impedance 
representation.

We should also note that two core transformers can be modeled by the methods men-
tioned earlier. In this case, it is necessary to add any connections between windings on 
different cores. Voltage and current transfer matrices can be constructed to do this as shown 
in the next section.

8.8  2-Core Analysis*

When the second 3-phase core is added, both cores are analyzed individually, as discussed 
up to this point. Initially, the two cores are assumed to be uncoupled before interconnec-
tions between the cores are made. It is necessary to introduce additional labels to 

* Much of the section is excerpted from [Ahu14] and reprinted with permission from Analysis of 2 core trans-
former designs, Cigre session paper no. A2_210_2014, Cigre 2014 General Session, Session 45, August 24–30, 
2014. © 2014 Cigre.
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distinguish the individual core matrices and vectors. Use c1 and c2 for this purpose and C 
to denote the combined voltages, current, and matrices. Thus, starting out,
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where
VC and IC are two core vectors
ZC a 2-core matrix

8.8.1  2-Core Parallel Connection

If there is a parallel connection between windings on the two cores, this should be done 
first and performed in the admittance representation. Thus, we need to invert the final 
equation in (8.120). Since ZC is invertible, we get

 I VC C C= Y  (8.121)

As an example, assume each core has two terminals and that terminal 1 of the first core 
is in parallel with terminal 1 of the second core. The second terminals on both cores are 
unaffected by the transformation. Label the initial voltages and currents with the core and 
terminal number, for example, c1,1 for core 1 and terminal 1, and the final voltages and 
currents with the core number and terminal number preceded by t, for example, c1, t1. 
Considering only a single phase from each core, the transformation is given by
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In general, this would be expanded to include all three phases on each core. In this connec-
tion, the voltages on core 1 are left intact but the voltages on core 2 would be changed in 
general. The terminal current, Ic1,t1, is the sum of the currents on the two parallel-connected 
terminals as the transformation indicates. The transformation removes any redundant ter-
minals from the second core.

Applying (8.122) to (8.121), we get

 I V VC T C Y C C Y
T

C T C C T, , , , ,mod ,= =M Y M Y  (8.123)

Since this transformation is in the admittance representation, the terminal voltages after 
the transformation are not determined. However, these must be determined for calculations 
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performed later when we transition to the impedance representation. The terminal voltage 
transformation that accomplishes this, in the opposite direction to that in (8.122), is
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Here X = |Vc2,2|/|Vc2,1|. This is the voltage magnitude ratio of the voltage of terminal 2 
on the second core to the voltage of terminal 1 on the first core. This is necessary to scale 
up or down the voltages on the second core terminals that do not participate in the parallel 
connection. This is done because the parallel connection sets the voltage of terminal 1 on 
the second core to equal the voltage of terminal 1 on the first core to which it is paralleled, 
and this may be different from the original voltage on terminal 1 of the second core. A simi-
lar ratio should be applied to all the other windings on core 2, which do not participate in 
the parallel connection, to scale them up or down as well. If the parallel-connected wind-
ings are at the same voltage before the parallel connection, then X = 1.

8.8.2  2-Core Series Connection

In order to make series connections, Equation 8.123 must be inverted to get an impedance 
representation. This requires that the core excitations be added, as was the case for the 
single-core inversion. Having done this, we obtain the inverse matrix to YC,mod, call it ZC,

 V IC T C C T, ,= Z  (8.125)

As before, we must save MC Y
T

,  and YC in order to recover the starting voltages and 
currents.

We use a similar notation as that used for the parallel connection, that is, a c label is 
added to distinguish between windings on either core. Let these two series-connected 
windings be winding number 1 on the two cores and let both cores have a second uncon-
nected winding 2. The transformation for a single phase is
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This transformation is applied to (8.125). A sequence of such transformations can be per-
formed in this representation, and the resulting equation is

 V I V IC U C Z C C Z
T

C U C U C C U, , , , , ,mod ,,= =M Z M Z  (8.127)

where the MC’s represent a possible sequence of such transformations and ZC,mod is the mod-
ified 2-core impedance matrix. The MC Z

T
,  and ZC matrices need to be saved for later use.
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8.8.3  Terminal Loading

Starting with (8.127), apply a load to the secondary terminals and a voltage to the input 
terminal and solve for the terminal currents. Typically, the terminals are loaded with 
some possibly complex impedance, which, when all the terminals are included, can be 
expressed as a complex impedance matrix, ZL. For open terminals, a very large value for 
the load should be used. Any unloaded terminals such as the input terminal can be 
loaded with a given voltage, which takes the form of a load voltage vector VL. Loaded 
terminals would normally have their VL entries set to 0. Thus, the terminal voltage vec-
tor becomes

 V I VC U L L L, = +Z  (8.128)

We use the convention where the terminal currents are into the terminals whereas the load 
currents are out of the terminals so that IL = −IC,U. Substituting into (8.127), we obtain

 Z ZC L C U L,mod ,+( ) =I V  (8.129)

We can use complex matrix procedures to solve (8.129) for the terminal currents. Taking 
their negatives for use in (8.128), we can determine the load voltages. One of the reasons 
for keeping track of the terminal voltages all along is so that they can be used to obtain the 
unloaded terminal voltages for comparison with the loaded terminal voltages in order to 
calculate regulation effects.

Using previously saved matrices, the procedure for obtaining winding currents can be 
summarized:

 IC T C Z
T

C U C T C C T C C Y
T

C T C C C, , , , , , ,, , ,= = = =M Z M YI V I V V I V  (8.130)

From IC, via (8.120), we can recover Ic1 and Ic2, which are the individual core current vec-
tors. At this point, we can proceed with the determination of the winding currents for each 
core separately as discussed in previous sections.

8.8.4  Example of a 2-Core Phase Shifting Transformer

A 2-core phase shifting transformer was analyzed in Section 7.5, using phasor methods. 
This consists of a series unit with three windings per phase and an exciting unit consisting 
of two windings per phase. The same configuration, notation, and numerical values used 
in the phasor analysis are also used in this multiterminal calculation so a direct comparison 
can be made.

The input and output voltages and currents are labeled S and L, respectively, with a sub-
scripted number indicating the phase. They are voltages to ground. The exciting unit’s 
main winding is connected to the input and output windings of the series unit. The voltage 
to ground of the connecting point is labeled V with the subscripted number indicating the 
phase involved. The delta series unit winding is connected at its terminals to a particular 
tap on the tap winding. The phase shift will vary with the tap position. The winding cur-
rents are taken as positive into the terminal, and the load currents are taken as positive out 
of the load terminal.
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8.8.4.1  Normal Loading

Assuming the turns ratio between the delta series unit winding and the input or output 
winding be ns and the turns ratio between the main exciting winding and the tap winding 
be ne, the phase shift is
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Let the winding to winding per-unit leakage reactances be zaa′ = zaa″ and za′a″ for the series 
unit and z11′ for the exciting unit, both on the same power base. Then from our previous 
analysis, the input to output per-unit terminal reactance is given by
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Other quantities of interest are the current in the delta, Ia, and the current in the main 
exciting winding, I1. Their magnitudes are given in terms of the input current IS1 as
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Also the power into the series or exciting transformer is given in terms of the input power, 
Pin, as Pseries = Pexciting = j sin θ Pin, where j is the imaginary unit indicating a reactive power. 
It is also of interest to determine the regulation effects. This is given by
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1  
(8.134)

where zL is the per-unit load impedance. For a real 100% load and an imaginary zeq, we can 
extract the magnitude and angle shift away from the no-load conditions from (8.134).

A phase shifting transformer of 100 MVA 3-phase rating was modeled with the 2-core 
multiterminal computer program. The winding turns were Na = 500, Na′ = Na″ = 200, 
N1 = 393, and N1′ = 100. The turns ratios were ns = 2.5 and ne = 3.93. The N1 turns and 
t herefore the turns ratio in the exciting unit were adjusted to get the desired phase shift. 
The per-unit percentage winding to winding reactances were zaa′ = zaa″ = 22, za′a″ = 50, and 
z11′ = 8. Winding resistances were set to 0 in the calculations. The comparison of the analyti-
cal formula results with the multiterminal model results is shown in Table 8.12. The input 
current, IS1, is calculated from the input power and the volts/turn of the series transformer, 
whose value is 100. We get IS1 = 289.4 amps. The magnitude shift was negligible so it is not 
given in the table. It was necessary to adjust the volts/turn of the exciting unit to make the 
voltages of the parallel-connected terminals equal so that regulation effects and terminal to 
terminal reactances are correct. In addition, it is also necessary to have both the series and 
exciting units on the same power base.
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8.8.4.2  Single Line-to-Ground Fault

A single line to ground fault on the output terminal was analyzed in Section 7.7.3 using 
phasors and with the multiterminal computer program. For this, the zero sequence per-
unit percent reactances must be determined. We used zaa′,0 = zaa″,0 = 18.7, za′a″,0 = 42.5, and 
z11′,0 = 8. The 0 subscript denotes zero sequence. From these, the zero sequence terminal to 
terminal reactance, zeq,0, is given by, using the same power base as for zeq,
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The exciting unit’s reactance is not included in (8.135) because zero sequence current can-
not flow out of the delta winding in the series unit. We can also calculate this zero sequence 
reactance using the multiterminal program by running it with zero sequence voltages and 
reactances.

The analytical calculation of the fault currents in the various windings requires the use 
of sequence analysis. The positive and negative sequence quantities are labeled 1 and 2, 
and we assume the positive and negative sequence reactances are equal, zeq,1 = zeq,2. For a 
single line to ground fault on the A phase, the per-unit sequence fault currents are given by
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where iL is the resulting phase A per-unit fault current. For the other winding currents, 
which are typically shifted in phase relative to the fault current, it should be noted that the 
sign of the phase should be reversed for the negative sequence currents. Thus, for the delta 
winding, a, on the series unit,
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To get the per-unit current in the A phase for winding a, we need to sum these three 
sequence currents.

TABLE 8.12

Comparison of the Analytical with Multiterminal Results for Normal Loading

θ (°)a zeq (%) Pseries (MVA) Ia (amps) I1 (amps) θ Shift (°)b

Analytical 20 2.093 34.202 228.03 100.52 −1.199
Multiterminal 20 2.093 34.206 228.01 100.52 −1.199

Source: Reprinted with permission from Ahuja, R. and Del Vecchio, R.M., Analysis of 
2 core transformer designs, Cigre session paper no. A2_210_2014, Cigre 2014 
General Session, Session 45, August 24–30, 2014. © 2014 Cigre.

a Angles are no load.
b Angle shift results from loading.
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The per-unit sequence fault currents in winding 1 of the exciting unit are given by
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These phase currents sum to get the phase A per-unit current, and we see that the sum will 
be purely imaginary relative to the fault current.

Inserting the values for iL1, iL2, and iL0 from (8.136) into (8.137) and (8.138) and summing 
the 3 per-unit phase currents, we obtain the per-unit currents in windings a and 1. The base 
fault load current is 289.4 amps. The winding a base voltage is 50 kV. So, using the same 
power base, its base current is 666.67 amps. The volts/turn of the exciting unit is 288.68 so 
the base voltage for winding 1 is 113.42 kV. Using the same power base, its base current is 
293.89 amps Table 8.13. Inserting these values into the last four formulas, we obtain values 
for comparison with the output of the multiterminal program.

8.8.5  Discussion

The extension of the single-core multiterminal winding analysis to two cores is straightfor-
ward except for the parallel or terminals equal connection. This requires the adjustment of 
all the winding voltages and phases on the second core to be consistent with the parallel-
connected voltage and phase of the winding on the first core. For purposes of obtaining the 
correct regulation effects and terminal to terminal impedances, it also requires that the two 
transformers be on the same power base and that the second transformer’s volts/turn be 
adjusted so that the parallel-connected terminal voltages are equal.

TABLE 8.13

Comparison of the Analytical and Multiterminal Results for a Single Line 
to Ground Fault

zeq,0 (%) Fault Current, IL (amps) Ia (amps) I1 (amps)

Analytical 0.974 16,826 13,191 676.5
Multiterminal 0.974 16,828 13,192 676.6

Source: Reprinted with permission from Ahuja, R. and Del Vecchio, R.M., Analysis of 
2 core transformer designs, Cigre session paper no. A2_210_2014, Cigre 2014 
General Session, Session 45, August 24–30, 2014. © 2014 Cigre.
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Rabins’ Method for Calculating Leakage Fields, 
Inductances, and Forces in Iron Core Transformers, 
Including Air Core Methods

9.1  Introduction

Modern general-purpose computer programs are available for calculating the magnetic 
field inside the complex geometry of a transformer. These numerical methods generally 
employ finite elements or boundary elements. Geometric details such as the tank wall and 
clamping structure can be included. While 3D programs are available, 2D programs using 
an axisymmetric geometry are adequate for many purposes. Although inputting the geom-
etry, the Ampere-turns in the winding sections and the boundary conditions can be tedious, 
parametric procedures are often available for simplifying this task. Along with the mag-
netic field, associated quantities such as inductances and forces can be calculated by these 
methods. In addition, eddy currents in structural parts and their accompanying losses can 
be obtained with the appropriate a.c. solver.

In spite of these modern advances in computational methods, older procedures can often 
be profitably employed to obtain quantities of interest very quickly and with a minimum 
of input. One of these is Rabins’ method, which uses an idealized transformer geometry 
[Rab56]. This simplified geometry permits analytic formulas to be developed for the mag-
netic field and other useful quantities. The geometry consists of a single leg of a 1- or pos-
sibly 3-phase transformer. The leg consists of a core and surrounding coils, which are 
assumed to be axisymmetric, along with yokes, which are assumed to be of infinite radial 
extent at the top and bottom of the leg. The entire axisymmetric geometry is of infinite 
extent radially. Thus there are no tank walls or clamping structures in the geometry. In 
addition, the core and yokes are assumed to be infinitely permeable.

In spite of these simplifications, Rabins’ method does a good job of calculating the magnetic 
field in the immediate vicinity of the windings. Thus forces and inductances, which depend 
largely on the field near the windings, are also accurately obtained. This can be shown by direct 
comparison with a finite element solution applied to a more complex geometry, including the 
tank wall and clamps. Although the finite element procedure can obtain losses in structural 
parts, Rabins’ method is not suited for this. However, because the magnetic field near or inside 
the windings is obtained accurately, eddy current losses in the windings as well as their spatial 
distribution can be accurately obtained from formulas based on this leakage field.

In the following, we present Rabins’ method and show how it can be used to obtain the 
leakage magnetic field, forces, leakage inductances, and mutual inductances between 
winding sections. The leakage inductances and mutual inductances can also be used in 
detailed circuit models of transformers such as are needed in impulse calculations.

9
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9.2  Theory

A cylindrical coil or section of a coil surrounding a core leg with top and bottom yokes is 
modeled in Figure 9.1. The yokes are really the top boundary of the geometry, which 
extends infinitely far radially. The method assumes d.c. conditions so that eddy current 
effects are not modeled directly. The current density in the coil is assumed to be piecewise 
constant axially and uniform radially as shown in Figure 9.2. As indicated, there can be 
regions within the coil where the current density drops to zero. Since there are no nonlin-
ear effects within the geometry modeled, the fields from several coils can be added vectori-
ally so that it is only necessary to model one coil at a time.

Maxwell’s equations for the magnetic field, applied to the geometry outside the core and 
yokes and assuming static conditions are, in SI units,

 Ñ´ =H J (9.1)

 Ñ× =B 0 (9.2)

where
H is the magnetic field
B is the induction
J is the current density

Core

rc

z

r

r1

r2

L

J

Coil

Region I Region II Region III

Top yoke

Bottom yoke

FIGURE 9.1
Geometry of iron core, yokes, and coil or coil section.
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Define a vector potential A by

 B A= Ñ´  (9.3)

Using this formula for B, Equation 9.2 is automatically satisfied. We also have

 B H= mo  (9.4)

in the region of interest where μo is the permeability of vacuum, oil, or air, which are all 
nearly the same. Substituting (9.3) and (9.4) into (9.1), we obtain

 Ñ´ Ñ´( ) = Ñ Ñ ×( ) -Ñ =A A A J2 mo  (9.5)

The vector potential is not completely defined by (9.3). It contains some arbitrariness, 
which can be removed by setting

 Ñ× =A 0 (9.6)

Using this, (9.5) becomes

 Ñ = -2A Jmo  (9.7)

The current density vector is azimuthal so that

 J a= Jj j (9.8)

where aφ is the unit vector in the azimuthal direction. Because of the axisymmetric geom-
etry, all the field quantities are independent of the azimuthal angle φ. With these assump-
tions, (9.7) becomes in cylindrical coordinates
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Thus, A and J have only a φ component and we drop this subscript in the following formu-
las for simplicity.

J

J1

J2

J4

Jp

0 z1 z2 z3 z4 z5 zp zp+1 L z

Bottom
yoke

Top
yoke

J3

FIGURE 9.2
Axial distribution of current density in the coil.
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Write the current density as a Fourier series in terms of a fundamental spatial period of 
length L, the yoke-to-yoke distance, or window height. In practice, L can be some multiple 
of the yoke-to-yoke distance to approximate the fact that the yoke does not extend uni-
formly in the azimuthal direction.
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where
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For the current density described in Figure 9.2 for example, we have
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(9.12)

Using (9.12), the integrals in (9.11) can be evaluated to get
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(9.13)

Thus for one section with constant current density J, we would have
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(9.14)

As shown in Figure 9.1, we have divided the solution space into three regions:

Region I rc ≤ r ≤ r1, 0 ≤ z ≤ L
Region II r1 ≤ r ≤ r2, 0 ≤ z ≤ L
Region III r2 ≤ r ≤ ∞, 0 ≤ z ≤ L

In Regions I and III, the current density is 0 so Equation 9.9 becomes, dropping the sub-
script φ
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This is a homogeneous partial differential equation. We look for a solution of the form

 A r,z R r Z z( ) = ( ) ( ) (9.16)

Substituting this into (9.15) and dividing by RZ, we get
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This equation contains terms, which are only a function of r and terms, which are only a 
function of z whose sum is a constant = 0. Therefore, each set of terms must separately 
equal a constant whose sum is zero. Let the constant be m2, a positive number. Then
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Rearranging terms, we get
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We need to consider separately the cases m = 0 and m > 0.
For m = 0, the solution to the z equation, which satisfies the boundary conditions at the 

top and bottom yokes is a constant independent of z. The m = 0, r equation in (9.19) becomes
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The solution to this equation is
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where S and T are constants to be determined by the boundary conditions and the solution 
is labeled with a subscript 0.

For m > 0, the solution to the z equation in (9.19) can be written:

 Z Z mzm m= +( )cos j  (9.22)

where Zm and φm are constants to be determined by the boundary conditions. Since we 
assume that the yoke material has infinite permeability, this requires the B-field to be per-
pendicular to the yoke surfaces. To determine this boundary condition, we use (9.3) 
expressed in cylindrical coordinates:
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218 Transformer Design Principles

where ar and k are unit vectors in the r and z directions. For B to be perpendicular to the 
upper and lower yokes, we must have the ar component of the B-field vanish at these yoke 
positions. Thus from (9.16),
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Using this, Equation 9.22 must have the form
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since its derivative yields a sine function, which is zero at these m values. We use n rather 
than m as a label. m also depends on n, but we omit this dependence for simplicity.

For m > 0, the radial equation in (9.19) can be written with the substitution x = mr:
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The solution to this equation is

 R C I x D K xn n n= ( ) + ( )1 1  (9.27)

where I1 and K1 are modified Bessel functions of the first and second kind, respectively, of 
order 1 [Dwi61]. We have also labeled the constants C and D with the subscript n since the 
solution depends on n through m that occurs in x.

In general, the solution to (9.15) is expressible as a sum of these individual solutions 
each, except the m = 0 term, with a product of an R and Z term,
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Here, the Z solution constants have been absorbed in the overall constants shown. This 
solution satisfies the boundary condition at z = 0, L. Because we also assume an infinitely 
permeable core, the B-field must be normal to the core surface. Thus from (9.23), we require 
that the k-component vanish at the core surface (Region I):
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Substituting (9.28) into this last equation, we get
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Although (9.30) would seem to require that S = 0, it will turn out that when all the  windings 
are considered with their Ampere-turns, which sum to zero, we can satisfy this boundary 
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condition with S ≠ 0 for each winding. Assuming the S term will ultimately vanish, the 
remaining terms in (9.30) must vanish for all z at x = mrc. These remaining terms constitute 
a Fourier expansion in cos(nπz/L). In order for these terms to vanish for all z, the individ-
ual Fourier coefficients must vanish. This requires
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where we have used modified Bessel function identities to get the first equality in (9.31) 
[Rab56]. I0 and K0 are modified Bessel functions of order 0. Thus we have from (9.31)
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Labeling the unknown constants with the region number as superscript, (9.28) becomes
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We have dropped the T/r term since it is not needed to satisfy the boundary condition in 
this region and becomes increasingly large as the core radius approaches zero. With I 
superscript labeling the solution constants in this region, this amounts to setting TI = 0.

In Region III, we require that A be finite as r → ∞. Since I1 → ∞ as r → ∞ and the Sr term 
also → ∞, we have from (9.28), using the appropriate region label,
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With III superscript labeling the solution constants in this region, this amounts to setting 
SIII = 0 and Cn

III = 0.
In Region II, we must keep the current density term in (9.9). Substituting the Fourier 

series (9.10) into (9.9) and dropping the φ subscript, we have in Region II

 

¶
¶

+ ¶
¶

- + ¶
¶

= - + ( )
é

ë
ê
ê

ù

û
ú
ú=

¥

å
2

2 2

2

2 0

1

1A
r r

A
r

A
r

A
z

J J mzo

n

nm cos
 

(9.35)

We look for a solution to this equation in the form of a series expansion,
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Substituting into (9.35), we get
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Since the cosine functions are orthogonal, we can equate corresponding coefficients on 
both sides of this equation. We obtain
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The solution to the n = 0 equation can be written in terms of a solution of the homogeneous 
equation, which was found earlier, plus a particular solution:
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Multiplying the second equation in (9.38) by r2, we see that the homogeneous part to the 
left of the equal sign, as given in the following formula, is the same as that in (9.19) or 
(9.26), although the latter are expressed in terms of x.
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Its solution was given in (9.27) so that, combined with a particular solution, the solution to 
the n > 0 equation in (9.38) is:
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where the last term is the particular solution to the inhomogeneous equation. L1 is a 
 modified Struve function of order 1 [Abr72]. Thus the solution (9.36) in Region II is given 
explicitly as
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where we have labeled the constants with the region number II as superscripts.
This equation already satisfies the boundary conditions at z = 0 and L as do the other 

region equations. The unknown constants must be determined by satisfying the boundary 
conditions at r = r1, r2 (see Figure 9.1). We require that the vector potential be continuous 
across the interfaces. Otherwise, the B-field given by (9.23) would contain infinities. Thus 
at r = r1, using (9.33) and (9.41),
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Since this must be satisfied for all z, we require
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where x1 = mr1, xc = mrc.
At r = r2, we obtain similarly, using (9.34) and (9.41),
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where x2 = mr2.
In addition to the continuity of A at the interfaces between regions, we also require, 

according to Maxwell’s equations, that the normal component of B and the tangential com-
ponent of H be continuous across these interfaces. According to (9.23), the normal B com-
ponents (ar components) are already continuous across these interfaces since all regional 
solutions have the same z dependence and because the A’s are continuous. Since B is pro-
portional to H in all regions of interest here, we require that the tangential B components 
be continuous. Thus from (9.23) we require that, using x = mr,
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be continuous at r = r1, r2 (x = x1, x2). Using this, we obtain the additional conditions on the 
unknown constants:
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Using the identities [Rab56], [Abr72],
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We obtain for the last two equations in (9.46)
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Solving for the S and T constants from (9.43), (9.44), and (9.46), we obtain
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Solving for the Cn and Dn constants from (9.43), (9.44), and (9.46), we get
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Using the identities [Rab56],
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we can transform (9.50) into the form
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Summarizing and simplifying the notation slightly, the solutions in the three regions are 
given by
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where m = nπ/L, x = mr, and
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(9.54)

Here x1 = mr1 and x2 = mr2.
Note that, using (9.23), the axial component of the induction vector at the core radius is

 B r ,z J r rz c o( ) = -( )m 0 2 1  (9.55)
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This is μo times the average current density times the radial build of the winding. If we 
multiply and divide (9.55) by the winding height L, we see that Bz is proportional to the 
amp-turns in the winding with proportionality constant μo/L. Since the axial height L is 
the same for all the windings, when we add this axial component for all the windings, we 
will get zero, assuming Ampere-turn balance. Thus, the flux will enter the core radially as 
required.

Although the modified Bessel functions are generally available in mathematical com-
puter libraries, the modified Struve functions are not so easily obtained. We therefore indi-
cate here some methods of obtaining these and the integrals in (9.54) in terms of readily 
available functions or easily evaluated integrals. From [Abr72], the modified Struve func-
tions are given in integral form as
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It can be seen from (9.56) that these functions become asymptotically large as x → ∞. 
Such large values of x would occur when evaluating the higher harmonics in (9.53). We 
indicate here some way of avoiding these large values by looking for a means of cancel-
lation. [Abr72] gives integral expressions for the modified Bessel functions. In particular, 
we have
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These also become asymptotically large as x increases. However, by defining the difference 
functions

 M x I x L x M x I x L x0 0 0 1 1 1( ) = ( ) - ( ) ( ) = ( ) - ( ),  (9.58)

we can show that
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The last equality in (9.59) is obtained by integration by parts. The integrals in (9.59) are well 
behaved as x increases and can be evaluated numerically. In subsequent developments, we 
will also need the integral of M0. This is obtained from the first equation in (9.59) as
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The integrand approaches x as θ → π/2 and so the integral is also well behaved. For high 
x values, asymptotic series can be found in [Abr72] for some of these functions. This 
reference also lists a table of the difference functions defined in (9.58) and the integral 
given in (9.60).

Let us now write other expressions of interest in terms of the M functions and modified 
Bessel functions. Using (9.51) and (9.58), we can write
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We will also need a similar integral for the modified Struve function. We need the follow-
ing identities given in [Rab56].
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Multiplying these by t and integrating from 0 to x, we get
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Substituting for L0 in terms of the M0 function and rearranging, we get
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Thus, all the functions needed to determine the vector potential are obtainable in terms of 
the modified Bessel functions and the M functions. We will need (9.64) in obtaining derived 
quantities in the following sections.
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The determination of the vector potential for the other coils or coil sections proceeds 
identically to the previous development. Because Maxwell’s equations are linear in the 
fields and potentials in the region outside the core and yokes, we can simply add the poten-
tials or fields from the various coils vectorially at each point to get the net potential or field. 
We need to be aware of the fact that a given point may not be in the same region number 
(I, II, or III) for the different coils.

9.3  Rabins’ Formula for Leakage Reactance

The leakage inductance for a 2-winding transformer can be obtained from the total mag-
netic energy as discussed in Chapter 4 when there is amp-turn balance. We use (4.9) for the 
magnetic energy, W, which is repeated here
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This, together with (4.23), can be used to obtain the leakage inductance. Here A is the 
total vector potential due to both windings. Since A and J are both azimuthally directed, 
the dot product becomes simply the ordinary product. We also drop the implied φ sub-
script on J and A.

9.3.1  Rabins’ Method Applied to Calculate the Leakage Reactance between 
Two Windings Which Occupy Different Radial Positions

We assume that the two windings occupy different radial positions as shown in Figure 9.3.
Writing A1 and A2 for the vector potential due to coils 1 and 2 and J1, J2 for their current 

densities, Equation 9.65 becomes
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For the A1J1 or A2J2 integrals, we must use the Region II solution corresponding to each coil. 
Assuming coil 1 is the inner coil, the A2J1 integral requires that we use the Region I solution 
for A2 while the A1J2 integral requires that we use the Region III solution for A1.

From (9.53) and (9.10), using a second subscript to distinguish the coil 1 quantities from 
the coil 2 ones,
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Note that the subscript 1 on the I and K modified Bessel functions are unrelated to the 
labeling for winding 1. Also note that En,1 and Fn,1 are the same as En and Fn in (9.54) and 
similarly for the other coefficients. However, later when we consider winding 2, En,2 and 
Fn,2, etc., will require that the integration limits in (9.54) be changed from x1, x2 to x3, x4. 
Performing the z-integral first, we notice that product terms that contain a single cosine 
term vanish, that is,
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Product terms that contain two cosine factors have the value
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After performing the z-integral, Equation 9.67 becomes
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Performing the r-integration, we get
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In the second equality in (9.71), the r integrals have been converted to integrals in x = mr. 
Formulas for the x-integrals above have been given previously in terms of known or calcu-
lable quantities.

The A2J2 term in (9.66) is given by (9.71) with a 2 subscript and with the r-integration 
from r3 to r4 (see Figure 9.3). Thus we have
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The A2J1 integral in (9.66) is given by

 

V

V
1 1

2

2 1 1

0

0 1

1

12ò ò ò å= + æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

=

¥

A J d rdr dz J J
p z
L

r

r L

p

pp
p

, , cos
ûû
ú
ú

-( )ì
í
î

+ ( ) + ( )é
=

¥

å

m

m

o

o

n

n
n n

J
r r r

J
m

C I mr D K mr

0 2
4 3

1

2
2 2 1 2 1

2
,

,
, ,ëë ùû

æ
è
ç

ö
ø
÷
ü
ý
ï

þï
cos

n z
L
p

 
(9.73)

Using the previous method for carrying out the cos integrals, we obtain
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The A1J2 integral in (9.66) is given similarly by
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In spite of their different appearances, Equations 9.74 and 9.75 are the same. This can be 
seen from the definition of the coefficients in (9.54), remembering that the 1 subscript on 
the coefficients is associated with x1, x2, and the 2 subscript with x3, x4. This is an example 
of a reciprocity relation that holds for linear systems.

Summing up the terms in (9.66), we get after some algebraic manipulation

 

2
6

20 1
2

2 1
2

1 2
2

1
2

0 2
2

4 3
2

3 4W
L

J r r r r r J r r r ro= -( ) +( ) +é
ë

ù
û{ + -( ) +pm

, , (( ) +é
ë

ù
û

+ -( ) -( ) + +( )}
+

2
3
2

0 1 0 2 2 1 4 3 1
2

1 2 2
2

2

4

r

J J r r r r r r r r

Lo

n

, ,

pm
==

¥

å ò ò ò( ) + ( ) -
1

1
2

4 1 1 1 1 1

1

2

1

2

1

2

2
J
m

E xI x dx F xK x dx xLn
n

x

x

n

x

x

x

x

,
, ,

p
xx dx

J
m

E xI x dx F xK xn
n

x

x

n

x

x

( )
é

ë

ê
ê

ù

û

ú
ú

ì
í
ï

îï

+ ( ) +ò ò,
, ,

2
2

4 2 1 2 1

3

4

3

4

(( ) - ( )
é

ë

ê
ê

ù

û

ú
ú

+ ( )

ò

ò

dx xL x dx

J J
m

G xK x dx

x

x

n n
n

x

x

p
2

2

3

4

3

4

1

1 2
4 1 1

, ,
,

üü
ý
ï

þï  

(9.76)

When the coefficients En and Fn, etc., have a 1 subscript, the expressions given by (9.54) 
apply with x1, x2 for the integration limits. However, when the second subscript is a 2, then 
x3, x4 must be substituted for x1, x2 in the formulas.

The leakage inductance, referred to as coil 1 as given in Chapter 4, (4.23), is given by 
2 1

2W/I . For I1
2, we can write (NI)2/N2. This makes the formula work for either winding as 

the reference winding since (NI)2 is the same for both windings, and whatever winding’s 
N is chosen will make that the reference winding. Using (9.76), this is
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To get the leakage reactance multiply Lleak by ω = 2πf.

9.3.2  Rabins’ Method Applied to Calculate the Leakage Reactance 
between Two Axially Stacked Windings

There are sometimes transformer designs where the two coils are stacked axially and there-
fore occupy the same radial position. In this case, the coil radial builds are usually the same. 
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Often, the coils are duplicates. Rabins’ method can also be used to find the leakage induc-
tance for this situation. The current densities for each coil will be nonzero within different 
axial regions, but the Fourier decomposition should reflect this. In this case, only the region 
II solution is needed for both coils and (9.66) still holds. In this case, r3 = r1 and r4 = r2. 
Evaluating the terms in (9.66), we find that the A1J1 and A2J2 terms are the same as before 
except that we must replace r3, r4, x3, x4 by r1, r2, x1, x2.

The A2J1 integral is
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We can use a 1 subscript on En and Fn in (9.78) since the radial extent of the two windings 
is the same. However, the 2 subscript is needed on Jn since the current distributions are dif-
ferent. Carrying out the z and r integrations, we get
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This expression is also equal to the A1J2 term. Hence we get, combining all the terms in (9.66),
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(9.80)

The leakage inductance between these two coils is then given by
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We note that J0,1 and J0,2 are the average current densities in windings 1 and 2 and (r2 − r1)L 
is the cross-sectional area of either winding. Thus, since the amp-turns are balanced 
between the 2 windings, we have

 N I J r r L N I J r r L1 1 0 1 2 1 2 2 0 2 2 1= -( ) = - = - -( ), ,  (9.82)

Using this, we see that the first set of terms in (9.81) vanishes. Thus we get for the leakage 
inductance
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The leakage reactance is obtained by multiplying Lleak by ω = 2πf. We should note that both 
coils extend the full axial height L. However, the top coil would have a large section below 
it where the bottom winding is located with 0 current density, and similarly, the bottom 
coil would have a large section above it where the top winding is located with 0 current 
density.

9.3.3  Rabins’ Method Applied to Calculate the Leakage Reactance 
for a Collection of Windings

Rabins’ method can be used to find the leakage reactance for a collection of any number of 
coils. The amp-turns of the coils must sum to zero. Then the leakage induction, assuming 
coil 1 is the reference winding, can be obtained from
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In this case, formula (9.66) for the magnetic energy of Nw windings becomes
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Care must be taken to use the solution of the vector potential for a given winding in the 
appropriate region. The double sum in (9.85) can be simplified by noting that
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The leakage inductance relative to winding 1 is then given by
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The leakage reactance is obtained by multiplying Lleak,1 by ω = 2πf.

9.4  Rabins’ Method Applied to Calculate the Self-Inductance 
of and Mutual Inductance between Coil Sections

Here, we are considering a collection of coils subdivided into coil sections. A coil section 
for our purposes consists of a contiguous part of a coil, which has a uniform current den-
sity. In this case, Equation 9.14 holds for the Fourier coefficients. In all other respects, it is 
treated like a full coil of height L. Later, we will apply these results to obtain a detailed 
model of the transformer for impulse simulation studies.

For these calculations, we use the vector potential solution for each winding section 
obtained by Rabins’ method. However, this requires amp-turn balance in order to satisfy the 
B-field boundary condition at the core surface. Although taken individually, the 
self-inductance calculation of a coil section cannot satisfy this boundary condition; when 
considering a pair of coil sections, amp-turn balance can be achieved so that the self- and 
mutual  inductances associated with this pair of coil sections are valid within the context of 
Rabins’ method. By this, we mean that the self-inductances, mutual inductance, and leakage 
inductance of the coil section pair satisfy the relation between these quantities given in (4.23).

These Rabins’ inductances tend to be about an order of magnitude higher than the cor-
responding air core inductances and mutual inductances, which are often used in impulse 
simulation studies. We find that the Rabins’ method inductances tend to give good agree-
ment with impulse data obtained via RSO methods.

Wilcox et al., have obtained analytic expressions for the mutual and self-impedances and 
inductances of coils on a ferromagnetic core [Wil88], [Wil89]. These could also be used in 
simulation studies. However, the self-inductance of a single coil on a high-permeability 
ferromagnetic core increases with the core permeability and can become quite large as is 
shown by finite element methods. Self- and mutual inductances determined in this manner 
tend to be about an order of magnitude higher than those obtained by Rabins’ method. 
Since the permeability is not that well known for a transformer core with joints, etc., this 
can present difficulties when deciding which value to use.

Having obtained Rabins’ solution for the vector potential, it is relatively straightforward 
to apply this solution to the calculation of self- and mutual inductances. We begin with the 
mutual inductance calculation. The mutual induction between two coil sections is given by 
formula (4.26) in Chapter 4, which we repeat here:
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We treat the coil sections as if they were full coils of height L, albeit with much of the coil 
height having 0 current density in applying Rabins’ method.
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If the sections are on the same coil or two coils axially displaced, then A2 is the solution 
in Region II. The A2J1 integral has already been done in this case and is given in (9.79). Thus 
we have, after some algebraic manipulation of the J0 radial terms,
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Since

 N I J r r L N I J r r L1 1 0 1 2 1 2 2 0 2 2 1= -( ) = -( ), ,,  (9.90)

we can rewrite (9.89)
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When the coil sections are part of different coils radially displaced, then we can assume 
that 1 is the inner coil and 2 is the outer coil. The result will be independent of this assump-
tion. Thus we need the Region I solution for coil 2. The A2J1 integral has already been done 
and the result is given in (9.74). Thus we have
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(9.92)

In this case, the amp-turns can be expressed as

 N I J r r L N I J r r L1 1 0 1 2 1 2 2 0 2 4 3= -( ) = -( ), ,,  (9.93)

Using this, we can rewrite (9.92):
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If the coil sections are oppositely wound, then the mutual inductances should be multiplied 
by −1. This can be effected by replacing N by −N for an oppositely wound coil section.

For a single coil, say coil 1, the self-inductance can be obtained from
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This was discussed in Chapter 4. In this case, we use the solution for A1 in Region II since 
that is where the current density is nonzero. The integral in (9.95) has already been carried 
out in (9.89), so we have
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Since

 N I J r r L1 1 0 1 2 1= -( ),  (9.97)

we can rewrite (9.96):
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9.5  Determining the B-field

It is important to determine the B-field within the windings if one is interested in obtaining the 
electromagnetic forces acting within the windings as a result of a fault and associated high 
winding currents. The B-field present for rated currents can also be useful in estimating the 
losses in various parts of the transformer, including the stray flux eddy losses in the windings.

Before calculating the B-field, a plot of the flux lines can be obtained from the vector 
potential directly. This type of plot gives a visual sense of the B-field. In the r–z geometry, 
the appropriate flux lines are lines of constant rAφ, that is, the r position vector × the 
 azimuthal vector potential. The B-field points along these lines of constant rAφ. In addition, 
the flux per radian between two lines equals the difference in the values of rAφ on the two 
lines. Therefore, if lines of equally spaced values of rAφ are plotted, the B-field is strongest 
where the lines are closest together since the average B-field is the flux per unit area or 
distance between the flux lines in this case. Hence, these give a good sense of what the flux 
is doing in the transformer. A flux plot, using Rabins’ method, is given in Figure 9.4 for a 
2-winding transformer.
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The B-field or induction vector is given by (9.23). We need to evaluate it in the three 
regions using (9.53). The radial component is, using the region label as superscript,
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From (9.45),
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HVLV

FIGURE 9.4
Flux plot for a 2-winding transformer based on Rabins’ method. The amp-turns are not uniform along the wind-
ings, resulting in the radially directed flux, especially at the winding center where the center taps are out. The 
vertical and radial dimensions are not necessarily to the same scale.
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the axial component, using (9.47), is
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To find the net B-field associated with a collection of coils, we simply add their compo-
nents at the point of interest, keeping in mind what region the point is in relative to each coil.

9.6  Determining the Winding Forces

The force density vector, F, in SI units (Newtons/m3), is given by

 F J B= ´  (9.102)

Since J is azimuthal and B has only r and z components, this reduces to

 F a k= -JB JBz r r  (9.103)

where
ar is the unit vector in the radial direction
k is the unit axial vector

We have omitted the φ subscript on J. Thus, the radial forces are due to the axial field com-
ponent and vice versa.

In (9.103), the B-field values are the resultant from all the coils and J is the current density 
at the point in question. This force density is nonzero only over those parts of the winding 
that carry current. In order to obtain net forces over all or part of a winding, it is necessary 
to integrate (9.103) over the winding or winding part. For this purpose, the winding can be 
subdivided into as fine a mesh as desired and F computed at the centroids of these subdivi-
sions, and the resulting values times the mesh volume element added.

One force that is useful to know is the compressive force, which acts axially at each axial 
position along the winding. We assume that the windings are constrained at the two ends 
by pressure rings of some type. We ignore the gravitational force here. Starting from the 
bottom, we integrate the axial forces upwards along the winding, stopping when the sum 
of the downward-acting forces reach a maximum. This is the net downward force on the 
bottom pressure ring, which is countered by an equal upward force on the winding exerted 
by the pressure ring. We do the same thing, starting from the top of the winding, integrat-
ing the axial forces until the largest upwards acting summed force is reached. This then 
constitutes the net upward force acting on the top pressure ring, which is countered by an 
equal downward force exerted by the pressure ring. Including the reaction forces of the 
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pressure rings, we then integrate upwards say, starting at the bottom of the winding and at 
each vertical position, the force calculated will be the compressive force at that position 
since there will be an equal and opposite force acting from above. This is illustrated in 
Figure 9.5a.

Another force of interest for coil design is the radial force, which results in hoop stress, 
tensile or compressive, on the winding. Because of the cylindrical symmetry, the radial 
forces vectorially add to zero. We must therefore handle them a bit differently if we are to 
arrive at a useful resultant for hoop stress calculations. In Figure 9.5b, we isolate a small 
portion of the winding and show the forces acting in a horizontal section. We show the 
radial forces acting outward and the tensile forces, T, applied by the missing part of the 
winding, which are necessary to maintain equilibrium. If the radial forces acted inward, 
then the rest of the winding would need to apply compressive forces to maintain equilib-
rium and all the force arrows in the figure would be reversed. The calculation would, 
however, proceed similarly.

In Figure 9.5b, θ is assumed to be a very small angle. The force balance in the upward 
direction in the figure is

 
2

2 4
2

2
F

Ttot r, cos sin
q qæ

è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷
 

(9.104)

where
Ftot,r is the sum of the radial electromagnetic forces acting on the winding section shown
T is the total tensile force acting on the winding cross-section

For small θ, this reduces to

 F Ttot r, = q (9.105)

In radians, θ = Δt/R, where Δt is the circumferential length of the winding section shown 
and R its average radius. The average tensile stress is σ = T/A, where A is the cross- sectional 

θ/2 θ/2

∆ tT T

Ftot,r/2 Ftot,r/2

θ/2 θ/2

R

θ/4 θ/4

(b)

Top pressure ring

Bottom pressure ring
Freact bot

Felect
Felect + Freact bot

Freact top

z

(a)

FIGURE 9.5
Forces on the winding needed for stress analysis. (a) Compressive force at each axial position and (b) hoop forces 
(tensile shown) from the radial forces.



238 Transformer Design Principles

area of the winding section. The volume of the winding section is ΔV = AΔt. Using these 
relations and (9.105), we can obtain the tensile (or compressive) stress as
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Thus, the average tensile stress in the winding is the average radius times the average 
radial force density, assuming the radial forces act outward. For inward radial forces, σ is 
negative, that is, compressive. The average radial force density at a particular axial  position 
z can be found by computing the radial component of (9.103) at several radial positions in 
the winding, keeping z fixed and taking their average. One should weight these by the 
volume element, which is proportional to r.

Other forces of interest can be found from the known force densities.

9.7  Numerical Considerations

First of all, the infinite sums in the various expressions given in this chapter have to be reduced 
to finite sums without significant loss of accuracy. Since the nth term is reduced by some power 
of n, they tend to get smaller and smaller the larger the value of n. We have found that 200 
terms provides sufficient accuracy. The sums should also be carried out in double precision.

We have used a mathematical library for the modified Bessel functions of the first and 
second kinds of order zero and one. The library gives two forms for these functions, one 
for the function itself and another expresses the function as an exponential times a remain-
der. For instance,
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These exponential forms should be used. It turns out that when these functions occur in the 
equations of this chapter, the exponentials can be combined and the exponents usually 
cancel to a large extent.

The modified Struve function does not appear in our mathematical library, so we 
obtained it via the difference functions defined in (9.58) and their integral expressions 
given in (9.59) and (9.60). These integrals can be done with high accuracy and they have 
finite values of reasonably small magnitudes for the various values of x. These expressions 
then can be used in (9.61) and (9.64) to obtain the integrals of the modified Bessel and 
Struve functions.

9.8  Air Core Inductance

Often, an air core inductor is used in a transformer. This is sometimes used to increase 
the LV to tertiary winding impedance for better short circuit withstand capability. These air 
core inductors can be layered windings, consisting of one or more concentric coils. 
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Here, we consider the calculation of this inductance in the general case where one or more 
coils of the same or different sizes are present. We assume that each coil has a uniform turn 
distribution over its cross-section. We also assume that the coil cross-section is rectangular.

In order to obtain the inductance of a collection of coils, the mutual inductance between 
the coils must be calculated. This is because the self-inductance of a collection of Nc coils is 
given by
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where
Li is the self-inductance owf coil i
Mij is the mutual inductance between coils i and j

The second sum is over all possible pairs of coils. The mutual inductances can be positive 
or negative depending on the winding directions of the coils. Equation 9.108 follows from 
the magnetic energy expression for a collection of coils in terms of their self- and mutual 
inductances given in Chapter 4 and the fact that, for an inductor, all the coils must carry the 
same current. Note that (9.108) would apply if the Li’s and Mij’s referred to subdivisions of 
a single or multiple coils.

The starting point is the mutual inductance between two circular coaxial thin wires of 
radii r1 and r2 separated axially by a distance d as shown in Figure 9.6.

The mutual inductance M12 between these wires is given by [Smy68]
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FIGURE 9.6
Coaxial thin circular wire geometry.
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Here, K(k) and E(k) are complete elliptic integrals of the first and second kind, respectively. 
These are generally available in mathematical libraries. SI units are used and μo = 4π × 10−7 
H/m in this system.

Lyle’s method is used for obtaining the mutual inductance between coils of rectangular 
cross-section. This is described in Grover [Gro73]. In its simplest form, each coil is replaced 
by two thin wire circular coils that are strategically placed. The position of the thin wire 
coils depends on whether the coil’s radial build b is larger or smaller than the coil’s axial 
height h. If h > b, the two thin wire coils each have a radius r1 given by
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where rave is the average radius of the rectangular cross-section coil. The two substitute 
coils are separated axially from the radial centerline of the main coil by a distance β, as 
shown in Figure 9.7, where
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The radial centerline is a distance h/2 from the bottom of the main coil. Each sub thin wire 
coil is assigned ½ the turns of the original coil.

If h < b, then the substitute thin wire coils are both positioned along the radial centerline 
of the main coil at radial distances r2 + δ and r2 – δ, where

 
r r

h
r

b h
ave

ave
2

2
2

2 2

1
1

24 12
= + æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

= -
, d

 
(9.112)

Also, each sub thin wire coil is given ½ the turns of the main coil.
Both of these cases are illustrated in Figure 9.7.
Notice that if b = h, the two cases become identical, with r1 = r2 and β = δ. In this case, the 

two thin circular wires coincide. This single wire would be given the full number of turns 
in the coil.

h

b

β
β

rave

r1

rave
r2

δδ

h

b

FIGURE 9.7
Geometry of Lyle’s method.
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Since the two wires are now a proxy for the coil they represent, the mutual inductance 
between this coil and another also represented by two wires is obtained by summing over 
all possible pairs of one wire from one coil and one wire from the second coil. For one wire 
pair, since the coils are assumed coaxial, (9.109) is used to obtain their mutual inductance. 
If the coils have N1 and N2 turns respectively, each wire is assigned ½ the turns of its coil. 
Thus, if coil 1 is represented by wires 1 and 2 and coil 2 by wires 3 and 4, the mutual induc-
tance M between these coils is given by
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Since we also need the self-inductance of each coil, we use an expression given in [Gro73] 
which applies to circular coils having a square cross-section. Letting c = the length of the side 
of the square and rave = the average coil radius as before, the self-inductance is given by
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where the SI system is used with μo = 4π × 10−7 H/m and N is the number of turns in the 
square. This expression applies when c/2rave ≤ 0.2. Since most of the coils of interest will 
not have a square cross-section, it will be necessary to subdivide the coils into squares, 
which can be made small enough so that this criterion is met. At the same time, these 
squares can be used for Lyle’s method to get mutual inductances. In this case, the two 
proxy wires coincide.

Thus, the strategy is to subdivide each coil into small enough squares so that (9.114) 
applies for calculating its self-inductance. This may not be exactly possible, depending on 
the coil dimensions, but can be approximated to any desired accuracy. Each square is also 
represented by two coincident wires, each carrying ½ the turns in the square. This is equiv-
alent to a single wire with the full number of turns in the square. These wires are used to 
obtain the mutual inductances between this square and all the other square subdivisions in 
the system. The self-inductance of the system of coils is given by (9.108), where Nc is now 
the total number of squares in the system. If one of the original coils has Nt turns and is 
subdivided into Ns squares, each square has Nt/Ns turns and each of the subcoils used for 
calculating mutual inductances has ½(Nt/Ns) turns. Since the two mutual inductances 
between the two wires representing the squares are the same, only one needs to be calcu-
lated, and the turns associated with it should be Nt/Ns. Note also that rave, used in the 
previously mentioned formulas, is the average radius of the square in the subdivision.

Although a lot of terms must be calculated, symmetry can be used to reduce the number 
of terms. The sums can be performed without too much difficulty by computer. This 
method has been checked by comparison with known formulas for the self-inductance of 
special coils and also via finite element calculations and is quite accurate.

For the self-inductance of a single coil, the said method of subdividing into squares, 
which will all be the same size for a given coil, and performing all the self- and mutual 
inductance calculations among the squares is useful. However, when more than one coil is 
involved in the inductance calculation, the self-inductance of each coil can be calculated by 
the square subdivision method with each coil usually having a different square size. 
However, the mutual inductance between a pair of coils in the group can perhaps best be 
obtained using Lyle’s method based on a different type of subdivision for each coil. 
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These latter subdivisions would not necessarily be square and would be chosen so that 
they conform to one of the types shown in Figure 9.7. They would possibly be coarser 
than the square subdivisions used for the self-inductance of the coil, resulting in fewer 
terms to sum. These subdivisions, which will be called Lyle subdivisions, could be 
 chosen to more exactly fill the coil’s cross-section. For a given coil, they could be chosen 
to all have the same dimensions or not. For obtaining the mutual inductance between a 
pair of coils, where each coil has its own set of Lyle subdivisions, the mutual induc-
tances between all pairs, consisting of one wire from each coil, are summed. The num-
ber of proxy wires in each coil will be two times the number of Lyle subdivisions if these 
subdivisions are not square.
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Mechanical Design

10.1  Introduction

Transformers must be designed to withstand the large forces that occur during fault condi-
tions. Fault currents for the standard fault types such as single line to ground, line to line, 
double line to ground, and all three lines to ground must be calculated. Since these faults 
can occur during any part of the a.c. cycle, the worst-case transient overcurrent must be 
used to determine the forces. This can be calculated and is specified in the standards as an 
asymmetry factor, which multiplies the rms steady-state currents. The asymmetry is given 
by [IEE93]
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where
ϕ = tan−1(x/r)
x/r is the ratio of the effective a.c. reactance to resistance

They are part of the total impedance, which limits the fault current in the transformer 
when the short circuit occurs. Using this factor, the resulting currents are used to obtain the 
magnetic field (leakage field) surrounding the coils and, in turn, the resulting forces on the 
windings. Analytic methods such as Rabins’ method [Rab56] as discussed in Chapter 9 or 
finite element methods can be used to calculate the magnetic field. An example of such a 
leakage field is shown in Figure 10.1, which was generated by the finite element program 
Maxwell Version 12® [Ansoft]. Since this uses its 2D option, the figure is cylindrically sym-
metrical about the core centerline. Only the bottom half of the windings and core are shown 
because of assumed symmetry about a horizontal center plane. Although details such as 
clamps and shields can be included in the calculation using a finite element approach, they 
are not part of Rabins’ analytic method, which assumes a simpler idealized geometry. 
However, calculations show that the magnetic field in the windings and hence the forces 
are nearly identical in the two cases.

The force density (force/unit volume), f, generated in the windings by the magnetic 
induction, B, is given by the Lorentz force law:

 f J B= ´  (10.2)

where J is the current density and SI units are used. These force densities can be inte-
grated to get total forces, forces/unit length, or pressures depending on the type of 

10
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integration performed. The resulting values or the maxima of these values can then be 
used to obtain stresses or maximum stresses in the winding materials.

The procedure described earlier is static in that the field and force calculations assume 
steady-state d.c. conditions. The currents, however, were multiplied by an asymmetry fac-
tor to account for a transient overshoot. Because the fault currents are applied suddenly, 
the resulting forces or pressures are also suddenly applied. This could result in transient 
mechanical effects such as the excitation of mechanical resonances, which could produce 
higher forces for a brief period than those obtained by a steady-state calculation. A few 
studies have been done on these transient mechanical effects in transformers [Hir71], 
[Bos72], [Pat80], [Tho79]. Although these studies are approximate, where they have indi-
cated a large effect, due primarily to the excitation of a mechanical resonance, we use an 
appropriate enhancement factor to multiply the steady-state force. In other cases, these 
studies have indicated little or no transient effects so that no correction is necessary.

Because controlled short circuit tests are rarely performed on large transformers to vali-
date a transformer’s mechanical design, there are few empirical studies that directly test 
the theoretical calculations. To some extent, our confidence in these calculations comes 
from tests on smaller units and the fact that, in recent years, very few field failures have 
been directly attributable to mechanical causes.

FIGURE 10.1
Plot of transformer leakage flux. Only the bottom half is shown. The figure is assumed to be cylindrically 
 symmetrical about the core centerline. A bottom clamp with shunts on top and tank shunts on the right are shown.
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10.2  Force Calculations

The electromagnetic forces acting on the coils are obtained by means of an analytic or 
finite element magnetic field calculation in conjunction with the Lorentz force law. In 
our analytic calculation, using Rabins’ method [Rab56], each coil carrying current is 
subdivided into 4 radial sections and 100 axial sections as shown in Figure 10.2a. In the 
case of a finite element method, the coil cross section is subdivided into an irregular net 
of triangles as shown in Figure 10.2b. The principles used to determine the forces or 
pressures needed in the stress calculation are similar for the two cases, so we will focus 
on the analytic method.

The current density is uniform in each block in Figure 10.2a, but it can vary from block 
to block axially due to tapping out sections of the coil or thinning of sections of the winding 
to achieve a better amp-turn balance with tapped out sections in adjacent winding. These 
sections of reduced or zero current density produce radially bulging flux lines, as are evi-
dent in Figure 10.1. From the Lorentz force law, since the current is azimuthally directed, 
radially directed flux produces axial forces and axially directed flux produces radial forces. 
There are no azimuthal forces since the force density vector in (10.1) vanishes in this case.

The radial and axial forces are computed for each block in Figure 10.2a. Because of the 
cylindrical symmetry, each block in the figure is really a ring. The radial force can be 
thought of as a pressure acting inward or outward on the ring depending on its sign. If 
these forces are summed over the four radial blocks and then divided by the area of the 

z

r

(a) (b) (c)

FIGURE 10.2
Coil subdivisions in (a) analytic and (b) finite element calculations of the magnetic field. In (c), a modified finite 
element mesh is shown, which is more useful for subsequent stress analysis.
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cylindrical surface at the average radius of the winding, we obtain an effective total radial 
pressure acting on the coil at the axial position of the block. The maximum of these pres-
sures in absolute value for the 100 axial positions is the worst-case radial pressure and is 
used in subsequent stress analysis. Note that these forces are radially directed so that inte-
grating them vectorially over 360° would produce zero. This integration must therefore be 
done without regard to their vectorial nature.

The axially directed force summed over the four radial blocks is also needed. The maxi-
mum of the absolute value of this force for the 100 axial positions is a worst-case force used 
in the stress analysis. These axial forces are also summed, starting at the bottom of the coil. 
The total of these axial forces (summed over all the blocks of the coil) is a net upward or 
downward force depending on its sign. This force is countered by an equal and opposite 
force exerted by the pressure ring. If this net force acts downward, then the bottom  pressure 
ring exerts an upward equal force on the coil. If it acts upward, then the top pressure ring 
exerts an equal downward force. In the former case, the top ring exerts no force on the coil, 
and in the latter case, the bottom ring exerts no force on the coil. We are ignoring the gravita-
tional forces in comparison with the electromagnetic forces here. Starting with the force 
exerted upward, if any, by the bottom pressure ring, if we keep adding to this the forces 
produced by the horizontal layers of 4 blocks starting from the bottom row, we will arrive at 
a maximum net upward force at some vertical position along the winding. This force is called 
the maximum compressive force and is a worst-case force used in the stress analysis.

The total axial forces on the windings are added together if they are upward (positive). 
Similarly, windings having downward (negative) total axial forces contribute to a total 
downward force. These total upward or downward forces due to all the windings should 
be equal in absolute value since the net electromagnetic force acting axially must be zero. 
In practice, there are slight differences in these calculated quantities due to rounding errors. 
The net upward or downward axial force due to all the windings is called the total end 
thrust and is used in sizing the pressure rings. If the windings are symmetric about a hori-
zontal center plane, the total axial force on each winding is nearly zero, so there is little or 
no end thrust. However, when one or more windings are offset vertically from the others, 
even slightly, net axial forces develop on each winding, which push some windings up and 
some down. It is good practice to include some offset, say, 6.35–12.7 mm, in the calculations 
to take into account possible misalignment in the transformer’s construction.

As can be seen from the way forces needed for the stress analysis were extracted from the 
block forces in Figure 10.2a, for finite element calculations, the mesh shown in Figure 10.2c 
would be more useful for obtaining the needed forces than the mesh in Figure 10.2b. Here 
the coil is subdivided into a series of axial blocks, which can be of different heights, before 
the triangular mesh is generated. Then the forces can be summed for all the triangles within 
each block to correspond to the forces obtained from the 4 radial blocks at the same axial 
height in Figure 10.2a.

10.3  Stress Analysis

Now, we will relate the forces discussed in Section 10.2 to the stresses in the coil in order to 
determine whether the coil can withstand them without permanently deforming or buck-
ling. The coils have a rather complex structure as indicated in Figure 10.3, which shows a 
disk-type coil. Helical windings are disk windings with only 1 turn per section and thus 
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are a special case of Figure 10.3. The sections are separated vertically by means of key spac-
ers made of pressboard. These are spaced around the coil so as to allow cooling oil to flow 
between them. The coils are supported radially by means of axial sticks and pressboard 
cylinders or barriers. These brace the coil on the inside against an inner coil or against the 
core. There are similar support structures on the outside of the coil, except for the outer-
most coil. Spaces between the sticks allow cooling oil to flow vertically. Because of the dis-
similar materials used, pressboard, paper, and copper for the conductors, and because of 
the many openings for the cooling oil, the stress analysis would be very complicated unless 
suitable approximations are made.

Although we have shown distinct separate axial sections in Figure 10.3, in reality, the 
wires must maintain electrical continuity from section to section so that the coil has a 
helical (springlike) structure. For the stress analysis, it is generally assumed that the 
helical pitch is small enough that the coil can be regarded as having distinct horizontal 
sections as shown in the figure. Moreover, these sections are assumed to close on them-
selves, forming rings.

Another approximation concerns the cable that comprises the winding turns. Figure 10.4 
shows the two most common types. Magnet wire consists of a single strand of typically 
copper surrounded by a paper covering and is treated almost without approximation in 
the stress analysis. Continuously transposed cable (CTC) consists of multiple enamel-
coated copper strands arranged in a nearly rectangular pattern shown. Not shown are how 
the transpositions are made, which rotate the different strands so that they each occupy all 
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FIGURE 10.3
Details of a typical disk winding: (a) horizontal view (x, y) plane and (b) vertical view (y, z) plane.
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the positions shown as one moves along the wire. The transpositions give some rigidity to 
the collection of strands. In addition, use is often made of bonded cable in which all the 
strands are bonded together by means of an epoxy coating over the enamel, which is sub-
jected to a heat treatment. In this case, the cable can be treated as a rigid structure, although 
there is some question as to how to evaluate its material properties. With or without bond-
ing, one has to make some approximations as to how to model the cable for stress analysis 
purposes. Without bonding, we assume for radial force considerations that the cable has a 
radial thickness equivalent to 2 radial strands. With bonding, we assume a radial thickness 
equivalent to 80% of the actual radial build. These assumed thicknesses apply when the 
particular stress calculation critically depends on them.

We will first look at the stresses produced by the axial forces and then consider the 
stresses due to the radial forces. We need to examine worst-case stresses in the copper 
winding turns, in the key spacers, in the pressure rings, and in the tie plates, which are 
attached to the top and bottom clamps.

10.3.1  Compressive Stress in the Key Spacers

The maximum axial compressive force is used to determine the worst-case compressive 
stress in the key spacers. This force, Fc, obtained for each coil from the magnetic field analy-
sis program, is divided by the area of the key spacers covering one 360-degree disk section 
to obtain the key spacer compressive stress σks:
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(10.3)

where
Nks is the number of key spacers around one 360-degree section
Wks is the width of a key spacer
B is the radial build of the coil

We use key spacers made of precompressed pressboard, which can withstand a maxi-
mum compressive stress of 310 MPa (MPa = Mega Pascal = N/mm2). Therefore, the 
stress calculated by (10.3) should not exceed this number and is usually restricted to be 
much less than this.
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FIGURE 10.4
Types of wire or cable used in transformer coils: (a) magnet wire and (b) transposed cable.
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10.3.2  Axial Bending Stress per Strand

The maximum axial force over all the vertical subdivisions is computed for each coil. 
Let Nv equal the number of vertical subdivisions. Call this maximum force Fa. In order to 
compute the bending stress, we need to know the force/unit length along an individual 
strand, since these forces are continuously distributed along the strand. The number of 
strands in the entire coil, Ns, is given by

 N N N N Ns t h w st=  (10.4)

where
Nt is the number of turns/leg
Nh is the number of cables/turn radially
Nw is the number of cables/turn axially
Nst is the number of strands/cable

We are allowing for the fact that each turn can consist of several cables in parallel, some 
radially and some axially positioned, each having Nst strands. If the coil consists of 2 sepa-
rate windings stacked axially (center fed) each having Ne electrical turns, then Nt = 2Ne. 
Since the section with the maximum axial force is only 1/Nv of the coil, it only has 1/Nv of 
the above number of strands. Hence, the maximum force/unit length on a single strand, 
qst, is given by
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where Dm is the mean diameter of the coil.
The problem can be analyzed as a uniformly loaded rectangular beam with built-in 

ends as shown in Figure 10.5a. There are six unknowns, the horizontal and vertical com-
ponents of the reaction forces and the bending moments at the two built-in ends, but 
only three equations of statics making this a statically indeterminate problem. The two 
horizontal reaction forces are equal and opposite and produce a tensile stress in the 
beam, which is small for small deflections and will be ignored. The vertical reaction 
forces are equal and share the downward load equally. They are therefore given by 
R1,up = R2,up = qL/2, where q = qst is the downward force/unit length along the beam and L 
the beam’s length. By symmetry, the bending moments M1 and M2 shown in Figure 10.5a 
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FIGURE 10.5
Uniformly loaded beam with built-in ends: (a) side view of beam and (b) cross-sectional view of beam.
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are equal and produce a constant bending moment along the beam. In addition, a bend-
ing moment as a function of position is also present, resulting in a total bending moment 
at position x of
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using the sign convention of [Tim55].
To solve for the unknown M1, we need to solve the equation of the beam’s deflection 

curve [Tim55]:
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where
E is Young’s modulus for the beam material
Iz is the area moment of inertia about the z-axis
y is the downward deflection of the beam

Substituting (10.6) into (10.7), we have
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Integrating once, we get
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where C is a constant of integration. Since the beam is rigidly clamped at the ends, the 
slope dy/dx = 0 at x = 0 and x = L. Setting dy/dx = 0 at x = 0 in (10.9) yields C = 0. Setting 
dy/dx = 0 at x = L, we find that
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Substituting these values into (10.9), we obtain
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Integrating again, we obtain
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where the constant of integration was set to zero since y = 0 at x = 0 and x = L.
Inserting (10.10) into (10.6), the bending moment as a function of position along the 

beam is
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The maximum positive value occurs at x = L/2 and is Mmax = qL2/24. The minimum value 
occurs at x = 0 or x = L and is Mmin = −qL2/12. Since the minimum bending moment is 
larger in absolute value, we use it in the formula to obtain the stress due to bending in the 
beam [Tim55]
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where y is measured downward from the centroid of the beam cross section as shown in 
Figure 10.5b. For a given x, σx is a maximum or minimum when y = ±h/2, where h is the 
beam height in the bending direction. If σx is positive, the stress is tensile, and if negative, 
compressive. Inserting Mmin into (10.14), taking y = −h/2, and using
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for the area moment of inertia for a rectangular cross section with respect to the z-axis 
through the centroid (see Figure 10.5b), we obtain
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Here, t is the thickness of the beam perpendicular to the bending plane. This is a tensile 
stress and occurs at the top of the beam at the supports. There is a compressive stress of 
equal magnitude at the bottom of the beam at the supports.

Inserting the actual load (10.5) into (10.16), we get for the maximum axial bending stress
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The span length, L, can be determined from the number of key spacers, their width, and 
the mean circumference:
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The strand height h and thickness t apply to a single strand, whether as part of a cable 
 having many strands or as a single strand in a magnet wire. If the cable is bonded, the 
maximum axial bending stress in (10.17) is divided by 3. This is simply an empirical cor-
rection to take into account the greater rigidity of bonded cable.

We can also get the maximum downward deflection of the beam from (10.12), which 
occurs at x = L/2. Inserting (10.15) for Iz into (10.12), we get for the maximum deflec-
tion, ymax,
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where we have used (10.5) to get the second equality.
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10.3.3  Tilting Strength

The axial compressive force that is applied to the key spacers can cause the individual strands 
of the conductors, which are pressed under the key spacers to tilt if the force is large enough. 
Figure 10.6 shows an idealized geometry of this situation: an individual strand that has the 
form of a closed ring acted on by a uniform axial compressive pressure, Pc. We assume  initially 
that the strand has rounded ends that do not dig into the adjacent key spacers to prevent 
or oppose the tilting shown. (There can be several layers of strands in the axial direction sepa-
rated by paper, which plays the same role as the key spacers in the figure.)

Analyzing a small section in the azimuthal direction of length Δℓ, the applied pressure 
exerts a torque, τc, given by

 t qc cP t h= ( )D� sin  (10.20)

where
t is the radial thickness of the strand
tΔℓ is the area on which the pressure Pc acts
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FIGURE 10.6
Geometry of strand tilting due to the axial compressive force. The y direction is perpendicular to the paper. 
(a) Unstressed geometry, (b) geometry under stress, and (c) geometric variables used in the analysis.
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The axial height of the strand is h and θ is the tilting angle from the vertical, which is 
assumed to be small. h sin θ is the lever arm on which the force acts to produce the torque. 
The tilting causes the material of the ring to stretch above its axial center and to compress 
below it. This produces stresses in the ring, which in turn produce a torque that opposes 
the torque calculated earlier.

To calculate this opposing torque, let y measure the distance above the axial center of the 
strand as shown in Figure 10.6b. The increase in radius at distance y above the centerline 
is y tan θ. Therefore, the strain at position y is
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where ε is an azimuthal strain. This produces an azimuthal tensile stress (hoop stress) 
given by
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where E is Young’s modulus for the conductor material. This hoop stress results in an 
inward force, Fr, on the section of strand given by (Figure 10.6c)
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In (10.23), tΔy is the area at height y over which the stress σ acts and Δφ the angle sub-
tended by the azimuthal section of strand of length Δℓ. The small-angle approximation of 
the sin function, sin(Δφ/2) ≈ Δφ/2, and also Δφ = Δℓ/R has been used in (10.23).

The inward force Fr produces a counter torque Δτ on the small section of height Δy that 
is given by
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Using (10.22), this becomes
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Letting Δy become infinitesimal and integrating from y = 0 to h/2, we get
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Analyzing the portion of the strand below the centerline, the hoop stress is compressive 
and will result in an outward force on the strand. This will create a torque of the same 
m agnitude and sense as that in (10.26), so to take the whole strand into account, we just 
need to m ultiply (10.26) by 2. In equilibrium, this resulting torque equals the applied 
torque given by (10.20). Equating these two expressions and using, for small θ, sinθ ≈ 
tanθ ≈ θ, we get
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When the conductor strand has squared ends, there is an additional resistance to tilting 
as a result of the ends digging into the key spacers or paper. This results in an additional 
resisting torque of magnitude [Ste62], [Wat66]:
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where
C is a constant depending on the spacer material
fks is the fraction of the coil’s average circumference occupied by key spacers

If there are no key spacers, then set fks = 1. This should be added to 2 × Equation 10.26 and 
their sum equated to Equation 10.20, resulting in a tilting pressure of
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If the strand has rounded corners of radius Rcorn, then t in this formula is reduced by 2Rcorn, 
so only its flat portion is considered. The resulting critical axial pressure is therefore
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In this equation, E is the initial Young’s modulus for copper and is essentially independent 
of the hardness. It has a value of 1.10 × 105 MPa. C has been taken to equal 2.44 × 103 MPa/mm. 
The second term in (10.30) is called the bedding term.

This equation is often modified to take into account other factors based on experimental 
data such as the proof strength of copper and whether the cable is made of magnet wire or 
transposed cable (CTC). A possible modified version is

 
P C C

E h
R

C f t R
h

c
ks corn= æ

è
ç

ö
ø
÷ +

-( )é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ï

þï
1 2

2
3

2

8 6
2

p
 

(10.31)

where C1 depends on the proof strength of the copper and varies from 1.0 for regular cop-
per to 1.4 for very hard copper. For magnet wire, C2 = 1 for fks = 1 and C2 = 1.4 for fks < 1. 
For CTC, C2 = 1.2 for fks = 1, and C2 = 2.0 for fks < 1. C3 = 270 MPa/mm for magnet wire and 
132 MPa/mm for CTC.

To compare this with the applied maximum axial compressive force, multiply (10.30) or 
(10.31) by the radial surface area of the strands in one horizontal layer, Alayer. This is

 A RtN N Nlayer d h st radial= 2p ,  (10.32)

where
Nd is the number of turns in a disk or section
Nh is the number of cables in parallel radially/turn
Nst,radial is the number of strands in the radial direction/cable
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Nst,radial = 1 for magnet wire and, as shown in Figure 10.4b, (Nst − 1)/2 for CTC. Thus, the 
critical axial force is

 F P Acr c layer=  (10.33)

This applies to unbonded cable. For bonded cable, we take Fcr = ∞ since it is assumed in 
this case that tilting is very unlikely. We compare (10.33) with the maximum applied axial 
compressive force, Fc, by taking the ratio Fcr/Fc. This ratio must be >1 for a viable design, 
that is, Fc must be <Fcr.

We should note that the expression for Alayer does not take into account the fractional area 
coverage of the key spacers since the force is applied to the key spacer area. However, 
except for the bedding term, the calculation involved an averaging process over all the 
strands in the layer. The bedding term already includes the fractional key spacer area 
coverage.

10.3.4  Stress in the Tie Bars

The tie bars or flitch plates are used to join the upper and lower clamping structures that 
keep the coils under compression. These are generally long rectangular bars of steel, 
which are placed along the sides of the core legs. They are under mild tension during 
normal transformer operation. During short circuit, the tensile stresses can increase con-
siderably. Also, when the transformer is lifted, the tie bars support the entire weight of the 
core and coils.

The short circuit stress in the tie bars is due to the total end thrust produced by all the 
coils on a single leg. This is the sum of the total upward or downward forces acting on the 
coils. Because of the 3-phase current, the maximum force will not appear on all legs simul-
taneously. For a single line to ground fault, one of the legs will have the highest currents 
and forces. This leg is therefore singled out for the stress calculation. For a 3-phase fault, 
the maximum force acts on all three legs but not simultaneously so that, even in this case, 
the force associated with only one leg may be used in the stress analysis. Although this 
force acts on a single leg, one can assume that all the tie bars participate in countering this 
force. Other assumptions or even tests could be made to determine how this force is dis-
tributed among the tie bars.

The total end thrust is the result of a static force calculation. Because of possible dynamic 
effects associated with the sudden application of a force to an elastic system, the end thrust 
could be considerably higher for a short period after the force application. To see what the 
dynamic force enhancement might be, we analyze an elastic bar subject to a suddenly 
applied force as illustrated in Figure 10.7. Let x be the change in length produced by the 
force, relative to the unstressed bar of length L. A bar under stress stores elastic energy, U, 
given by [Tim55]
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(10.34)

where
E is Young’s modulus for the bar material
A is the cross-sectional area of the bar
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The applied force causes the bar material to move so that it acquires a kinetic energy. Since 
each portion of the bar moves with a different velocity—the bar is fixed at one end and 
moves with maximum velocity at the other end—it is necessary to integrate the kinetic 
energy of each segment along the bar to get the total. In Figure 10.7, a bar segment at 
 distance y from the fixed end of thickness dy is isolated. The parameter u measures the 
displacement of this bar segment, and its velocity is therefore du/dt. But the strain ε is 
uniform along the bar so we have ε = u/y = x/L. Therefore, u = xy/L and du/dt = (y/L)
dx/dt. The segment’s kinetic energy is
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where ρ is the mass density of the bar material. Integrating over the bar, we get
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This says that effectively 1/3 of the mass of the bar is moving with the end velocity dx/dt.
We use Lagrange’s method to obtain the equation of motion of the bar. The Lagrangian 

is L = KE − U and the equation of motion is
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Carrying out the differential operations in (10.37), this becomes
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The force applied to the tie bars during a fault is produced by the coils. Although the 
forces applied to the coils are proportional to the current squared, because of the coil’s 

L

y u

x

F(t)

dy

FIGURE 10.7
Elastic bar fixed at one end and subject to an applied force at the other end.
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internal structure, the force transmitted to the tie bars may be modified. However, assum-
ing the coils are well clamped, we expect that the force transmitted to the tie bars is also 
proportional to the current squared to a good approximation. The fault current has the 
approximate form [Wat66]

 I I e t u to
at= -( ) ( )- cosw  (10.39)

where
a is a constant, which is a measure of the resistance in the circuit
ω is the angular frequency
u(t) is the unit step function, which is zero for times t < 0 and 1 for times t ≥ 0

The force has the form
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which results from squaring (10.39) and using a trigonometric identity. This function is 
plotted in Figure 10.8a for a = 22.6 and ω = 2π(60).

To simplify matters and in a worst-case position with little damping, take a = 0 so (10.40) 
reduces to
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FIGURE 10.8
Graphs of some tie bar forces versus time in cycles. (a) Plot of Equation 10.40 and (b) plot of Equation 10.41.
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This is plotted in Figure 10.8b. It achieves a maximum of Fmax = 4Fo, whereas (10.40) reaches 
a maximum value of about 3.3Fo for the parameters used. If this maximum force were act-
ing in a steady-state manner, the bar’s displacement would be, according to Hooke’s law,
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This should be compared with the dynamical solution of (10.38) to get the enhancement 
factor.

To solve (10.38), take Laplace transforms, LaT, using the boundary conditions x(t = 0−) = 0 
and dx/dt(t = 0−) = 0. We obtain
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The Laplace transform of (10.41) is
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Substituting into (10.43), we obtain for the Laplace transform of x
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Using some algebra to rewrite (10.45) and taking inverse transforms, we obtain
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where the quantity in curly brackets is the enhancement factor.
We need to compare the natural angular frequency b with the applied angular frequen-

cies ω = 2πf = 377 rad/s, assuming f = 60 Hz, and 2ω = 754 rad/s to see whether a resonance 
problem might occur. For steel bars, E = 2.07 × 105 MPa, ρ = 7837 kg/m3. Using (10.45) for b, 
we obtain
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For a 2.54 m long tie bar, which is typical, this gives b = 3504 rad/s. Since this is much 
larger than ω or 2ω, we are far from resonance. Thus, (ω/b)2 can be ignored relative to 1 in 
(10.46) and it simplifies to

 
x t

L
EA

F u t t t( ) = æ
è
ç

ö
ø
÷ ( ) - + ( )æ

è
ç

ö
ø
÷max cos cos

1
4

3
2

2
1
2

2w w
 

(10.48)

Hence, xmax is the same as in the steady-state case and the enhancement factor is 1. This 
occurs at t = π/ω. Thus, unless the applied or twice the applied frequency is close to the tie 
bar’s natural frequency, there is no dynamic enhancement. By numerically checking over 
a large grid of times and electrical frequencies, a maximum enhancement of about 1.66 is 
produced if the time does not exceed one period (ωt < 2π).

Another consideration with respect to tie bar strength is the matter of the lifting force on 
the tie bars when the core and coils must be moved during the production process. Since the 
tie bars must support the weight of the core and coils during lifting, it is necessary to check 
the stress in the tie bars produced by lifting. During lifting, the tie bars associated with 
the outer legs are mainly stressed since this is where the lifting hooks are positioned. Both the 
short circuit dynamic stresses and the lifting stresses must be below a maximum allowable 
stress in the tie bar material. We take this maximum allowable stress to be 620 MPa if 
low- carbon steel is used and 414 MPa if a stainless steel is used for the tie bar material.

10.3.5  Stress in the Pressure Ring

The pressure ring receives the total end thrust of the windings. It is often made of press-
board of about 38–63.5 mm thickness. The ring covers the radial build of the windings with 
a little overhang. During a fault, it must support the full dynamic end thrust of the wind-
ings, which according to the last section could be as high as 1.7 times the maximum total 
end thrust per leg.

The end thrust or force is distributed over the end ring, producing an effective pressure of
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where we use ring to label the end force, Fring, and ring area, Aring. This area is given by
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in terms of the outer and inner ring diameters. The ring is supported on radial blocks with 
space between for the leads. This produces an unsupported span of a certain length, Lu. To 
a good approximation, the problem is similar to that discussed previously for the axial 
bending of a strand of wire. Thus, we can use formula (10.16) for the maximum stress in 
the end ring, with L = Lu, t = (1/2)(Dring,out − Dring,in) the radial build of the ring, h = hring the 
ring’s thickness, and q = Pringt the force/unit length along the unsupported span. We obtain
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Using a maximum bending permissible stress for pressboard rings of σbend,max = 103 MPa 
and substituting this value for σx,max in (10.51), we find

 
F D D

h
L

ring bend ring out ring in
ring

u
,max ,max , ,= æ

è
ç

ö
ø
÷ -( )æ

è
s p

2
2 2

çç
ö

ø
÷

2

 
(10.52)

This is the maximum end force the pressure ring can sustain. It must be greater than the 
applied maximum end force.

The maximum deflection can be obtained by appropriate substitution into (10.19).

10.3.6  Hoop Stress

The maximum radial pressure acting on the winding as obtained from the force calcu-
lation creates a hoop stress in the winding conductor. The hoop stress is tensile or 
compressive, depending on whether the pressure acts radially outward or inward, 
respectively. In Figure 10.9, we treat the winding as an ideal cylinder or ring subjected 
to a radially inward pressure, Pr. Let Rm be the mean radius of the cylinder and H its 
axial height. In part (b) of the figure, we show two compressive reaction forces F in the 
winding, sustaining the force applied to half the cylinder. The x-directed force pro-
duced by the pressure Pr cancels out by symmetry, and the net y-directed force acting 
downward is given by
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This is balanced by a force of 2F acting upward, so equating these we get F = PrHRm. 
Dividing by the cross-sectional area A of the material sustaining the force, we get the com-
pressive stress in the material
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FIGURE 10.9
Geometry for determining the hoop stress in a cylinder acted on by a radially inward pressure. (a) Full cylinder 
geometry and (b) force diagram.
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For A = HB, where B is the radial build of the cylinder, we get
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This last formula assumes the cylinder is made of a homogeneous material. If the cylinder 
is made of conductors and insulating materials, the conductors primarily support the 
forces. In this case, A should equal the cross-sectional area of all the conductors in the 
winding, A = AtNt, where At is the cross-sectional area of the conductors in a turn and Nt 
is the total number of turns in the winding. If the winding is center fed, that is, consists of 
two parallel windings on the same leg, and Nt refers to the total turns/leg or twice the 
number of electrical turns, then At should be 1/2 the turn area = the area of the cable in 
either half of the winding. Substituting into (10.54) and using Dm = 2Rm, we obtain
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for the hoop stress. This is compressive for Pr acting inward and tensile for Pr acting out-
ward. In either case, this stress should not exceed the proof stress of the winding material.

When the radial pressure acts inward, the winding is apt to buckle before the proof stress 
is exceeded. This inward radial buckling is a complex process to analyze and will be 
 discussed later.

10.3.7  Radial Bending Stress

Windings have inner radial supports called sticks made of pressboard or other material, 
which are spaced uniformly along their circumference and extend at least to the height of the 
winding. When an inward radial pressure acts on the winding, the sections of the winding 
between supports act like a curved beam subjected to a uniform loading. A  similar situation 
occurs in the case of a rotating flywheel with radial spokes. In the flywheel case, the loading 
(centrifugal force) acts outward but otherwise the analysis is similar. The  flywheel example 
is analyzed in Timoshenko [Tim55], which we follow here with minor changes.

We need to make use of Castigliano’s theorem. This states that if the material of a system fol-
lows Hooke’s law, that is, remains within the elastic limit, and if the displacements are small, 
then the partial derivative of the strain energy with respect to any force equals the displacement 
corresponding to the force. Here force and displacement have a generalized meaning, that is, 
they could refer to torques or moments and angular displacements as well as their usual mean-
ings of force and length displacements. Also, the strain energy must be expressed as a quadratic 
function of the forces. For example, the strain energy, Utensile, associated with tensile or compres-
sive forces N in a beam of length L with elastic modulus E is
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where N, A, and E can be functions of position along the beam, x. The strain energy, Ubending, 
associated with a bending moment M in a beam of length L is

 
U

M
EI

dxbending

L

= ò
0

2

2
 

(10.58)

where M, I, and E can be functions of position, x. Here I is the area moment of inertia.
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In Figure 10.10a, we show a portion of the winding with the inner radial supports spaced 
an angle 2α apart. There is a normal force X acting radially outward at the supports, which 
counters the inward pressure, which has been converted to a force/unit length q acting on 
the coil section. The coil section is assumed to form a closed ring of radial build h, axial 
height t, and mean radius R.

In Figure 10.10b, we further isolate a portion of the ring, which extends between adjacent 
midsections between the supports. The reason for doing this is that there is no radially 
directed (shearing) force acting on these mid cross sections. This is because by symmetry, 
the distributed load between the midsections must balance the outward force at the 
included support. Thus, the only reactions at the midsections are an azimuthally directed 
force, No, and a couple, Mo, which need to be found.

Balancing the vertical forces, we have
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Performing the integral and solving for No, we obtain
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FIGURE 10.10
Geometry for determining the radial bending stresses.
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At any cross section as shown in Figure 10.10c, measuring angles from the midsection 
position with the variable φ, we can obtain the normal force, N, from the static equilibrium 
requirement:
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Integrating and substituting for No from (10.60), we get
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Similarly, using Figure 10.10d and e, we can obtain the bending moment at the cross 
 section of angle φ from the midsection by balancing the moments:
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Performing the integration and substituting for No from (10.60), we obtain
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Equations 10.62 and 10.64 express the normal force and bending moments as functions 
of position along the beam (arc in this case). These can be used in the energy expressions 
(10.57) and (10.58). Castigliano’s theorem can then be used to solve for the unknowns. 
However, we are missing the strain energy associated with the supports. The radial sup-
ports consist of several different materials as illustrated in Figure 10.11. We assume they 
can be treated as a column of uniform cross-sectional area Astick. In general, the column 
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FIGURE 10.11
Radial support structure.
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consists of winding material (copper), pressboard sticks, and core steel. However, for an 
innermost winding, the winding material is not present as part of the support column. For 
such a composite structure, we derive an equivalent Young’s modulus, Eeq, by making use 
of the fact that the stress is the same throughout the column. Only the strain differs from 
material to material. We obtain
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where
Lw is the length of the winding portion
Ew its Young’s modulus

Similarly, s refers to the stick and c to the core. L = Lw + Ls + Lc is the total column length.
The total strain energy for our system, retaining only the portion shown in Figure 10.10b, 

since the entire ring energy is simply a multiple of this, can be written as
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where
N and M are given by (10.62) and (10.64)
A is the cross-sectional area of the ring, A = th
I its bending moment, I = th3/12
the infinitesimal length along the bar, Rdφ, is used

The two unknowns are X and Mo. At the fixed end of the support column (center of the 
core), the displacement is zero; hence, by Castigliano’s theorem, ∂U/∂X = 0. Also, the 
 bending moment at the midsection of the span between the supports produces no angular 
displacement by symmetry. Hence, by Castigliano’s theorem, ∂U/∂Mo = 0. Differentiating 
(10.66), we obtain
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and
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Substituting for N and M from (10.62) and (10.64), we obtain
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and
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Integrating these expressions, we obtain
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where we have used the fact that L = R. Substituting into (10.62) and (10.64) and 
defining
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we obtain for N and M
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We also have
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where h is the radial build of the ring.
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N gives rise to a normal stress

 

s j
a

a a
N

eq sti

N
A

qR
A

f
R
h

f
EA

E A

= = æ
è
ç

ö
ø
÷

( ) + æ
è
ç

ö
ø
÷ ( ) +

cos
sin2

1 1

121

2

2
cck

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

-

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
ï

1

 

(10.77)

and M gives rise to a bending stress, which varies over the cross section, achieving a maxi-
mum tensile or compressive value of (see formula (10.14))
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We have factored out the term qR/A since this can be shown to be the hoop stress in the 
ring. (In formula (10.54), PH corresponds to q and Rm to R in our development here.) 
Thus, σhoop will be substituted in the following formulas for qR/A, where σhoop is given 
by (10.56).

We now need to add σN and σM in such a way as to produce the worst-case stress in the 
ring. The quantity
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occurs in both stress formulas. We have tabulated f1(α), f2(α), and sinα times these in 
Table 10.1 for a range of α values.

TABLE 10.1

Tabulated Values for f1(α) and f2(α) and sinα Times These Quantities

# Sticks/Circle α (°) f1(α) f2(α) sinα f1(α) sinα f2(α)

2 90 0.3927 0.07439 0.3927 0.07439

4 45 0.6427 0.006079 0.4545 0.004299
6 30 0.9566 0.001682 0.4783 0.0008410
8 22.5 1.2739 0.0006931 0.4875 0.0002652

10 18 1.5919 0.0003511 0.4919 0.0001085
12 15 1.9101 0.0002020 0.4944 0.00005228
18 10 2.8648 0.00005942 0.4975 0.00001032
24 7.5 3.8197 0.00002500 0.4986 0.00000326
30 6 4.7747 0.00001279 0.4991 0.00000134
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It can be seen that for any choice of the other parameters, Equation 10.79 is positive. In 
(10.78), the magnitude of σM for fixed α is determined by the term (cos φ – sin α/α), where 
φ can range from 0 to α. This achieves a maximum in absolute value at φ = α. The stress can 
have either sign depending on whether it is on the inner radial or outer radial surface of 
the ring. In (10.77), the magnitude of σN achieves a maximum at φ = α for virtually any 
choice of the other parameters. It has a negative sign consistent with the compressive 
nature of the applied force. Thus, σN and σM should be added with each having a negative 
sign at φ = α to get the maximum stress. We obtain
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(10.80)

This stress is negative although it is usually quoted as a positive number. It occurs at the 
support.

We have analyzed a ring subjected to a hoop stress having radial supports. A coil is 
 usually not a monolithic structure but consists of a number of cables radially distributed. 
The cables could consist of a single strand of conductor as in the case of magnet wire or be 
multistranded. The latter could also be bonded. The average hoop stress in the winding 
will be nearly the same in all the cables since the paper insulation tends to equalize it. We 
will examine this in more detail in a later section. The radial thickness, h in the formulas, 
should refer to a single cable. If it is a magnet wire, then its radial thickness should be used. 
If a multistranded transposed cable, then something less than its radial thickness should be 
used since this is not a homogeneous material. If unbonded, we use twice the thickness of 
an individual strand as its effective radial build. If bonded, we use 80% of its actual radial 
thickness as its effective radial build.

10.4  Radial Buckling Strength

Buckling occurs when a sufficiently high force causes a structure to deform its shape to the 
point where it becomes destabilized and may collapse. The accompanying stresses may in 
fact be small and well below the proof stress of the material. An example is a slender col-
umn subjected to an axial compressive force. At a certain value of the force, a slight lateral 
bulge in the column could precipitate a collapse. Another example, which we will discuss 
here, is that of a thin ring subjected to a uniform compressive radial pressure. A slight 
deformation in the circular shape of the ring could cause a collapse if the radial pressure is 
high enough. This critical radial pressure produces a hoop stress (see Section 10.3.6). It is 
called the critical hoop stress, which could be well below the proof stress of the material. 
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In general, the smaller the ratio of the radial build to the radius of the ring, the smaller the 
critical hoop stress. Thus, buckling is essentially an instability problem and is analyzed by 
assuming a small distortion in the shape of the system under study and determining under 
what conditions this leads to collapse.

We wish to examine the possible buckling of a winding subjected to an inward radial 
pressure. We will treat an individual cable of the winding as a closed ring, as was done in 
the last section, since the cables are not bonded to each other. In free unsupported radial 
buckling, it is assumed that there are no inner supports. Thus, the sticks spaced around the 
inside circumference of a winding are assumed to be absent. It is argued that there is suf-
ficient looseness in this type of support that the onset of buckling occurs as if these sup-
ports were absent and, once started, the buckling process continues toward collapse or 
permanent deformation. It could also be argued that even though buckling may begin in 
the absence of supports, before it progresses very far, the supports are engaged and from 
then on it becomes a different type of buckling, called forced or constrained buckling. The 
key to the last argument is that even though free buckling has begun, the stresses in the 
material are quite low, resulting in no permanent deformation, and the process is halted 
before collapse can occur.

10.4.1  Free Unsupported Buckling

Timoshenko [Tim55] analyzes free buckling of a circular ring in some detail and quotes the 
results for forced buckling. The lowest-order shape distortion away from a circle is taken 
to be an ellipse. This is shown in Figure 10.12 along with the parameters used to describe 
the system. R is the radius of the ring, h its radial thickness, and q the uniform inward force 
per unit length along the ring’s outer surface. The analysis assumes a thin ring so that R 
can be taken to be a mean radius. It also assumes that the ring is uniform in the direction 
along the ring’s axis.

R

q

h

FIGURE 10.12
Buckling of a circular ring. The distorted elliptical shape, which is the lowest buckling mode, and the system 
parameters are shown.
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For this lowest buckling mode, the critical load, that is, the critical force per unit length 
qcrit, which will precipitate buckling, is given by
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where
E is Young’s modulus of the hoop material
I is the area moment of inertia, I = th3/12, and t is the thickness of the ring in the direction 

of the ring’s axis

We can convert qcrit to a critical pressure by dividing by t. Calling this pressure Pcrit, it is 
given by
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We can then use this in (10.55), substituting h for B, to obtain
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This is the critical hoop stress. It depends geometrically only on the ratio of the radial build 
to the radius of the ring.

Since buckling occurs after the stress has built up in the ring to the critical value and 
increases incrementally beyond it, the appropriate modulus to use in (10.83) is the tangen-
tial modulus since this is associated with incremental changes. This argument for using the 
tangential modulus is based on an analogous argument for the buckling of slender col-
umns together with supporting experimental evidence given in [Tim55]. We will assume it 
applies to thin rings as well.

The tangential modulus can be obtained graphically from the stress–strain curve for the 
material as illustrated in Figure 10.13a. However, for copper, which is the material of 

σ = Eo(ε – εp)

σp

εp

(b)

Slope = Eo

Slope = Et

σ

ε
(a)

FIGURE 10.13
Stress–strain curve and derived quantities: (a) initial, Eo, and tangential, Et, modulus and (b) proof stress 
illustrated.



270 Transformer Design Principles

interest here, the stress–strain curve can be parametrized for copper of different hardnesses 
according to [Tho79] by
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where k = 3/7, m = 11.6, and Eo = 1.10 × 105 MPa. σo depends on the copper hardness. The 
tangential modulus obtained from this is
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where γ = k(m + 1) = 5.4. Substituting Et from (10.85) for E in (10.83), we obtain a formula 
for self-consistently determining the critical stress:
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(10.86)

This can be solved by Newton–Raphson iteration.
The parameter σo is generally not provided by the wire or cable supplier. It could be obtained 

by fitting a supplied stress–strain curve. Alternatively and more simply, it can be obtained 
from the proof stress of the material, which is generally provided or specified. As one moves 
along a stress–strain curve and then removes the stress, the material does not move back 
toward zero stress along the same curve it followed when the stress increased but rather it 
follows a straight line parallel to the initial slope of the stress–strain curve as illustrated in 
Figure 10.13b. This leaves a residual strain in the material, labeled εp in the figure, correspond-
ing to the stress σp, which was the highest stress achieved before it was removed. For εp = 0.002 
(0.2%), σp is called the proof stress. (Some people use εp = 0.001 in this definition.)

Thus, the proof stress is determined from the intersection of the recoil line:

 s e e= -( )Eo p  (10.87)

with the stress–strain curve given by (10.84). Solving (10.84) and (10.87) simultaneously, 
we find
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This permits us to find σo from a given proof stress σp corresponding to the appropriate εp. 
For a proof stress of 170 MPa at 0.2% strain (εp = 0.002), we obtain σo = 154.5 MPa for 
copper.

10.4.2  Constrained Buckling

When the axial supports (sticks) are engaged in the buckling process, we have forced 
or  constrained buckling. Since there is some looseness in the supports because they do 
not rigidly clamp the winding cable, they can be regarded as a hinged type of support. 
Because this type of support allows a freer pivoting action, this type of buckling may also 
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be referred to as free supported buckling. In this case, the lowest-order constrained buck-
ling mode is shown in Figure 10.14. The corresponding critical force/unit length, qcrit, is 
given by [Tim55]
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where β is the angle between the outer supports. This force/unit length produces a critical 
hoop stress of
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where h is the radial build of the arch. This will exceed the free buckling critical stress, 
Equation 10.86, when β < π. β = π corresponds to 2 end supports. Thus, for most cases 
where β ≪ π, the constrained buckling stress will be much larger than the free buckling 
stress. Both buckling types depend on the radial build of the ring or arch. We will adopt the 
same procedure for determining the effective radial build of a cable, as was done for the 
radial bending stress determination at the end of Section 10.3.7.

Since a loose or hinged support can also be imagined as existing at the center point of the 
arch in Figure 10.14, β should be taken as twice the angle between supports (sticks). Letting 
n be the number of radial supports around the winding circumference so that β = 4π/n, 
Equation 10.90 can be written as
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Substituting the tangential modulus from (10.85) into this formula, we obtain a formula for 
self-consistently determining the critical stress:
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This is similar to the procedure used to get (10.86). This equation can be solved by 
Newton–Raphson iteration.

q

Rβ

FIGURE 10.14
Buckling of a circular hinged arch.
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Arched buckling with this value of β appears to provide a more realistic value of 
buckling strength in practice than totally free unsupported buckling. There is increasing 
experimental evidence for this [Sar00]. One such experiment will be described in the 
next section.

10.4.3  Experiment to Determine Buckling Strength

This section is largely based on a talk presented at a Doble Conference [Del01]. A small 
(5 MVA) 3-phase, 2-winding/phase, 3-leg core transformer was designed with the inner 
LV windings on each leg wound with different conductors. It had terminal line-to-line 
voltages of 13.2 kV for the HV and 3.6 kV for the LV and was Y–Y connected. The leakage 
impedance was 5.8% at 5 MVA. There were no taps so the windings were uniform except 
for crossovers. The outer HV winding was the same for all the legs. Details concerning the 
HV winding and the two inner windings, which failed by buckling, are given in Table 10.2. 
The LV windings, which failed by buckling, were on the outer 2 legs of the transformer, 
labeled LV1 and LV2.

The unit was tested at the Powertech Labs in Surrey, British Columbia, Canada. The 
phases (legs) were tested separately and sequentially at each power level, starting from 
80% of the design voltage and increasing in steps of ~10% until failure occurred. The volt-
age was applied to the HV winding, with the LV winding shorted to ground before the unit 
was energized. The voltage application was timed to produce maximum offset in the cur-
rent. A typical voltage–current readout is shown in Figure 10.15. The total duration of the 
short circuit event was ~0.25 s. Two shots/leg were performed before going to the next 
voltage level. A visual inspection of the windings was conducted after each shot via a 
Plexiglas window in the transformer tank. In addition, the impedance was calculated after 
each test from the ratio of voltage to current.

A frequency response analysis (FRA) measurement was performed on each leg after 
the two shot sequences or after a single shot if an impedance change occurred. 
The  FRA   measurement was performed by applying a sharp impulse to the HV 

TABLE 10.2

Geometric and Other Parameters for the Windings

Winding HV LV1 LV2

Inner diameter 444.5 343 343
Radial build 35 25.4 25.4
Height 1041 1067 1067
# Disks 72 76 76
# Electrical turns/disk 4 1 1
Total turns 288 76 76
Wire type Magnet Magnet Magnet
Copper strand thickness 3.56 3.68 2.67
Copper strand width 10.9 10.2 10.2
Paper thickness (2 sided) 0.762 0.305 0.305
# Strands/disk 8 6 8
# Radial supports (sticks) 12 12 12
Proof stress (MPa) 207 194 348

The dimensions are in mm.
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winding and measuring the current in the LV winding. The results were displayed as 
a transfer admittance versus frequency. The transferred admittance plot was then 
 compared with that obtained initially before the tests began. Figure 10.16 shows such 
a comparison when the leg was considered to have passed the short circuit event, 
while Figure 10.17 shows a comparison when the unit failed. No further tests were 

FIGURE 10.15
Short circuit HV applied phase voltage (top) and resulting current (bottom) for a typical test.
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FIGURE 10.16
Comparison of the admittance versus frequency plot measured after a shot with the initial admittance plot for a 
passing case.
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 performed after a failure based on the FRA occurred. An impedance change of 2% and 
13% also occurred in the two legs when an FRA failure was indicated. Prior to failure, 
the impedance changes were <1% and were possibly due to measurement 
uncertainties.

The middle leg failed in an axial mode. This failure, in addition to a large impedance and 
FRA change, was visually obvious since the outer winding of this leg collapsed. The failure 
mode of the two outer legs was only evident from the impedance and FRA changes, since 
the outer windings appeared normal after the failure. We shipped the unit back to our 
plant and disassembled it in order to find the cause of the failure. As Figures 10.18 and 
10.19 show, the failure mode was radial buckling of the inner winding. It is also clear, from 
the position of the sticks relative to the winding distortion, that the sticks were actively 
involved in the failure. We can see in both figures that the winding bulges outward between 
two adjacent sticks and inward between adjacent sticks on opposite sides of the bulge. 
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)/V

(f
)

×10–3
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1

2

2

4

6

3

FIGURE 10.17
Comparison of the admittance versus frequency plot measured after a shot with the initial admittance plot for a 
failed case.

FIGURE 10.18
View of the inner winding of LV1, which buckled over about the middle third of its axial height.
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It can also be seen that all the turns participate in the buckling, that is, the entire radial 
build appears to buckle as a unit. The torn paper in the figures occurred while disassem-
bling the windings.

Both inner windings failed in buckling at nearly the same current, which had a peak 
value at maximum offset in the HV winding of 13,300 amps. Using this current, together 
with the LV current required for amp-turn balance, in our computer program that calcu-
lates the magnetic flux, forces, and stresses, we obtain the maximum compressive hoop 
stresses in the LV windings given in Table 10.3. A calculation of how the stress is distrib-
uted across the radial build of the winding, taking the paper layers into account, produced 
a variation of ±2%, with the higher stress on the inner conductor. This calculation is similar 
to that in [Tho79].

In applying the buckling formulas, h was chosen to be the radial build of a bare copper 
strand and R was chosen as the average winding radius. The tangential modulus, Et, was 
obtained by the method proposed here. It is given in the table as a ratio with respect to the 
initial modulus Eo, where Eo = 1.10 × 105 MPa for copper.

As can be seen in Table 10.3, the free unsupported buckling stress is far below the actual 
hoop stress at failure. This buckling mode also has an elliptical shape, which is not observed. 

TABLE 10.3

Measured and Calculated Buckling Hoop Stresses in the Inner Windings

Winding and Modulus Ratio LV1 Et/Eo LV2 Et/Eo

Max hoop stress at test failure 88.4 90.4
Buckling stress
Free unsupported 11.0 1.0 5.8 1.0
Constrained (β = 360°/6) 121.2 0.942 67.5 1.0
Constrained (β = 360°/12) 164.8 0.313 244.1 0.885

The stresses are in MPa.

FIGURE 10.19
View of the inner winding of LV2, which buckled in two different areas that were both radially and axially dis-
placed from each other. One area is facing the viewer and the other can be seen in silhouette on the upper right of 
the winding. Each buckling area covered about a third of the winding’s axial height.
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The constrained buckling mode stress with β = 360°/12, the angle between the radial sup-
ports, is much too high compared with the actual failure stress. The buckling shape also 
does not agree with the observed shape. The constrained buckling stress with β = 360°/6, 
twice the angle between the radial supports, is fairly close to the actual failure hoop stress. 
In addition, the buckling shape for this mode agrees with observation.

10.5  Stress Distribution in a Composite Wire–Paper Winding Section

The hoop stress previously calculated for a winding section or disk (Section 10.3.6) was 
an average over the disk. In reality, for the innermost winding, the axial magnetic field 
varies from nearly zero on the inside of the winding to close to its maximum value at 
the outer radius of the winding. Since the current density is uniform, the force density 
also varies in the same fashion as the magnetic field. Thus, we might expect higher 
hoop stresses in the outermost turns as compared with the inner turns. However, 
because of the layered structure with paper insulation between turns, the stresses tend 
to be shared more equally by all the turns. This effect will be examined here in order to 
determine the extent of the stress nonuniformity so that, if necessary, corrective action 
can be taken.

We analyze an ideal ring geometry as shown in Figure 10.20. In the figure, rci denotes the 
inner radius of the ith conductor layer and rpi the inner radius of the ith paper layer, 

r rc1
rp1

rc2

rp2

rc3

c1

p1

c2

p2

rcn

rpn

FIGURE 10.20
Conductor–paper layered ring winding section. ci refers to conductor i and pi to paper layer i.



277Mechanical Design

where i = 1, …, n for the conductors and i = 1, …, n − 1 for the paper layers. Because of the 
assumed close contact, the outer radius of the ith conductor layer equals the inner radius 
of the ith paper layer and the outer radius of the ith paper layer equals the inner radius of 
the i + 1th conductor layer. We do not need to include the innermost or outermost paper 
layers since they are essentially stress-free.

We assume that the radial force density varies linearly from the innermost to outermost 
conductor layers. Thus,
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where fo is the maximum force density at the outermost conductor. We wish to express this 
in terms of the average force density, fave. We have
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Solving for fo and substituting into (10.93), we get

 
f

f
n

ici
ave=
+

2
1  

(10.95)

It is even more convenient to relate fci to the average hoop stress in the winding, resulting 
from these radial forces. We related this stress to the radial pressure in (10.55). But the aver-
age force density is just the average radial pressure divided by the winding radial build. 
Therefore, we find, from (10.55),
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where Rm is the mean radius of the winding. Thus, Equation 10.95 can be written as
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We assume that the winding section can be analyzed as a 2D stress distribution problem, 
that is, stress variations in the axial direction are assumed to be small. The governing equa-
tion for this type of problem in polar coordinates when only radial forces are acting and the 
geometry is cylindrically symmetric is [Tim70]
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where
σr is the radial stress
σφ is the azimuthal stress
fr is the radial force density
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The stresses are related to the strains for the 2D plane stress case by
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where
E is Young’s modulus
ν is Poisson’s ratio (ν = 0.25 for most materials)

The radial and azimuthal strains, εr and εφ, are related to the radial displacement u, in the 
cylindrically symmetric case, by
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Substituting (10.99) and (10.100) into (10.98), we obtain
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with the general solution
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where A and B are constants to be determined by the boundary conditions and
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For our problem, fr is negative (radially inward) so that K is positive. In the paper layers, 
K  = 0 since there is no force density there. Using (10.102) for u in (10.100), we obtain 
for (10.99)
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The solution (10.102) through (10.104) applies to each layer of conductor or paper. We 
therefore need to introduce labels to distinguish the layers. Let Aci, Bci apply to conductor 
layer i and Api, Bpi apply to paper layer i. Let ci and pi also label the displacements, u, and 
the stresses σr, σφ for the corresponding layer. At the conductor–paper interface, the 
 displacements must match:
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There are 2(n − 1) such equations. (See Figure 10.20 for the labeling.) Also, at the interface, 
the radial stresses must match:
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There are also 2(n − 1) such equations. We also have, at the innermost and outermost radii,

 s sr c c r cn pnr r, ,,1 1 0 0( ) = ( ) =  (10.107)

This provides two more equations. Thus, altogether, we have 4n − 2 equations. There are 
two unknowns, Aci and Bci, associated with each conductor layer for a total of 2n unknowns 
and two unknowns, Api and Bpi, associated with each paper layer for a total of 2(n − 1) 
unknowns since there are only n − 1 paper layers. Thus, there are altogether 4n − 2 
unknowns to solve for and this matches the number of equations. In (10.104), we must use 
the appropriate material constants for the conductor or paper layer, that is, E = Ec or Ep is 
the conductor’s or paper’s Young’s modulus and ν = νc or νp for the conductor’s or paper’s 
Poisson’s ratio. In addition, K needs to be labeled according to the layer, that is, Kci, and in 
the case of a paper layer Kpi = 0.

The resulting set of 4n − 2 equations in 4n − 2 unknowns is a linear system and can be 
solved by standard methods. Once the solution is obtained, Equation 10.104 can be used to 
find the stresses. The σφ can then be compared with the average hoop stress to see how 
much deviation there is from a uniform distribution. We show a sample calculation in 
Table 10.4. The average stresses are calculated for the conductor and paper and then the 
stresses in the layers are expressed as multipliers of this average stress. These multipliers 
are averages for the layers since the stresses vary across a layer. The input is the geometric 
data and the average hoop stress in the conductor, which is obtained from the radial pres-
sure via (10.96). The calculated average hoop stress in the conductor does not quite agree 
with the input, probably because of numerical approximations in the averaging method. 
The hoop stress in the conductors varies by about 20% from the inner to the outer layers. 
The other stresses are small in comparison although they show considerable variation 
across the winding. The stresses are shown as positive, even though they are compressive 
and therefore negative.

10.6  Additional Mechanical Considerations

During a short circuit, the leads or busbars are subjected to an increased force due to the 
higher fault current they carry together with its interaction with the higher leakage flux 
from the main windings and from nearby leads. These forces will depend on the detailed 
positioning of the leads with respect to the main windings and with respect to each other. 
They will therefore vary considerably from design to design. The leads must be braced 
properly so that they do not deform or move much during a fault. The leakage flux in the 
vicinity of the lead can be obtained from a flux mapping calculation. The flux produced by 
neighboring leads can be determined from the Biot–Savart law. From these, the forces 
on  the leads can be determined and the adequacy of the bracing checked. In general, 
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the bracing should contain sufficient margin based on past experience so that the above 
rather laborious analysis will only be necessary for unusual or novel designs.

We have neglected gravitational forces in the preceding sections except for the effect of 
the core and coil weight on the tie bar stress during lifting. Gravitational forces will affect 
the compressive force on the key spacers and on the downward end thrust, which acts on 
the bottom pressure ring. Another force that was neglected is the compressive force, which 
is initially placed on the coils by pretensioning the tie bars. This force adds to the compres-
sive force on the key spacers and to the top and bottom thrust on the pressure ring as well 
as adding some initial tension to the tie bars. Since the compressive forces on the key spac-
ers are involved in conductor tilting, this design criterion will also be affected. These addi-
tional forces are present during normal operation and will add to the fault forces when a 
fault occurs.

We have treated the axial and radial stress calculations independently, whereas in reality 
axial and radial forces are applied simultaneously, resulting in a biaxial stress condition. 
Results of such a combined analysis for a circular arched wire segment between supports 
have been reported and show good agreement with experiment [Ste72]. In this type of 
analysis, the worst-case stress condition is not necessarily associated with the largest axial 
or radial forces since these would not usually occur at the same position along the wind-
ing. It is rather due to some combination of the two, which would have to be examined at 
each position along the winding at which the forces are calculated.

TABLE 10.4

Sample Stress Distribution in a Composite Conductor–Paper Disk

Input
Wdg inner radius 381 mm Conductor layer radial thick 6.35 mm
Wdg outer radius 457 mm Paper layer radial thick 1.27 mm
# Radial turns 10 Average hoop stress 124.1 MPa
Ec = 1.1 × 105 MPa Ep = 2.07 × 102 MPa νc = νp = 0.25

Output
Average hoop stress in conductor layers 127.6 MPa
Average hoop stress in paper layers 1.08 MPa
Average radial stress in conductor layers 3.03 MPa
Average radial stress in paper layers 3.38 MPa

Average Stress Multipliers

Conductor Paper

Layer Hoop Radial Hoop Radial

1 0.90 0.28 0.60 0.51
2 0.91 0.78 0.89 0.89
3 0.93 1.13 1.10 1.15
4 0.96 1.36 1.23 1.30
5 0.99 1.47 1.27 1.35
6 1.03 1.47 1.24 1.30
7 1.06 1.35 1.12 1.14
8 1.08 1.12 0.92 0.87
9 1.09 0.76 0.63 0.50

10 1.08 0.28
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As long as the materials remain linear, that is, obey Hooke’s law, and the displacements 
are small, the axial and radial analyses can be performed separately. The resulting stresses 
can then be combined appropriately to get the overall stress state. Various criteria for fail-
ure can then be applied to this overall stress state. Our strategy of looking at the worst-case 
stresses produced by the axial and radial forces separately and applying a failure criterion 
to each is probably a good approximation to that obtained from a combined analysis, espe-
cially since the worst-case axial and radial forces typically occur at different positions 
along the winding. The radial forces are produced by axial flux, which is high in the mid-
dle of the winding, whereas the axial forces are produced by radial flux, which is high at 
the ends of the winding.

Dynamical effects have been studied by some authors, particularly the axial response of 
a winding to a suddenly applied short circuit current [Bos72], [Ste72]. They found that the 
level of prestress is important. When the prestress was low, ~10% of normal, the winding 
literally bounced against the upper support, resulting in a much higher than expected 
force. The enhancement factor over the expected nondynamical maximum force was 
about 4. However, when the prestress was normal or above, there was no enhancement 
over the expected maximum force. The prestress also affects the natural frequency of the 
winding to oscillations in the axial direction. Higher prestress tends to shift this frequency 
toward higher values, away from the frequencies in the short circuit forces. Hence, little 
dynamical enhancement is expected under these conditions. Thus, provided sufficient pre-
stress is applied to clamp the windings in the axial direction, there should be little or no 
enhancement of the end thrust over the expected value based on the maximum fault cur-
rents. However, as the unit ages, the prestress could decrease. With modern precompressed 
pressboard key spacers, this effect should be small. Even so, we allow an enhancement fac-
tor of 1.7 in design.

An area of some uncertainty is how to treat transposed cable, with or without bonding, 
in the stress calculations. It is not exactly a solid homogeneous material, yet it is not simply 
a loose collection of individual strands. We believe we have taken a conservative approach 
in our calculations. However, this is one area, among others, where further experimental 
work would be useful.
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Electric Field Calculations

11.1  Simple Geometries

It is often possible to obtain a good estimation of the electric field in a certain region of a 
transformer by idealizing the geometry to such an extent that the field can be calculated 
analytically. This has the advantage of exhibiting the field as a function of several param-
eters so that the effect of changing these and how this affects the field can be appreciated. 
Such insight is often worth the price of the slight inaccuracy that may exist in the numerical 
value of the field.

11.1.1  Planar Geometry

As a first example, we consider a layered insulation structure having a planar geometry as 
shown in Figure 11.1. This could represent the major insulation structure between two 
cylindrical windings having large radii compared with the gap separation. We are further 
approximating the layered structure as a smooth surface so that the resulting field calcula-
tion would be representative of the field away from any corner effects. We treat such a 
corner field in the next section.

We use one of Maxwell’s equations in integral form to solve this:

 
D d× =ò S q

S
�

 
(11.1)

where
D is the displacement vector
dS is a vectorial surface area with an outward normal
q is the charge enclosed by the closed surface S

Because of the assumed ideal planar geometry, the surface charge density on the electrode 
at potential V is uniform and is designated σ in the figure. An opposite surface charge of 
−σ exists on the ground electrode. Note that both electrode potentials could be raised by an 
equal amount without changing the results. Only the potential difference matters. We will 
also assume that the materials have linear electrical characteristics so that

 D E= e  (11.2)

11
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holds within each material where ε is the permittivity, which can differ within the various 
layers as shown in the figure, and E is the electric field vector.

Because of the planar geometry, the D and E fields are directed perpendicular to the 
planes of the electrodes and layers are uniform along these planes. If we take our closed 
surface as the dotted rectangle shown in the figure, which has some depth into the figure, 
so that the two vertical and horizontal sides represent surfaces, then the only  contribution 
to the integral in (11.1), which is nonzero, is the part over the right vertical surface. This is 
because the dot product of the displacement vector with the surface normal is zero on the 
top and bottom dotted surfaces and zero on the left vertical dotted surface because it is 
inside the metallic electrode. Therefore, the displacement vector has the uniform value 
labeled Di in the figure on the right vertical surface of the dotted rectangle. Thus, for this 
closed surface, Equation 11.1 becomes

 D S q Di i= = Þ =s sS  (11.3)

Using (11.2) applied to layer i, Equation 11.3 becomes

 
Ei

i
=
s
e  

(11.4)

In terms of the potential V, we can write by definition

 
V = - ×òE d�

 
(11.5)

where the line integral starts at the 0 potential electrode and ends on the V potential 
 electrode. In terms of the E fields in the different materials and their thicknesses ℓi, 
Equation 11.5 becomes
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FIGURE 11.1
Geometry of a planar layered insulation structure.
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Using (11.4), this can be written as
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Solving for σ and substituting into (11.4), we get
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Letting ℓ be the total distance between the electrodes so that ℓ = ℓ1 + ℓ2 +  ⋯  + ℓn and defining 
the fractional lengths, fi = ℓi/ℓ, Equation 11.8 can be expressed as
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where Eo is the electric field that would exist between the electrodes if there was only one 
layer of uniform material between them. Ei/Eo is called an enhancement factor for the 
material of permittivity εi. It is given by
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It is the value of the field when there are multiple dielectrics between the conducting planes 
relative to the field when there is a single dielectric between them. Notice that only the 
ratios of permittivities are involved in the last few formulas so that only relative permit-
tivities are required for calculation purposes.

Let’s apply these results to an oil–pressboard insulation system. Even if there are many 
layers of pressboard used to subdivide the oil gap, only the total fractional thickness, fpress, 
matters in the calculation since they all have the same permittivity. Similarly, the subdi-
vided oil gap’s total fractional thickness, foil = 1 − fpress, is all that is needed to perform the 
calculation. For this situation, Equation 11.9 becomes
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(11.11)

Since the relative permittivities of pressboard and oil are εpress ≅ 4.4 and εoil ≅ 2.2, the elec-
tric field in the oil is about twice as high as the electric field in the pressboard for a given 
oil–pressboard combination. Thus, the oil’s electric field is usually the most important to 
know for purposes of breakdown estimation. This is further reinforced by the fact that oil 
breaks down at a significantly lower field than pressboard. We plot Eoil/Eo versus fpress in 
Figure 11.2. We see from the figure that for a given oil gap, the lowest field results when 



286 Transformer Design Principles

there is no pressboard. As more pressboard displaces the oil, the field in the oil increases, 
approaching a value of twice its all oil value when the gap is nearly filled with pressboard. 
When the gap is totally filled with pressboard, there is no enhancement factor. On the other 
hand, there is no oil in the gap in this case.

11.1.2  Cylindrical Geometry

A somewhat better estimate can be made of the electric field in the major insulation struc-
ture between two coils if we consider approximating the geometry as an ideal cylindrical 
geometry. This geometry is also useful for approximating the field around a long cable of 
circular cross section. We consider the general case of a multilayered concentric cylindrical 
insulation structure as shown in Figure 11.3. The innermost cylinder is at potential V and 
the outermost cylinder at zero potential, although it is only their potential difference 
that matters.

From symmetry, we see that the D and E fields are directed radially. We assume there is 
a surface charge per unit length λ along the inner cylinder (into the page in Figure 11.3). We 
apply (11.1) to the dashed line cylindrical surface in Figure 11.3, which is assumed to 
extend a distance L along the axis with disklike surfaces on either end. The only contribu-
tion to the integral is along the dotted cylindrical surface of the cylinder since the dot 
product is zero on end cap surfaces at either end. We find
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Assuming the linear relation (11.2), for layer i we get
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FIGURE 11.2
Relative electric field in the oil in a planar oil gap as a function of the fractional amount of pressboard. Eoil/Eo is 
the enhancement factor for the oil.
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Using the definition (11.5) and starting the line integral from the outer zero potential elec-
trode and ending on the innermost cylinder, which is the surface of the conductor, we 
have, using (11.13),
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Solving for λ and substituting into 11.13, we get
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For any given layer, the maximum field, Ei,max, occurs at its inner radius, so we have
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FIGURE 11.3
Ideal layered cylindrical insulation structure. This same drawing can be reinterpreted to refer to a spherical 
geometry.
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We see from the last two equations that, for a given layer, the electric field is inversely pro-
portional to the permittivity of that layer. Thus, an oil layer at a given position will see 
about twice the electric field of a pressboard layer at the same position. Since the maximum 
field in a layer is also inversely proportional to the radius of the layer, we see that this field 
can be reduced by increasing the layer’s radius. Thus, for a cable surrounded by solid insu-
lation, such as paper, and immersed in oil, the critical field will probably occur in the oil at 
the outer surface of the paper. To reduce this, one could increase its radius by adding more 
paper or start with a larger radius cylindrical conductor to begin with.

If there were a single dielectric between the inner cylinder of radius r1 and outer cylinder 
of radius rn+1, then (11.15) would become
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Substituting V from (11.17) into (11.15), we get
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The enhancement factor for the material in layer i with permittivity εi for this geometry is 
given by
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11.1.3  Spherical Geometry

Another geometry of some interest is the spherical geometry. The general case of a multi-
layered spherical insulation structure is shown in Figure 11.3 by interpreting it as a cross 
section through a spherical system of insulators. In this case, the D and E fields are again 
directed radially by symmetry and the charge on the inner conductor at potential V is 
taken as q. The dashed circle in the figure now defines a spherical surface and (11.1) applied 
to this results in
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From (11.5) and (11.20), we obtain
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Solving for q and substituting into (11.20), we obtain
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The maximum field in layer i, Ei,max, occurs at the inner radius and is given by
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This expression can be used to approximate the field near a sharp bend in a cable immersed 
in oil with the various radii defined appropriately. We see that as the radius of the layer 
increases, the field in it decreases. Thus, the field in the oil can be reduced by adding more 
insulation or decreasing the sharpness of the bend.

When there is a single dielectric between the inner and outer electrodes, Equation 11.22 
becomes
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Substituting for V from (11.24) into (11.22), we obtain
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Therefore, the enhancement factor for material in layer i for this geometry is given by
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11.1.4  Cylinder–Plane Geometry

The cylinder–plane geometry is a reasonable approximation to a commonly occurring con-
figuration in transformers where a cable or lead runs parallel to the tank wall. The geom-
etry and its parameterization are shown in Figure 11.4. The cylinder and plane extend 
infinitely far in the direction perpendicular to the page. The cylinder radius is R and the 
distance of its center from the plane is h. The cylinder is at a potential Vo while the plane is 
at 0 potential.
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The potential and electric field distribution for this problem can be obtained by the 
method of images [Pug62], [Kul04]. Two equal and opposite line charges can be placed sym-
metrically about the zero potential plane as shown in Figure 11.5. Their charge per unit 
length is ±λ and their distance from the plane is s. The potential and electric field are desired 
at a point P shown in the figure, which is a distance r1 from the negative charge and r2 from 
the positive charge. The negative charge is behind the plane and the positive charge will be 
found to be located inside the charged cylinder. Therefore, these image charges do not occur 
within the solution space of interest, which is the space outside the cylinder and to the right 
of the zero potential plane. Therefore, we have from Maxwell’s equations in this region

 Ñ× = = -Ñ Þ Ñ =E E0 02, V V  (11.27)

The last equation in (11.27) is Laplace’s equation and is valid in the space of interest here. 
The solution of this equation, which satisfies the boundary conditions, is unique.

The electric field due to a line charge is
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FIGURE 11.4
Cylinder–plane geometry and parameterization.
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FIGURE 11.5
Image line charges for the cylinder–plane geometry. s is the positive distance of either charge from x = 0 along the 
x-axis.
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where ar is the outward unit vector from the charge. The potential relative to a distant 
point, say, at r = C is
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Thus, the potential due to the equal and opposite line charges at distances r1 and r2 from 
the charges as shown in Figure 11.5 is given by
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Here, we are assuming that the distance C is the same from either line charge since it is 
assumed to be much larger than their separation. In any event, an overall constant may 
be added to a potential distribution without affecting any quantities of physical 
 interest. The sign difference in (11.30) comes from the different signs of λ on the two 
line charges.

We see immediately from (11.30) that when r1 = r2, the potential equals 0. Thus, the 
boundary condition of zero potential on the plane between the 2 charged lines is satisfied. 
We need to satisfy the other boundary condition of potential Vo on the cylinder, which is on 
the right side of the zero potential plane. Let us rewrite the potential in (11.30) at the generic 
point P in Figure 11.5 as
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since the vector r1 = (s + x, y) and r2 = (s − x, y) in coordinate form. For V to be a constant 
on the cylinder, we need to have (r1/r2) equal a constant on the cylinder, say, m. Thus,
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Working through the algebra, we obtain the equation
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But this is just the equation of a circle centered at x = ((m2 + 1)/(m2 − 1))s, y = 0 with a radius 
of 2ms/(m2 − 1). This is what we need to satisfy the boundary condition on the cylinder. 
For this to happen, as Figure 11.4 indicates, we set
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Solving these last two equations for s and m, we obtain
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The first equation in (11.35) shows that s < h. We can also show that s > h − R. Thus, the 
positive line charge is inside the cylinder and out of the region where the potential distri-
bution is required. The negative line charge is also outside this region.

For the value of m in (11.35), we require V = Vo. Using this in (11.31), we can get the 
value of A:
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where s h R h= - ( )1 2/ .
Thus, the potential distribution is given by
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The electric field is obtained from the potential according to
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where i and j are unit vectors in the x and y directions. Carrying out the differentiations, 
we find for the x and y components of E
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(11.39)

Using these, we can show that
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so that Laplace’s equation is satisfied.
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We see from (11.39) that when y = 0, Ey = 0 so there is only an x component of the field. 
The x component of E for y = 0 is given by
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We notice that, along the x-axis from the zero potential plane to the cylinder, x < s, so that 
Ex is negative if Vo is positive. This is as expected since E should point away from the posi-
tive potential toward the zero potential plane.

As a check on these formulas, the cylinder–plane geometry was modeled with a finite 
element analysis program [Ansoft]. The geometry modeled was for R = 10 mm and 
h = 100 mm. We also chose Vo = 1000 V. The equipotential contours are shown in Figure 11.6, 
and the electric field vectors are shown in Figure 11.7.
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FIGURE 11.6
Cylinder–plane equipotential contours obtained with a finite element program.
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The negative of the electric field was plotted along the x-axis from the finite element 
program and compared with the analytic formula given in (11.41). The results are 
shown in Figure 11.8. The fields are given in V/m and the distance in m. The agreement 
is very good.

No dielectric barriers or paper covering of the cylinder were included in the cylinder–
plane geometry. Including these barriers for the other geometries considered earlier 
resulted in enhancement effects on the electric fields. One could approximate the enhance-
ment effect due to such barriers for the cylinder–plane geometry by using the cylinder 
enhancement factor given earlier and treating the plane as a cylinder at a radial distance of 
h from the cylinder center. This approach could be refined, if necessary, based on a 
 parametric study using a finite element program.
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FIGURE 11.7
Electric field vectors for the cylinder–plane geometry modeled with finite elements.
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11.2  Electric Field Calculations Using Conformal Mapping

11.2.1  Mathematical Basis

In a region of space without charge, Maxwell’s electrostatic equation is

 Ñ× =D 0 (11.42)

where D is the electric displacement. If the region has a uniform permeability ε, then 
D = εE, where E is the electric field. Hence, Equation 11.42 becomes

 Ñ× =E 0 (11.43)

Introducing a potential function V, where

 E = -ÑV (11.44)

we obtain from (11.43)

 Ñ =2 0V  (11.45)

In two dimensions, using Cartesian coordinates, this last equation reads

 

¶
¶

+ ¶
¶

=
2

2

2

2 0
V

x
V

y  
(11.46)

The solution of (11.46), including boundary conditions, can then be used to determine the 
electric field via (11.44).
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FIGURE 11.8
Negative of the x component of the electric field along the x-axis from the zero potential plane at x = 0 to the 
cylinder at x = 90 mm = 0.09 m. The finite element and analytic results are compared.
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Boundary conditions are generally of two types, Dirichlet or Neumann. A Dirichlet 
boundary condition specifies the voltage along a boundary. This voltage is usually a con-
stant as would be appropriate for a metallic surface. A Neumann boundary condition 
 specifies the normal derivative along a boundary. The normal derivative is usually taken 
to be 0, which says that the equipotential surfaces (surfaces of constant V) or lines in 2D 
intersect the boundary at right angles. This type of boundary is often used to enforce a 
symmetry condition.

Functions satisfying Equation 11.46 are called harmonic functions. In the theory of func-
tions of a complex variable, analytic functions play a special role. These are functions that 
are continuous and differentiable in some region of the complex plane. It turns out that the 
real and imaginary parts of analytic functions are harmonic functions. In addition, analytic 
mappings from one complex plane to another have properties that allow a solution of 
(11.46) in a relatively simple geometry in one complex plane to be transformed to a solu-
tion of this equation in a more complicated geometry in another complex plane. We briefly 
describe some of the important properties of these functions that are needed in the present 
application. See Reference [Chu60] for further details.

11.2.2  Conformal Mapping

Let z = x + iy denote a complex variable where i = -1 is the imaginary unit (i rather than 
j is used for the imaginary unit in this context). A function f(z) can be written in terms of its 
real and imaginary parts as

 f z u x, y iv x, y( ) = ( ) + ( ) (11.47)

where u and v are real functions of two real variables. If f is analytic, it is differentiable at 
points z in its domain of definition. Since we are in the z-plane, which is 2D, the derivative can 
be taken in many directions about a given point and the value must be independent of direc-
tion. Taking this derivative in the x direction and then in the iy direction and equating the real 
and imaginary components of the results, we obtain the Cauchy–Riemann equations:
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Differentiating the first of these equations with respect to x and the second with respect 
to y, we have
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Since the mixed partial derivatives on the right-hand sides of these equations are equal for 
differentiable functions, when we add these equations, we obtain
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Thus, u is a harmonic function. By differentiating the first of Equations 11.48 with respect 
to y, the second with respect to x, and adding, we similarly find that v is a harmonic 
function.

The solution of the potential problem, Equation 11.46 with boundary conditions, is often 
needed in a rather complicated region geometrically. The idea behind using complex vari-
able theory is to formulate the problem in a simpler geometric region where the solution is 
easy and then use an analytic function to map the easy solution onto the more complicated 
geometry of interest. The possibility of doing this derives from several additional proper-
ties of analytic functions.

First of all, an analytic function of an analytic function is also analytic. Since the real and 
imaginary components of analytic functions are harmonic, this says that analytic functions 
transformed by means of analytic transformations also have real and imaginary harmonic 
components. In terms of formulas, if f(z) is an analytic function of z and z = g(w) expresses 
z in terms of an analytic mapping from the w-plane, where w = u + iv, then f(g(w)) is an 
analytic function of w. The real and imaginary parts of f are transformed into harmonic 
functions of the new variables u and v.

Given an analytic mapping from the z- to w-plane, w = f(z), the inverse mapping z = F(w) 
is analytic at points where f′(z) = df/dz ≠ 0. Moreover, at such points,
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This result will be useful in later applications to the electrostatic problem.
Perhaps the most important characteristic of analytic mappings in the present context is 

that they are conformal mappings. This means that if two curves intersect at an angle α in 
the z-plane, their images in the w-plane under an analytic mapping intersect at the same 
angle α at the transformed point. To see this, we use the fact that an analytic function can 
be expanded about a point zo using a Taylor’s series expansion:
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where we assume that f′(zo) ≠ 0. Writing Δw = w − wo and Δz = z − zo, this last equation 
becomes for small Δz

 D Dw f z zo= ( )¢  (11.53)

If Δz is an incremental distance along a curve in the z-plane, Δw is the corresponding 
incremental distance along the transformed curve in the w-plane (see Figure 11.9). Since 
we can write any complex number in polar form,

 z z ei= f
 (11.54)

in terms of its magnitude|z|and argument ϕ, Equation 11.53 can be expressed as

 D Dw e f z z ei
o

i ob y a= ( )¢ +( )
 (11.55)
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where ψo = argument (f′(zo)) and α and β are shown in Figure 11.9. Thus, we see from 
(11.55) that

 b y a= +o  (11.56)

As Δz and Δw approach zero, their directions approach that of the tangent to their respec-
tive curves. Thus, the angle that the transformed curve makes with the horizontal axis β is 
equal to the angle that the original curve made with its horizontal axis α rotated by the 
amount ψo. Since ψo is characteristic of the derivative f′(zo), which is independent of the 
direction of the tangent vector of whatever curve passing through zo is mapped by f, this 
says that its tangent will be rotated by the same angle ψo. Thus, since any two intersecting 
curves are rotated by the same angle under the transformation, the angle between the 
curves will be preserved.

In terms of the electrostatic problem, this last mapping characteristic says that a set of 
equipotential (nonintersecting) curves in one geometry will remain nonintersecting in the 
transformed geometry obtained from the first by means of an analytic map. Similarly, the 
orthogonal relationship between the equipotentials and the electric field lines will be pre-
served in the new geometry.

Finally, we need to look at the boundary conditions. If H is a harmonic function, which 
is constant along some curve or boundary,

 H x, y C( ) =  (11.57)

then, changing variables by means of z = f(w), this becomes, in the new variables,

 H x u, v ,y u, v C( ) ( )( ) =  (11.58)

that is, a transformed curve along which H has the same constant value. Thus, Dirichlet 
boundary conditions are transformed into Dirichlet boundary conditions with the same 
boundary value along the transformed curve.

A Neumann boundary condition means that the normal derivative of H along the bound-
ary vanishes. Since the normal derivative is the scalar product of the gradient and unit 
normal vector to the boundary surface, the vanishing of this derivative means that the 
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FIGURE 11.9
Analytic mapping of a curve from the z- to the w-plane.
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gradient vector points along the boundary, that is, is tangential to it. However, the gradient 
vector is perpendicular to curves along which H is constant. Therefore, these curves of con-
stant H are perpendicular to the boundary curve. Under a conformal mapping, this perpen-
dicularity is preserved so that the transformed boundary curve is normal to the transformed 
curves of constant H. Therefore, the gradient of these transformed curves is parallel to the 
transformed boundary so that their normal derivative vanishes in the transformed geome-
try. Thus, Neumann boundary conditions are preserved under analytic transformations.

Since a solution of (11.46) that satisfies Dirichlet or Neumann boundary conditions is 
unique, under an analytic mapping, the transformed solution subject to the transformed 
boundary conditions will also be unique in the new geometry.

11.2.3  Schwarz–Christoffel Transformation

This transformation is an analytic mapping (except for a few isolated points) from the 
upper half plane to the interior of a closed polygon. The closed polygon can be degenerate 
in the sense that some of its vertices may be at infinity. This type of polygon includes the 
type of interest here.

Consider the general case as illustrated in Figure 11.10. Part of the x-axis from x1 to xn = ∞ 
is mapped onto the boundary of a closed polygon in the w-plane. We have also drawn unit 
tangent vectors s and t along corresponding boundary curves in the z- and w-planes. We 
showed earlier that the angle that the transformed curve makes with the horizontal axis at 
a point is given by the angle that the original curve makes with its horizontal plus the argu-
ment of the derivative of the mapping. In this case, the original curve is along the x-axis in 
the positive sense and so makes zero angle with this axis. Therefore, the transformed curve 
makes an angle with its axis given by arg(f′(z)), where arg denotes argument of. Thus, if 
the mapping has a constant argument between two consecutive points along the x-axis, the 
transformed boundary curve will have a constant argument also and therefore be a straight 
line. However, as the w value moves along the boundary through a point wi where the 
polygon transitions from one side to another, the argument of the tangent abruptly changes 
value. At these points, the mapping cannot be analytic (or conformal). However, there are 
only n such points for an n-sided polygon.

A mapping that has the above characteristics is given, in terms of its derivative, by

 ¢( ) = -( ) -( ) -( )- -
-

- -f z A z x z x z xk k
n

kn
1 2 1

1 2 1�  (11.59)
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FIGURE 11.10
Schwarz–Christoffel mapping geometry.
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where x1 < x2 < ⋯ < xn−1. Since
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(11.60)

and since the argument of a product of terms is the sum of their arguments,

 arg arg arg arg arg¢( )( ) = - -( ) - -( ) - - -( )- -f z A k z x k z x k z xn n1 1 2 2 1 1�  (11.61)

When z = x < x1,

 arg arg argx x x x x xn-( ) = -( ) = = -( ) =-1 2 1� p (11.62)

However, when z = x moves to the right of x1, arg(x − x1) = 0 but arg(x − xi) = π for i > 2. 
Thus, the argument of f(z) abruptly changes by k1π as z = x moves to the right of x1. This is 
shown in Figure 11.10. Similarly, when z = x passes through x2, arg(x − x1) = arg(x − x2) = 0 
and all the rest equal π so that arg(f′(z)) jumps by k2π. These jumps are the exterior angles 
of the polygon traced in the w-plane. As such, they can be restricted to −π ≤ kiπ ≤ π so that

 - £ £1 1ki  (11.63)

Since the sum of the exterior angles of a closed polygon equals 2π, we have for the point at 
infinity

 k k k kn np p p= - + + +( )-2 1 2 1�  (11.64)

so that

 k k kn1 2 2+ + + =�  (11.65)

Note that the point xn could be a finite point, in which case it must be included in 
Equation 11.59. However, the transformation is simplified if it is at infinity.

To obtain the Schwarz–Christoffel transformation, we must integrate (11.59) to get

 
w f z A x x x d B

z
k k

n
kn= ( ) = -( ) -( ) -( ) +ò - -

-
- -z z z z1 2 1

1 2 1�
 

(11.66)

The complex constants A and B and the xi values can be chosen to achieve the desired map. 
There is some arbitrariness in the choice of these values, and this freedom should be used 
to simplify the calculations. With this brief background, we now proceed to determine the 
mapping of interest here. Reference [Chu60] or other standard books on complex variables 
contain further details and proofs.

11.2.4  Conformal Map for the Electrostatic Field Problem

Figure 11.11 shows the w-plane geometry of interest for the electrostatic field problem and 
the corresponding z-plane boundary points. The disk-to-disk separation is 2g and the disk-
to-ground plane gap is h. The x, y and u, v coordinate systems are indicated in the figure, 
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and their respective origins are where the axes intersect. Note that some of the image 
points, w2, w3, and w5, are at infinity, albeit in different directions in the complex plane. 
These are shown at finite positions in the figure for representational purposes. In assigning 
values to x1, x2, x3, and x4, we have taken advantage of the symmetry in the w-plane geom-
etry. In fact, the coordinate systems were chosen to exploit this symmetry. Note that, in 
Figure 11.10, the positive direction for the exterior angles was chosen so that if we are mov-
ing along a side toward the next vertex, the angle increases if we make a left turn and 
decreases if we turn toward the right.

In Figure 11.11, as we move from w5, which is at ∞, through the vertex w1, we turn 
toward the right by 90°; hence, k1 = −1/2. When a point is at ∞ like w5 in the figure, it 
should be considered to be at the vertex of an extremely tall and narrow triangle so that 
motion along either side is possible. Moving through w2, also at ∞, which we approach 
from w1, we see that we make a 180° turn to the left in going from one side of the long nar-
row triangle to the other side, so k2 = 1. Passing through w3, we again make a 180° left turn 
so k3 = 1. We turn right by 90° in going back from w3 through w4, so k4 = −1/2. From w4 
through w5, the angular change is 180° to the left so k5 = 1. Thus, k1 + k2 + k3 + k4 + k5 = −1/2 + 
1 + 1 − 1/2 + 1 = 2 as required for a closed polygon.

The derivative of the transformation is, from (11.59),
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where a > 1. The integral can be more easily evaluated by writing
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Substituting into (11.67), we get
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FIGURE 11.11
Schwarz–Christoffel transformation for the electrostatic problem.
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Using tables of integrals and the definitions of the complex version of the standard func-
tions (see [Dwi61]), we can integrate this to obtain
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where ln is the natural logarithm. This solution can be verified by taking its derivative.
In order to fix the constants, we must match the image points w1, w2, etc., to their corre-

sponding x-axis points. Thus, we must get w1 = −g when z = x1 = −a. Substituting into 
(11.70), we find
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Since

 ln ln argz z i z= + ( ) 

where we are using the principal value of the logarithm, Equation 11.71 becomes

 - = ( ) +éë ùû +g A a i Bln 2 p  (11.72)

since arg(−2a) = π.
Similarly, we must have w4 = g corresponding to x4 = a. Substituting into (11.70), we find
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Subtracting (11.73) from (11.72), we obtain
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Adding (11.72) and (11.73) and using (11.74), we get
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Substituting A and B into (11.70), we obtain

 

w f z i
g

z a z
a z a

a z
= ( ) = - +( ) - - -

-( )
æ

è
çç

ö

ø
÷÷ +

- -2
2 2

1
2 1

2 2
2

1
2

p
ln sin sin 11

2

1

2
2

z a
a z

g i
g

a

+
+( )

æ

è
çç

ö

ø
÷÷

é

ë
ê
ê

ù

û
ú
ú

ì
í
ï

îï

ü
ý
ï

þï

+ - ( )
p

ln
 

(11.76)



303Electric Field Calculations

The log terms can be combined, resulting in
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Further manipulation of the log term leads to
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where we have used ln(i) = ln(1) + i arg(i) = i π/2. Using the identity from [Dwi61],

 
sin ln- = ± - -( )1 21C i C iC

 
(11.79)

where C is a complex number, Equation 11.78 becomes
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Substituting into (11.77), we get
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To determine the constant a, we must use the correspondence between another set of 
points, such as x2, w2 or x3, w3. Using the x3, w3 pair, we note that as x approaches x3 = 1 
from below, w3 must approach ∞ − ih. In (11.81), therefore, let z = x → 1 from below. Here 
we use another expression for the complex inverse sine function [Dwi61]:
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where p and q are assumed to be positive. In (11.82), we have taken the principal value of 
the inverse sine function, corresponding to n = 0 in [Dwi61]. The values of p and q for y = 0, 
which is the case here, are as follows:

If y = 0 and x > 1, then p = 1 + x, q = −( 1 – x), and p + q = 2x.
If y = 0 and x < −1, then p = −(1 + x), q = 1 − x, and p + q = −2x.
If y = 0 and |x| < 1, then p = 1 + x, q = 1 − x, and p + q = 2.
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This latter case corresponds to the real sine inverse function. Note that the sign of the 
cosh−1 term in (11.82) is the sign of the imaginary part of the complex argument of the sin−1 
on the left-hand side of that equation.

Substituting z → 1 into (11.81), we get
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where the infinities must be interpreted in a limiting sense. These infinities are real infini-
ties and can be grouped with the real part of this last equation. The imaginary part can be 
handled separately. The imaginary part is what is used to find the value of a. Keeping this 
in mind and using (11.82), we find
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For the other inverse sine term, since
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we have
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Since a > 1, the first inverse sine term in (11.83) is an ordinary real inverse sine function. 
Adding the two sin−1 terms in the square bracket in (11.83), as given by (11.84) and (11.86), 
and substituting back into (11.83) and neglecting finite real terms compared with ∞, we get

 ¥- = ¥ - -ih ig a2 1 (11.87)

Therefore, equating the imaginary parts of both sides of this equation, we get a h g2 1- = /  
and solving for a
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Thus, Equation 11.81 becomes
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with a given by (11.88). Other points of correspondence can be checked for consistency by 
similar procedures. In this derivation, the infinities contribute to the real part of (11.81), 
whereas only the imaginary part is needed to obtain the value of a.

11.2.4.1  Electric Potential and Field Values

In the w-plane, which is the plane of interest for the electrostatic problem, the boundary 
values of the potential are shown in Figure 11.12. Two conductors are at potentials V1 and 
V2 relative to a plane at zero potential. This can be done without loss of generality since if 
the plane were not at zero potential, its value could be subtracted from all the potential 
values without altering the values of the electric field. The corresponding boundary values 
in the z-plane are also shown in Figure 11.12. The idea is to solve the problem in the simpler 
z-plane geometry and then use the conformal map given by (11.89) to transfer the solution 
to the w-plane. A method of doing this is shown in Figure 11.13. The angles θ1 and θ2 are 

–1 1

θ1θ2
x

y

V = 0V = V2 V = V1

z

FIGURE 11.13
The potential function in the z-plane.

z-plane w-plane

–a –1 1 a

y

u

v

x
V2 V1 V2 V1

V = 0

V = 0

FIGURE 11.12
Correspondence between potential boundary values for the z- and w-planes.
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angles between the vectors from points 1 and −1 to z. In terms of these angles, a potential 
that satisfies the boundary conditions in the z-plane is given by

 
V V

V V= - +1
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1
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2
p
q

p
q

 
(11.90)

When z = x > 1, θ1 and θ2 are zero, so V = V1. When −1 < z = x < 1, θ1 = π and θ2 = 0, so V = 0. 
When z = x < −1, θ1 = θ2 = π, so V = V2. Thus, the boundary conditions are satisfied.

We must now show that V is a harmonic function. Note that

 q q1 21 1= -( ) = +( )arg , argz z  (11.91)

Note also that

 ln ln argz z i z±( ) = ± + ±( )1 1 1  (11.92)

Since the log function is analytic, its real and imaginary components are harmonic func-
tions, as was shown previously for analytic functions. Thus, θ1 and θ2 are harmonic and so 
is V since sums of harmonic functions are also harmonic.

In terms of x and y where z = x + iy, Equation 11.90 can be written as
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(11.93)

Since the transformation (11.89) is analytic except at a few points, the inverse transformation 
is defined and analytic at all points where w′ = dw/dz ≠ 0. Thus, V can be considered a func-
tion of u, v through the dependence of x and y on these variables via the inverse transforma-
tion. This will enable us to obtain expressions for the electric field in the w-plane. We have
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Referring to (11.93), note that
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Substituting c = ±1, corresponding to the two terms in (11.93), and applying a similar for-
mula for the v derivative, we get for the electric field components
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The derivatives in these formulas can be determined by means of (11.51), (11.67), and 
(11.74). Thus,
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Because the square root of a complex number with argument θ changes sign when θ 
increases to θ + 2π, there is an ambiguity in the sign of (11.97). Thus, it is necessary to 
make a branch cut in the complex plane, keeping the + sign for values on one side 
of the cut and − on the other. This cut is made along a ray from the origin, typically 
along θ = 0. Expressing the square root term in the denominator of (11.97) in polar 
form, we get
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We see that the argument is 0 along the line x = 0. It also changes sign when x crosses this 
line from positive to negative or vice versa. Thus, we choose the x = 0 line as a branch cut. 
In our geometry, this is a line from the origin along the positive y-axis. We take the positive 
sign for x ≥ 0 and the negative sign for x < 0.

Expressing (11.97) in terms of x and y, converting the numerator and denominator to the 
polar form of a complex number, combining the exponentials, and separating into real and 
imaginary parts, we get
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Now, using the uniqueness of the derivative when taken in the u or iv directions, which led 
to the Cauchy–Riemann equations mentioned earlier, we can write
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This, together with (11.99), can be used to extract the appropriate derivatives for use in 
(11.96). Thus,
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These apply when x ≥ 0, and their negatives must be used when x < 0.
Thus, the electric field in the w-plane can be expressed completely in terms of x and y via 

(11.96) and (11.101). However, we must invert Equation 11.89 to do this. The first step is to 
express (11.89) in terms of x and y and in terms of its real and imaginary parts. Thus, we 
write the first sin−1 term, using (11.82), as
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The second sin−1 term in (11.89) can be written similarly as
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with the upper sign referring to p1 and the lower sign to q1. Treating the third sin−1 term in 
(11.89) similarly, we get
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Again, the upper sign refers to p2 and the lower sign to q2.
Using (11.102) through (11.104) in (11.89), we obtain
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The upper and lower signs refer to the p’s and q’s, respectively.
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At this point, it is interesting to map (11.105) to check it visually to see how it behaves, 
particularly at the critical points of x = ±1 and x = ±a, y = 0. This is shown in Figure 11.14 
for a number of points along the x-axis and for g = 7 mm and h = 50 mm.

Let us trace a point on the x-axis as it moves from +1,000,000 to −1,000,000. At 
x = +1,000,000, the point in the w-plane is only 51.4 mm above the u-axis on the right side 
boundary of the gap between the two disks. As x decreases and approaches +a from 
the right, the point moves down the right boundary parallel to the v-axis and reaches the 
right corner at x = a. As x passes through a, the point in the w-plane then moves right 
along the positive u-axis increasing toward +∞ as x approaches +1. As x continues to 
decrease and passes through +1, it abruptly switches from v = 0 to v = −h = −50 mm in this 
case. That is, it jumps from the top of the horizontal gap to the bottom of the gap. The 
point then proceeds along the bottom of the horizontal gap toward −∞ as x approaches 
−1 from the right. As x passes through −1, the w-plane point abruptly switches to the top 
of the horizontal gap where v = 0 and u = −∞. As x continues toward –a, the mapped 
point heads toward the left corner point at u = −g and v = 0. Then as x heads toward −∞, 
the point moves up the left side of the vertical gap between the two disks, reaching 
v = 51.4 mm at x = −1,000,000.

To see how this map behaves for y > 0, we plot the same x-axis points but with y = 0.001 
in Figure 11.15 and with y = 0.1 in Figure 11.16.

Given u and v, Equation 11.105 can be inverted by means of a Newton–Raphson proce-
dure. Using this method, the problem reduces to one of solving the following equations:
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FIGURE 11.14
Map of (11.105) for points along the x-axis in the z-plane to points in the w-plane.
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where uo and vo are the desired coordinates at which to evaluate the field in the w-plane. 
Since ∂f1/∂x = ∂u/∂x, etc., the Newton–Raphson equations for the increments Δx, Δy are
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(11.107)

where we have used the Cauchy–Riemann equations (11.48). At each iteration, we let xnew = 
xold + Δx and ynew = yold + Δy and stop when Δx and Δy are sufficiently small.
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FIGURE 11.15
Map of (11.105) for points along the x-axis with y = 0.001 to points in the w-plane.
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Map of (11.105) for points along the x-axis with y = 0.1 to points in the w-plane.
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The derivatives in (11.107) can be obtained by a procedure similar to that used to derive 
(11.101). Basically, we use (11.67) as a starting point with A from (11.74):
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Again, because of the square root function in (11.108), we must make a branch cut along the 
line x = 0 and take the positive sign for x ≥ 0 and the negative sign for x < 0. Since
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the partial derivatives for use in (11.107) can be extracted from (11.108), using (11.109). We find
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Again, these are used when x ≥ 0 and their negatives when x < 0.
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11.2.4.2  Calculations and Comparison with a Finite Element Solution

A computer program was written to implement this procedure for calculating the electric 
field. According to the formulas given earlier, the field is infinite at the corners of the con-
ductors. However, because real corners are not perfectly sharp, the field remains finite in 
practice. In transformer applications, the conductors are usually covered with an insulat-
ing layer of paper and the remaining space is filled with transformer oil. Because the paper 
has a much higher breakdown stress than the oil, the field in the oil is usually critical for 
design purposes. The highest oil fields will occur at least a paper’s thickness away from the 
corner of the highest potential conductor, which we assume is at potential V1. We have 
accordingly calculated the field at the three points shown in Figure 11.17, which are a 
paper’s thickness, d, away from the corner of the V1 potential conductor.

It should be noted that the presence of the paper, which has a different dielectric constant 
than oil, will modify the electric field. In general, it will increase it in the oil and decrease it 
in the paper. We will attempt to estimate this oil enhancement factor later. Here, we wish 
to compare the analytic results as given by the formulas earlier with results from a finite 
element calculation without the presence of paper but with the fields calculated at the 
points shown in Figure 11.17, a paper’s distance away from the corner. The magnitudes of 
the fields, E, are compared, where

 E E Eu v= +2 2
 (11.111)

The results are shown in Table 11.1 for several different potential combinations and con-
ductor separations. The agreement is very good, especially with the sharp corner finite 
element results. Also shown for comparison are finite element results for a 0.5 mm radius 
on the corners. These are also reasonably close to the analytic results and show that the 
sharpness or smoothness of the corners is washed out at distances greater than or equal to 
a paper’s distance away. Although not shown in the table, the field deep in the gap between 
the V1 and V2 conductors was also calculated with the analytic formulas and produced the 
expected result, E = (V2 − V1)/2g.

The agreement between the conformal mapping calculation and the finite element 
 calculation, with or without rounded corners, as shown in Table 11.1 is very good. 

d

Paper

1
2 3

V1V2

V = 0

FIGURE 11.17
Points near the corner of the highest potential conductor where the electric field is calculated.
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The conformal mapping technique, however, does not apply to the paper–oil situation so 
other approximate approaches must be employed to account for oil enhancement. The 
equipotential contour plot for a finite element calculation with paper present is shown in 
Figure 11.18. This is for the conditions given in Table 11.1a with sharp corners. Figure 11.19 
is a plot of the vector field for the same case.

11.2.4.3  Estimating Enhancement Factors

For a paper–oil layering in a planar geometry as shown in Figure 11.20a, all the paper can 
be lumped into one layer for calculational purposes. Letting 1 refer to the paper layer and 
2 to the oil layer, the enhancement factor for the oil, η = the ratio of the field in the oil with 
and without a paper layer, is
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where f1 = ℓ1/ℓ , f2 = ℓ2/ℓ with ℓ = ℓ1 + ℓ2 are the fractional lengths of materials 1 and 2, respec-
tively. It is assumed that when the paper is absent, it is replaced by oil, keeping the total 
distance ℓ between the metal surfaces the same.

TABLE 11.1

Comparison of Analytic and Finite Element Electric Field 
Magnitudes at Points 1, 2, and 3 of Figure 11.17

Lengths (mm) Potentials (kV) Fields (kV/mm)

Conformal 
Mapping

Finite Element 
(Sharp Corner)

Finite Element 
(Rounded Corner)a

(a) V1 = 825, V2 = 725, g = 6.6, h = 63.5, d = 0.635
E1 27.7 27.7 27.6
E2 27.9 28.2 28.6
E3 28.3 28.5 28.4

(b) V1 = 850, V2 = 750, g = 5.08, h = 63.5, d = 0.508
E1 32.7 32.7 32.4
E2 32.4, 28.7b 29.0b 32.9
E3 32.6 32.6 32.6

(c) V1 = 800, V2 = 800, g = 5.08, h = 63.5, d = 0.508
E1 11.3 11.4 12.3
E2 13.3, 12.2b 12.4b 13.5
E3 15.0 15.2 14.6

(d) V1 = 100, V2 = −50, g = 12.7, h = 63.5, d = 0.508
E1 17.8 17.6 17.2
E2 16.9, 15.0b 15.1b 16.9
E3 16.1 16.0 16.0

Enhancement factors are shown in parentheses.
a The rounded corner conductor radius = 0.5.
b d = 0.71.
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y

z

FIGURE 11.18
Equipotential contour plot in the oil from a finite element calculation showing the geometry near the corner for 
the conditions given in Table 11.1a with sharp corners and paper cover. The potential varies from high (red) near 
the upper disk to low (blue) near the zero potential plane.

FIGURE 11.19
Electric field vector plot from a finite element calculation showing an enlarged region near the conductor’s 
 corners for the same conditions as Figure 11.18.



316 Transformer Design Principles

In the cylindrical case, shown in Figure 11.20b, the position of the paper layer or layers is 
important in calculating the enhancement factors. We will assume that one paper layer 
is next to the inner conductor and one next to the outer conductor. When additional layers 
are present, such as pressboard barriers, their position must be known and they can be 
included in the calculation. The oil enhancement factor for the situation shown in 
Figure 11.20b is
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The cylindrical enhancement factor is larger than the planar enhancement factor for the 
same paper and oil layer thicknesses. It reduces to the planar case when r1 becomes 
large.

The enhancement factors given earlier refer to ideal geometries. For the geometry of 
interest shown in Figure 11.17, the enhancement factors reduce to the planar case for field 
points away from the corner and deep into the V1 − V2 gap or the V1 − 0 or V2 − 0 gaps. This 
is borne out by the finite element calculations. However, near the corner, the geometry is 
closer to the cylindrical case.

For a sharp corner, corresponding to r1 = 0, Equation 11.113 shows that η → ε1/ε2 = 1.82 
for the oil–paper case. This is an upper limit on the enhancement factor. It is too high as 
shown by a comparison of the finite element fields in the oil, calculated with a paper cover, 
with the conformal mapping fields a paper distance away from the corner. The enhance-
ment factor varied from 1.03 to 1.2 for different cases. For our purposes, the rounded cor-
ner enhancement factors are the most relevant ones. Table 11.1 shows that these are nearly 
the same for the 3 corner points. Treating the rounded corner case as a cylindrical geome-
try, we can take r1 = 0.5 mm. It is less clear what radius to use for the outer conductor. In 
Table 11.2, we calculate the planar and cylindrical oil enhancement factors for the two 

ℓ2

ℓ1

ℓ

ε1
ε1

(a) (b)

ε1ε2

ε2

r4

r3r2
r1

FIGURE 11.20
Paper–oil configurations for (a) planar and (b) cylindrical geometries resulting in enhanced fields in the oil 
 compared with the all oil case.
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different gaps, where the outer conductor radius is taken to be the inner conductor radius 
plus the gap length that is 2g or h for the two gaps (see Figure 11.11). Thus, referring to 
Figure 11.20b,
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Note that the V1 − 0 gap has only one layer of paper. We also show a weighted cylindrical 
enhancement factor, which uses a weighted average of the two radii given earlier. The 
weighting is taken to be inversely proportional to the radius so that the V2 conductor, 
which is closest to the corner, is given the highest weighting. This results in an effective 
outer conductor radius of
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These weighted enhancements come closest to the corner enhancements determined by 
the finite element calculations in most cases. We therefore prefer a cylindrical enhancement 
factor with this weighted outer conductor radius for design calculations if it is above the 
V1 − V2 gap planar enhancement factor. Otherwise, the V1 − V2 gap planar enhancement 
factor is preferred.

Summarizing these results, the conformal mapping calculations of the electric field near 
the corner of one of a pair of conductors at different potentials relative to a neighboring 
ground plane agree well with calculations obtained by means of a finite element program. 
Since the electric field is infinite at the corner of a perfectly sharp conductor, the calcula-
tions were compared a small distance from the corner, taken to be the thickness of a paper 
layer in an actual transformer winding. The finite element calculations were made with 
sharp and rounded corners, and the resulting fields were nearly the same a paper’s thick-
ness away from the corner. Since the oil breakdown fields are the most critical in trans-
former design and these occur beyond the paper’s thickness, this result shows that a 
conformal mapping calculation is appropriate for determining these fields.

The only problem with the conformal mapping approach is that it does not take into account 
the different dielectric constants of oil and paper. We have proposed a method to take these 
approximately into account by means of an oil enhancement factor. By comparing with a 
finite element calculation, a formula was developed to obtain this enhancement factor.

TABLE 11.2

Calculated Oil Enhancement Factors for the Cases in Table 11.1

Planar Cylindrical

Case V1 − V2 Gap V1 − 0 Gap V1 − V2 Gap V1 − 0 Gap
Weighted 

Cylindrical
  Table 11.1 

Ave Rounded

(a) 1.095 1.004 1.182 1.081 1.137 1.133
(b) 1.099 1.004 1.174 1.069 1.125 1.140
(c) 1.099 1.004 1.174 1.069 1.125 1.096
(d) 1.037 1.004 1.113 1.069 1.094 1.137
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11.3  Finite Element Electric Field Calculations

Finite element methods permit the calculation of electric potentials and fields for compli-
cated geometries. Modern commercial finite element codes generally provide a set of 
drawing tools, which allow the user to input the geometry in as much detail as desired. 
More sophisticated versions even allow parametric input so that changes in one or more 
geometric parameters such as the distance between electrodes can be easily accomplished 
without redoing the entire geometry. Both 2D and 3D versions are available although the 
input to the 3D versions is, of course, more complicated. For many problems, a 2D geom-
etry can be an adequate approximation to the real configuration. 2D versions usually allow 
an axisymmetric geometry by inputting a cross section of it. In this sense, it is really solving 
a 3D problem that happens to have cylindrical symmetry. The x–y 2D geometry is really 
modeling an infinitely long object having the specified 2D cross section.

The basic geometry, which the user inputs, is then subdivided into a triangular mesh. 
Smaller triangles are used in regions where the potential is expected to change most rap-
idly. Larger triangles can adequately describe more slowly varying potential regions. Some 
programs automatically perform the triangular meshing and, through an iterative process, 
even refine the mesh in critical regions until the desired solution accuracy is achieved. 
When linear triangles are used, the potential is solved for only at the triangle nodes and a 
linear interpolation scheme is used to approximate it inside the triangle. For higher-order 
triangles, additional nodes are added per triangle and higher-order polynomial approxi-
mations are used to find the potential inside the triangles. Some programs use only second-
order triangles since these provide sufficient accuracy for reasonable computer memory 
and execution times.

Some art is required even for the geometric input. Very often, complete detail is unneces-
sary to a determination of the fields in critical regions. Thus, the user must know when it 
is reasonable to ignore certain geometric details that are irrelevant to the problem. This not 
only saves on the labor involved in inputting the geometry but it can also considerably 
reduce required computer memory and solution times.

Finite element programs require that the user input sources and the appropriate bound-
ary conditions for the problem at hand. In the case of electric potential calculations, the 
sources are electric charges and the boundary conditions include specifying the voltage at 
one or more electrode surfaces. These are often the surfaces of metallic objects and thus 
have a constant potential throughout. It is therefore unnecessary to model their interiors. 
Typically, the program will allow the user to declare such metallic objects nonexistent or 
perfect conductors so that the solution is not solved for over their interiors. Their surface, 
however, is still included as an equipotential surface. Sometimes the equipotential surface 
is a boundary surface so it already has no interior. A metallic object can also be allowed to 
float so that its potential is part of the problem solution.

On external boundaries where no specification is made, the assumption is that these 
have natural or Neumann boundary conditions. This means that the normal derivative of 
the potential vanishes along them. This implies that the potential lines (in 2D) or surfaces 
(in 3D) enter the boundary at right angles. These types of boundary are usually used to 
express some symmetry condition. For instance, a long conducting cylinder centered 
inside a rectangular grounded box can be modeled by means of a circle inside the box. 
However, by symmetry, only a quarter of the geometry centered on the circle need be mod-
eled and natural boundary conditions imposed on the new boundaries created by isolating 
this region. This is depicted in Figure 11.21.
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The method works here because the potential lines are concentric ovoids about the 
conducting cylinder and therefore enter the dotted line boundaries in the 1/4 geometry 
at right angles. Although the problem depicted in Figure 11.21 is relatively simple to 
solve in the full geometry so that the use of symmetry does not save much in input or 
solution times, this technique can save much effort when more complicated geometries 
are involved.

Another boundary condition, which some programs allow, is the balloon boundary. This 
type of boundary is essentially specifying that the boundary doesn’t exist and the solution 
continues beyond it as if there were empty space out far in that direction. There is a practi-
cal necessity for this type of boundary condition since the finite element technique requires 
that the entire solution space of interest be subdivided into triangles or elements. When 
this solution space extends far enough that the geometric region of interest would be 
dwarfed relative to the whole space, it is convenient to specify such balloon boundaries 
rather than model vast regions of empty space. In practice, the program actually models a 
much larger region of space but with much coarser elements far away from the geometry 
of interest. This process is transparent to the user.

We now give some examples of solving electrostatic problems with a finite element 
 program. We use Ansoft’s Maxwell® 2D software [Ansoft]. The first is a varistor stack 
assembly shown in Figure 11.22. This is an axisymmetric geometry. The varistors them-
selves are modeled as two continuous cylinders separated by a metallic region in the 
center, which is floating. The ends consist of shaped metal electrodes to help reduce the 
end fields. There are pressboard disks that mechanically hold the assembly together 
inside a pressboard cylinder. There is another pressboard cylinder outside followed by 
the ground cylinder that defines the outermost boundary. The top and bottom bound-
aries are balloon boundaries. Although the geometry of the varistor stack itself is really 
cylindrical, the ground may not, in fact, be a concentric cylinder as modeled. For 
instance, it may be a tank wall. However, it is far enough away that a cylindrical 
approximation is reasonable.

The varistor cylinders, the pressboard elements, and the oil were given appropriate per-
mittivities. The metallic end caps and center region were declared perfect conductors. 
Different voltages were specified on the two end caps and the outer boundary cylinder was 
given a zero voltage. The center metallic conductor was floating. The equipotential lines 
obtained by solving this problem are shown. Since the electric field is the gradient of the 
potential, where the lines are closely spaced, the field is highest. The field itself can be 

V

V = 0

V

V = 0

Natural boundary

(a) (b)

FIGURE 11.21
Using symmetry to simplify the finite element problem: (a) full geometry and (b) 1/4 geometry.



320 Transformer Design Principles

calculated and displayed vectorially as shown in Figure 11.23. The field can also be obtained 
numerically at specified points, along specified lines, or within specified regions.

A second example is of a region near the tops of the LV and HV windings with a static 
ring on top of the HV winding. These rings are used to moderate the electric fields near the 
tops of windings by providing a surface of relatively large curvature compared with the 
sharper corners, which occur on windings disks. The static rings are at the same potential 
as the top disk. These are most effective when close to the top disk. In the example shown 
in Figure 11.24, it is a few millimeters from the top disk. Since only the fields near the top 
disks of the two windings and static ring are of interest, the rest of the windings were mod-
eled as solid blocks at the same potential as the top disks. Also shown are pressboard 

1. 0000e+003
Voltage (V)

–

9. 3750e+002
8. 7500e+002
8. 1250e+002
7. 5000e+002
6. 8750e+002
6. 2500e+002
5. 6250e+002
5. 0000e+002
4. 3750e+002
3. 7500e+002
3. 1250e+002
2. 5000e+002
1. 8750e+002
1. 2500e+002
6. 2500e+001
0. 0000e+000

FIGURE 11.22
Axisymmetric model of a varistor stack with equipotential contours. The top metal cap was at 1000 V and the 
bottom cap at 500 V.
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collars and cylinders, which are used to subdivide the large oil gaps to lower the electrical 
breakdown probabilities. A cylindrically symmetric model was used, but only a blowup of 
the region near the top of the two windings is shown in the figure.

Notice that the static ring has diminished the corner field at the top of the HV winding 
on the right but that the corner field on the LV winding on the left is fairly high. It could 
probably also benefit by having its own static ring or thicker paper cover.

A third example is that of a bushing shield that surrounds a lead entering a bushing, 
which is attached to the transformer tank top. The shield and the tank portion of the lead 
are immersed in the tank oil in the model shown in Figure 11.25. Only the lower part of the 
model is studied for electrical purposes. Also the model is axisymmetric about the center-
line at the left of the figure. Both the top and left boundary lines have natural or Neumann 
boundary conditions. Details of any structure inside the shield are also omitted since they 
are not relevant to the purpose of the study, which is to determine the electric stresses in 
the oil at the outer surface of the shield. This is a very practical problem that needs to be 
addressed, particularly when the lead is at a high voltage.
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FIGURE 11.23
Electric field vectors near the top metal cap.
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The electric stress contour plot in the oil surrounding a bushing shield is shown in the 
figure. The shield is at 1050 kV. The metal part of the shield is 330 mm from the vertical 
tank wall at the right, which is a 0 potential boundary line. The bottom boundary line is 
also at 0 potential. The distance from the metal part of the shield to the first pressboard 
barrier is 19 mm. The stress is in kV/m, although the plot shows V/m. Therefore, the maxi-
mum stress is 17.4 kV/mm and occurs along the rounded part of the shield. Avoiding 
sharp corners by rounding is an important device for reducing electric field strength at the 
surface of a bare metal part at high voltage.
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FIGURE 11.24
Electric field magnitude contours in the oil near the tops of an LV winding at ground potential on the left and an 
HV winding at 450 kV on the right topped by a static ring at the same potential. The model is axisymmetric with 
centerline along the center of the core leg. The key is in kV/m.
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FIGURE 11.25
Simplified model of a bushing shield for studying electric stress in the surrounding oil. The model is axisymmetric 
with centerline along the center of the shield. The key is in kV/m, not V/m as shown.
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Capacitance Calculations

12.1  Introduction

Under impulse conditions, very fast voltage pulses are applied to a transformer. These 
contain high-frequency components, eliciting capacitative effects that are absent at normal 
operating frequencies. Thus, in order to simulate the behavior of a transformer under 
impulse conditions, capacitances must be determined for use in circuit or traveling wave 
models [Mik78], [Rud40].

Usually, the highest electrical stresses occur at the high-voltage end of the winding so 
that modifications are sometimes made to the first few disks to meet voltage breakdown 
limits. These modifications commonly take the form of the addition of one or more static 
rings so that it is important to determine their effect on disk capacitances. Other methods 
such as the use of wound-in-shields and interleaving are effective in increasing the disk 
capacitance, which is desirable for better voltage distribution. Wound-in-shields are dis-
cussed in this chapter, but interleaving is treated only for the particular variety used in 
multi-start tap windings.

We employ an energy method to determine the capacitance or, in general, the capaci-
tance matrix. This method is a generalization of the method used by Stein to determine the 
disk capacitance of a disk embedded in a winding of similar disks [Ste64]. It utilizes a 
continuum model of a disk so that disks having many turns are contemplated. We also 
compare capacitances determined in this manner with capacitances determined using a 
more conventional approach. The conventional method also works for helical windings, 
that is, windings having one turn per disk, so that it is useful in its own right.

For completeness, we also calculate winding-to-winding, winding-to-core, and winding-
to-tank capacitances, which are all qualitatively similar. These are based on a simpler 
model based on an infinitely long coil with no end effects. They are really capacitances per 
unit length.

12.2  Distributive Capacitance along a Winding or Disk

We try to be as general as possible so that we may apply the results to a variety of situa-
tions. Thus, we consider a disk or coil section having a series capacitance per unit length, 
cs, and shunt capacitances per unit length, ca and cb, to the neighboring objects on either 

12
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side of the disk or coil section as shown in Figure 12.1. These neighboring objects are 
assumed, for generality, to have linear voltage distributions given by
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(12.1)

where
L is the length of the disk or coil section
x measures distances from the high-voltage end at V1 to the low-voltage end at V2

Setting Va1 = Va2 = Va and Vb1 = Vb2 = Vb gives these neighboring objects a constant voltage.
Applying current conservation to the node at x in Figure 12.1 and assuming the current 

directions shown, we have

 i i i ix x x x a b- +- = +D D  (12.2)

Using the current–voltage relationship for a capacitor, i = CdV/dt, and letting V(x) denote 
voltages along the vertical centerline of Figure 12.1, we can rewrite (12.2) as
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FIGURE 12.1
Approximately continuous capacitance distribution of a coil section.
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Rearranging, we find

 
d
dt
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(12.4)

Thus, the quantity in curly brackets is a constant in time and may be set to 0 for all practi-
cal purposes. (For an applied pulse, all the voltages are zero after a very long time so the 
constant must be zero.) Dividing the constant curly bracket term in (12.4) by cs(Δx)2, 
we obtain

 

V x x V x V x x

x

c c

c x
V x

c V x c Va b

s

a a b b+( ) - ( ) + -( )
( )

-
+( )
( )

( ) + ( ) +D D

D D

2
2 2

xx

c xs

( )éë ùû
( )

=
D 2 0

 
(12.5)

The first term in (12.5) is the finite difference approximation to d2V/dx2. The combination
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(12.6)

can be expressed in terms of the total series capacitance Cs and total shunt capacitances Ca 
and Cb using
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where N is the number of subdivisions of the total length L into units of size Δx, N = L/Δx. 
Using this value for N in (12.7), we get
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Substituting into (12.6), we obtain
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where
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Similarly,
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Substituting into (12.5) and taking the limit as Δx → 0 result in the differential equation
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The solution to the homogeneous part of (12.12) is

 V Ae BeL x L x= +( ) -( )a a/ /  (12.13)

where A and B are constants to be determined by the boundary conditions. For the inho-
mogeneous part of (12.12), we try

 V F Gx= +  (12.14)

where F and G are determined by substituting into (12.12) and using (12.1). Doing this, 
we get
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Collecting terms, we find
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Thus, the general solution to (12.12) is
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(12.17)

Using the boundary conditions V = V1 at x = 0 and V = V2 at x = L, we can solve (12.17) for 
A and B. Performing the algebra, the solution can be cast in the form
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where
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so that γa + γb = 1. The derivative of this expression is also needed for evaluating the energy 
and for obtaining turn–turn voltages. It is
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To determine the capacitance, the stored electrostatic energy must be evaluated. This 
energy is given by C = (1/2)C(ΔV)2, where C is the capacitance and ΔV the voltage across 
the capacitor. Reverting to the original discrete notation, the energy in the series capaci-
tance is
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Using (12.8), this becomes
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Substituting ΔV = (dV/dx)Δx into (12.22) and letting Δx → 0, we obtain
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The energy in the shunt capacitances can be found similarly:
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Again, using (12.8) and taking the limit as Δx → 0, we get
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Combining (12.23) and (12.25), the total energy is
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Substituting (12.18) and (12.20) into (12.26) and performing the integrations, we obtain
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(12.27)

where

 b g g b g g h b b1 1 1 2 2 2 2 1= + = + = -a a b b a a b bV V V V, ,  (12.28)

For most of the applications of interest here, the side objects on which the shunt capaci-
tances terminate are at a constant potential. Thus, as mentioned previously, to achieve this 
we should set

 V V V V V Va a a b b b1 2 1 2= = = =,  (12.29)

From this and (12.28), we see that

 b b b g g h1 2 0= = = + =a a b bV V ,  (12.30)

For this case, Equation 12.18 becomes
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Also (12.20) becomes
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The energy expression in (12.27) reduces to
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12.3  Stein’s Disk Capacitance Formula

As an example, we can apply the results obtained to the case considered by Stein consisting 
of a disk embedded in a coil of similar disks [Ste64]. The situation is shown in Figure 12.2. 
In this application, a single disk is a substitute for the coil in Section 12.2. Thus, V is the 
voltage drop across an individual disk, so we can take V1 = V and V2 = 0. This applies to 
the middle disk in the figure. Starting from the right side of the bottom disk at potential –V 
and proceeding toward the left in the direction of voltage increase, we see that the voltage 
on the left side of the bottom disk is zero. This is the same as the voltage on the left side 
of the middle disk since they are connected at that point. Proceeding along the middle disk, 
the voltage reaches V on the right side of that disk. But this is connected to the outside of 
the top disk at that point, so its voltage is also V. Proceeding along the top disk toward the 
left, we reach a voltage of 2 V at its left side.

Here, we are assuming that neighboring disks have the same voltage drop. Thus, we can 
imagine equipotential planes between the disks with the values shown by dotted lines in 
the figure for the middle disk, namely, Va = V and Vb = 0. As we move along the middle 
disk, these values are the average of the potential on the middle disk and the potential on 
the neighboring disk and can be taken as representing the potential value midway between 
them. This middle value remains constant as we move along one of the dotted lines, 
namely, V or 0.

The capacitances to the midplane are twice the disk–disk capacitance, Ca = Cb = 2Cdd, 
since they are equal and in series. Since the two capacitances are equal, this means that 
γa = γb = 1/2 and β = V/2. For these values, including V1 = V and V2 = 0, the energy from 
(12.33) becomes
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FIGURE 12.2
Disk embedded in a coil of similar disks with V, the voltage drop along a disk.



332 Transformer Design Principles

The effective disk capacitance is found from E = 1/2 CV2 and is
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where Cs is the series capacitance of the disk and
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where Cdd is the disk–disk capacitance.
Let us compare this result with the more conventional approach. This assumes that the 

voltage drop along the disk is linear so that
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Substituting the derivative of (12.37) into (12.23), we get the energy in the series turns:
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We must consider the shunt energy with respect to the equipotential midplanes as before 
since we want the energy associated with a single disk. This is, using (12.25),
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Evaluating this expression, we find
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Combining (12.38) and (12.40) and extracting the effective disk capacitance, we obtain
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This expression can be applied to a helical winding (one turn/disk) by taking Cs = 0.
In order to compare (12.35) with (12.41), let us normalize by dividing both by Cs. Thus,
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and
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using (12.36) for α. Thus, the right-hand side of (12.42) is a function of α, as is the right-
hand side of (12.43). For small α, it can be shown that (12.42) approaches (12.43). For 
larger α, the comparison is shown graphically in Figure 12.3. The difference becomes 
noticeable at values of α > 5. At α = 10, the conventional capacitance is about 15% larger 
than Stein’s.

The voltage distribution along the disk, using Stein’s method, can be obtained from 
(12.31); substituting V1 = V, V2 = 0, and β = V/2,
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This is plotted in Figure 12.4 in normalized form, that is, as V(x)/V. As can be seen, the 
voltage becomes increasingly less uniform as α increases. The α = 1 case closely approx-
imates the linear distribution given in (12.37) used for the conventional capacitance 
calculation.

The voltage gradient is obtained from (12.32) with the appropriate substitutions and is
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This is always negative as Figure 12.4 indicates. Its largest value, in absolute terms, occurs 
at either end of the disk:
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As α → 0, this approaches the uniform value of V/L. This voltage gradient is equal to the 
stress (electric field magnitude) in the turn–turn insulation, which must be able to handle 
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FIGURE 12.3
Comparison of Stein’s and conventional capacitance formulas.
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it without breakdown. From the figure, it can be seen that the absolute value of the voltage 
gradient has its smallest value at the center of the disk.

12.3.1  Determining Practical Values for the Series and Shunt 
Capacitances, Cs and Cdd

In this and later applications, the series Cs and shunt or disk–disk Cdd capacitances 
must be determined for use in practical design applications. As shown in Figure 12.5, 
a typical disk consists of Nt turns, usually rectangular in cross-section, with paper 
thickness τp between turns. τp is the two-sided paper thickness of a turn. The disks are 
separated by means of key spacers of thickness τks and width wks spaced around the 
circumference.

The turn–turn capacitance, Ctt, is given approximately by

 
C R

h
tt o p ave

p

p
=

+( )
e e p

t
t

2
2

 
(12.47)

where
εo is the permittivity of vacuum = 8.8542 × 10−12 F/m in the SI system
εp is the relative permittivity of paper (≅3.5 for oil-soaked paper)
Rave is the average radius of the disk
h is the bare copper or conductor height

The addition of 2τp to h is designed to take fringing effects into account. There are Nt − 1 
turn–turn capacitances in series, which results in a total series capacitance of Ctt/(Nt − 1). 
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FIGURE 12.4
Normalized voltage along the disk for various values of alpha in Stein’s example.
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However, they do not see the full disk voltage drop but only the fraction (Nt − 1)/Nt. Thus, 
the capacitive energy is
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so that, extracting the full series capacitance, we get
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This makes sense because for Nt = 1, we get Cs = 0.
The disk–disk capacitance can be considered to be two capacitances in parallel, namely, 

the capacitance of the portion containing the key spacers and the capacitance of the remain-
der containing an oil or air thickness instead of key spacers. Let fks be the key spacer 
fraction
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where Nks is the number of key spacers spaced around the circumference and wks their 
width. Typically, fks ≈ 1/3. The key spacer fraction of the disk–disk space is filled with 
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FIGURE 12.5
Geometry of a practical disk coil: (a) side view and (b) top view.
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two dielectrics, paper, and a pressboard, the latter being the usual key spacer material. 
For a planar capacitor containing two dielectric layers in series of permittivity ε1 and ε2, it 
follows from electrostatic theory that the capacitance is
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where
A is the area
ℓ1 and ℓ2 are the thicknesses of the layers

Applying this to the disk–disk capacitance, we obtain
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where
εks is the relative permittivity of the key spacer material (=4.5 for an oil-soaked 

pressboard)
εoil is the oil-relative permittivity (=2.2 for transformer oil)
Rin and Rout are the inner and outer radii of the disk, respectively

A finite element simulation to test the Stein capacitance formula (12.35) was conducted. 
A 16-turn disk was modeled as shown in Figure 12.6. Static rings are used to define the 
equipotential surfaces assumed in Stein’s method. The upper static ring is at potential 
V and the bottom at V = 0 V. The rightmost turn is at potential V and the leftmost turn 
at V = 0.

FIGURE 12.6
Disk coil of 16 turns with static rings on either side supplying equipotential surfaces at the voltages assumed in 
Stein’s method.
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The model shown is an enlargement of the region near the disk. The full model is axisym-
metric and the distance from the leftmost side of the disk to the centerline of the core leg is 
300 mm. The radial build of the disk is 70 mm and the disk height, including paper, is 11 mm.

The bare conductor dimensions of a single turn are 10 mm high by 3.375 mm wide. The 
2-sided paper thickness is 1 mm. The distance from the paper to the nearest equipotential 
is 2.5 mm so that the disk–disk spacing is 5 mm. Since the model is axisymmetric, the 
disk–disk material was chosen to be all oil (no key spacers).

From these dimensions, we can calculate Ctt given in (12.47). The parameters in the for-
mula are in SI units, so we have Rave = 0.335 m, h = 0.01 m, τp = 0.001 m, and εp = 3.5. εo was 
given previously. We obtain Ctt = 7.8275 × 10−10 F. Since there are Nt = 16 turns, we get Cs = 
4.5864 × 10−11 F from (12.49).

We can obtain Cdd from (12.52) using Rin = 0.3 m, Rout = 0.37 m, fks = 0, τp = 0.001 m, 
εp = 3.5, τks = 0.005 m, and εoil = 2.2. We get Cdd = 5.0991× 10−10 F. Using (12.36), we see that 
α = 6.6687. Inserting this value of α and Cs into Stein’s capacitance formula (12.35), we get 
CStein = 6.6322 × 10−10 F.

For the finite element calculation, we chose V = 100 V. We distributed the voltage along 
the turns according to (12.44) using α = 6.6687. This can be visualized with reference to 
Figure 12.4. The equipotential contour plot is shown in Figure 12.7. We chose balloon 
boundary conditions for the outer boundaries. These, along with the centerline of the axi-
symmetric geometry, are not shown.
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FIGURE 12.7
Equipotential plot near the disk as a test of Stein’s capacitance formula.
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From the solution, the total energy was calculated as 4.1864 × 10−6 J. The capacitance can be 
extracted from the formula Energy = 1/2C(ΔV)2. We get CFinite Element = 8.373 × 10−10 F. This is 26% 
higher than the value obtained using Stein’s formula. We notice from Figure 12.3 that, for this 
value of α, the conventional capacitance formula is about 10% higher than Stein’s formula, so it 
would apparently give better agreement with the finite element result. However, the conven-
tional capacitance formula assumes a linear voltage distribution along the winding. If we use a 
linear voltage distribution along the winding in the finite element calculation, we find that the 
capacitance is about 26% higher than the conventional capacitance formula so that there is no 
apparent advantage in using the conventional versus Stein’s formula, based on the finite ele-
ment results. Perhaps some of the discrepancy can be attributed to the fact the finite element 
model shows some fringing flux whereas Stein’s model assumes no fringing flux.

12.4  General Disk Capacitance Formula

More generally, if the disk–disk spacings on either side of the main disk are unequal so that 
Ca ≠ Cb as shown in Figure 12.8, then we have, from (12.33),
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where

 
g g aa

dd

dd dd
b

dd

dd dd

dd dd

s

C
C C

C
C C

C C
C

=
+

=
+

=
+( )1

1 2

2

1 2

1 22
, ,

 
(12.54)

with Cdd1 and Cdd2 the unequal disk–disk capacitances.
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FIGURE 12.8
A more general case of a disk embedded in a coil of similar disks.
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12.5  Coil Grounded at One End with Grounded Cylinders on Either Side

An early impulse model for a coil assumed that the coil consisted of a uniformly distrib-
uted chain of series capacitances connected to ground cylinders on either side by shunt 
capacitances, that is, the same model shown in Figure 12.1 but with Va1 = Va2 = Vb1 = Vb2 = 
0 [Blu51]. The V1 terminal was impulsed with a voltage V and the V2 terminal was grounded. 
From (12.30), we have β = 0 and (12.31) becomes
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(12.55)

with a = C /Cg s . Here, Cg is the total ground capacitance (both sides) and Cs the series 
 capacitance of the coil. This is shown in normalized form in Figure 12.9 for several 
 values of α. 

This voltage distribution is expected to apply immediately after the application of the 
impulse voltage, before inductive effects come into play. Later, oscillations can cause volt-
age swings above the values shown in the figure.

The voltage gradient is given by
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(12.56)

The maximum gradient occurs at the line end (x = 0) and is

 

dV
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V
Lmax tanh

= a
a  

(12.57)

Thus, the maximum disk–disk voltage immediately after impulse is approximately (12.57) 
multiplied by the disk–disk spacing.
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FIGURE 12.9
Graph of normalized voltage along a coil for several values of α.
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The coil’s total capacitance to ground is, from (12.33),

 
C Ccoil s= a

atanh  
(12.58)

In this as well as previous formulas in this section, the series capacitance is due to Nd disks 
in series and if the disk capacitances are obtained by Stein’s formula, we have
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For an inner coil, the surfaces of the neighboring coils are usually taken to be the ground 
cylinders. For the innermost coil, the core determines the ground on one side, while for an 
outermost coil, the tank is the ground on one side. In general, the distance to ground is 
filled with various dielectric materials, including oil or air. One such structure is shown in 
Figure 12.10. There are usually multiple pressboard layers, but for convenience these are 
grouped into a single layer.

The sticks provide spacing for cooling oil or air to flow. This composite structure is similar 
to that analyzed previously for the disk–disk capacitance. The ground spacing is  usually 
small relative to the coil radius for power transformers so that an approximately planar 
geometry may be assumed. We obtain for the ground capacitance on one side of the coil, Cg1
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where fs is the fraction of the space occupied by sticks (vertical spacers),
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(12.61)
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FIGURE 12.10
Ground capacitance geometry: (a) side view and (b) top view.
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where
Rgap is the mean gap radius
ws is the stick width
Ns is the number of sticks around the circumference
H is the coil height
τpress is the pressboard thickness
εpress is the pressboard relative permittivity
τs and εs are the corresponding quantities for the sticks

The ground capacitance of both gaps Cg1 and Cg2 should be added to obtain the total 
ground capacitance, Cg.

12.6  Static Ring on One Side of a Disk

If a static ring is present on one side of a disk and connected to the terminal voltage as 
shown in Figure 12.11, then we have a situation similar to that considered in the general 
disk capacitance section. The only difference is that Ca is the disk–static ring capacitance 
since the static ring is an equipotential surface. Thus, (12.53) applies with
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(12.62)

where
Cdd is the disk–disk capacitance to the lower disk
Cs is the single disk series capacitance

V
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Static ring

Cdd
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Ca

Va = V

Vb = 0

FIGURE 12.11
Static ring on one side of a disk at the end of a coil.
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This case would be identical to Stein’s if the static ring were spaced at 1/2 the normal 
disk–disk spacing or whatever is required to achieve Ca = 2Cdd = Cb. Then γa = γb = 1/2, 
a = 4C /Cdd s  and (12.53) would reduce to (12.35). Thus, the end disk would have the 
same capacitance as any other disk.

12.7  Terminal Disk without a Static Ring

In case the end disk does not have an adjacent static ring, we assume that the shunt capaci-
tance on the end side is essentially 0. Then we have the situation shown in Figure 12.12a. 
We have Ca = 0 so that γa = 0 and γb = 1, and from (12.53),
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FIGURE 12.12
Terminal disk without a static ring: (a) top fed and (b) center fed.
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with

 
a = 2C

C
dd

s  
(12.64)

This situation also applies to a center-fed winding without a static ring. In this case, as 
Figure 12.12b shows, there is no capacitative energy between the two center disks so that 
effectively Ca = 0. This result would also follow if both center disks were considered as a 
unit and the energy divided equally between them.

12.8  Capacitance Matrix

Before proceeding to other cases of interest, we need to introduce the capacitance matrix. 
For a system of conductors having voltages Vi and total electrostatic energy E from the 
general theory of linear capacitors [Smy68], we have
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or, in matrix form,
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The C’s can be grouped into a capacitance matrix that is symmetric, Cij = Cji. The diagonal 
terms are positive, while the off-diagonal terms are negative. This follows because if Vk is 
a positive voltage while all other voltages are 0, that is, the other conductors are grounded, 
then the charge on conductor k must be positive, Qk = CkkVk > 0 ⇒ Ckk > 0. By charge con-
servation, since Vk > 0 and all other V’s = 0,

 i

i

i j

ij j

i

ik kQ C V C Vå å å= = =
,

0
 

(12.66)

where
Qi is the charge on conductor i
Cii is the self-capacitance of conductor i
Cij is the mutual capacitance between conductors i and j
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From the last equality in (12.66), we have
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(12.67)

that is, the negative of the sum of the off-diagonal terms in column k of the capacitance 
matrix equals the diagonal term. Since this matrix is symmetric, this also applies to the off-
diagonal terms in the rows.

Let us apply this to the general energy expression (12.27). Consider the V1 voltage node:
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Using the labeling scheme 1, 2, 3, 4, 5, 6 ↔ 1, 2, a1, a2, b1, b2, the off-diagonal mutual 
capacitances are, from (12.68),
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(12.69)

These are all negative and the negative of their sum is C11, which is

 
C Cs11 =

a
atanh  

(12.70)

The capacitance diagram corresponding to this situation is shown in Figure 12.13, which 
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FIGURE 12.13
Lumped capacitance model of a general lattice capacitor network. The C’s are taken to be positive.
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shows only the capacitances attached to voltage node V1. The other mutual capacitances 
can be filled in by a similar procedure. If the side voltages are constant so that Va1 = Va2 = Va 
and Vb1 = Vb2 = Vb, then there is only one mutual capacitance connecting 1 to a and it is 
given by
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(12.71)

and similarly for C1,b. For small α, this approaches
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so that, in the case of small α, on the capacitance diagram, 1/2 the shunt capacitance is 
attached to the V1 node. If we carried through the analysis, we would find that 1/2 of the 
shunt capacitance would also be attached to the V2 node, producing a π capacitance 
diagram.

12.9  Two End Static Rings

When two static rings are positioned at the end of a coil, they are situated as shown in 
Figure 12.14. Both are attached to the terminal voltage V1. This situation also applies 
to a center-fed coil with three static rings since adjacent pairs are configured similarly 
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FIGURE 12.14
Two static rings at the end of a coil.
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with respect to the top or bottom coil. It is necessary to analyze more than one disk at 
a time since their electrostatic energies are coupled via the static rings. We are allow-
ing for the possibility of different spacings between the static rings and adjacent disks 
and between disks by letting the disk–static ring and disk–disk capacitances be 
different.

The energy associated with the first or top disk is found, using (12.33) with Va = Vb = V1 
so that β = V1:
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where a = +( )C C Ca b s/ , Ca and Cb being the disk–static ring capacitances. The energy of 
the second disk, assuming the same series capacitance Cs, is obtained from (12.33) with the 
substitutions Va = V1, Vb = V3 so that β = γaV1 + γbV3. Notice that for this disk, the high-
voltage end is at voltage V2 and the low-voltage end at voltage V3. Therefore, in (12.33), we 
must associate V1 ↔ V2 and V2 ↔ V3. We find
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where

a1 2= +( )C C Cc dd s/
γa = Cc/(Cc + 2Cdd)
γb = 2Cdd/(Cc + 2Cdd)

Using γa + γb = 1, this can be simplified as
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Thus, the total energy in the first two disks with static rings is
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The lumped capacitance network associated with this configuration can be obtained by the 
procedure described in the previous section. Thus,
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Reading off the mutual capacitances from (12.77), we find
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These are both negative and the negative of their sum is the self-capacitance C11.
We also need to find C23. This is obtained by differentiating (12.76) with respect to V2:
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Extracting the mutual capacitances, we find
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These are negative and the negative of their sum is C22. Moreover, we see that C21 = C12 as 
expected since the capacitance matrix is symmetric. Differentiating (12.76) with respect to 
V3 would give us no new information.

Thus, the lumped capacitance diagram for this configuration is shown in Figure 12.15. 
We assume the capacitances shown are positive (the negative of the mutual capacitances). 
Hence, the total capacitance between the V1 and V3 terminals is given by
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In model impulse–voltage calculations, one could treat the first two disks as a unit having 
the capacitance given by (12.81). Then the voltages across each disk could be obtained from 
the overall voltage difference (V1 − V3) via
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(12.82)

12.10  Static Ring between the First Two Disks

Sometimes, a static ring is placed between the first two disks. This is usually only consid-
ered for center-fed windings so that there are two symmetrically spaced static rings, one 
for each of the two stacked coils. This case is very similar to the previous case. The only 
difference is that the energy in the first disk is given by
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with a = C /Cb s  since Ca = 0. Thus, the formulas of the last section apply with this 
value of α.
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FIGURE 12.15
Lumped capacitance diagram for the 2-static ring configuration. The C’s are taken to be positive.
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12.11  Winding Disk Capacitances with Wound-in-Shields*

In order to improve the voltage distribution along a transformer coil, that is, to reduce the 
maximum disk–disk voltage gradient, it is necessary to make the distribution constant, α, 
as small as possible, where a = C /Cg s  with Cg, the total ground capacitance, and Cs, the 
series capacitance of the coil. One way of accomplishing this is to increase Cs. Common 
methods for increasing the series capacitance include interleaving [Nuy78] and the use of 
wound-in-shields [For69]. Both of these techniques rely on inductive effects. Geometric 
methods for increasing Cs, such as decreasing turn–turn or disk–disk clearances, are gener-
ally ruled out by voltage withstand or cooling considerations.

Interleaving can produce large increases in Cs, which may be necessary in very-high-
voltage applications. However, its implementation can be very labor-intensive and in prac-
tice tends to be limited to magnet wire applications. Wound-in-shields tend to produce 
more modest increases in Cs compared with interleaving. Moreover, the installation of the 
shields requires less labor and is suitable for use with transposed cable. In addition, a suit-
able positioning of the shields can be used to provide a tapered capacitance profile to 
match the voltage stress profile of the winding.

In this section, we present a simple analytic formula for calculating the disk capacitance 
with a variable number of wound-in-shield turns. Since this formula rests on certain 
assumptions, a detailed circuit model is developed to test these assumptions. Finally, 
experiments are carried out to check the formula under a wide variety of conditions.

12.11.1  Analytic Formula

Figure 12.16 shows the geometry of a pair of disks containing wound-in-shields. 
Also shown is the method of labeling turns of the coil and shield. Since the shield spans 
two disks, it is necessary to calculate the capacitance of the pair. Each disk has N turns and 
n wound-in-shield turns, where n ≤ N − 1. The voltage across the pair of disks is V and 
we assume the rightmost turn of the top disk, i = 1, is at voltage V, and the rightmost turn 
of the bottom disk, j = 1, is at 0 V, so that the coil is wound in a positive sense from the 

*  This section follows closely our published paper [Del98], reprinted with permission from IEEE Trans. Power 
Deliv., 13(2), April 1998, 503–509. © 1998 IEEE.
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Vbias

Coil turn

Shield turn

FIGURE 12.16
Disk pair with wound-in-shields with labeling and other parameters indicated. (Reprinted with permission from 
Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 13(2), April 1998, 503–509. © 1998 IEEE.)



350 Transformer Design Principles

outer to inner turn on the bottom disk and from the inner to outer turn on the top disk. 
The shield turns are placed between the coil turns and are wound in the same sense as the 
coil. However, their cross-over is at the outermost turn rather than the innermost one, as 
is the case for the coil. This means that the positive voltage sense for the shield is from 
turn j = 1 to j = n on the bottom disk and then from the leftmost turn, i = n, to turn i = 1 on 
the top disk.

We assume the voltage rise per turn is ΔV where

 
DV

V
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=
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(12.84)

We assume that the same volts per turn applies to the shield as well. For definiteness, we 
assume the voltage at the shield cross-over point is Vbias as shown in Figure 12.16. Taking 
the voltage at the midpoint of a turn, we have for the top disk coil turns

 V i V i Vc ( ) = - -( )0 5. D  (12.85)

where Vc(i) is the coil voltage for turn i, i = 1, …, N. Also for the top disk wound-in-shield 
turns,

 V i V i Vw bias( ) = - -( )0 5. D  (12.86)

where Vw(i) is the shield voltage for shield turn i, i = 1, …, n.
For the bottom disk, we have

 V j j Vc ( ) = -( )0 5. D  (12.87)

for j = 1, …, N and

 V j V j Vw bias( ) = + -( )0 5. D  (12.88)

for j = 1, …, n.
Letting cw be the capacitance between a coil turn and an adjacent shield turn, the energy 

stored in the capacitance between shield turn i and its adjacent coil turns is
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The two terms reflect the fact that there are two adjacent coil turns for every shield turn. 
Using the previous expressions for the V’s, Equation 12.89 becomes
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This does not depend on i and so is the same for all n shield turns on the top disk. There 
are n such turns in the energy. For the bottom disk, Equation 12.89 applies with j replacing 
i, so the capacitative energy between shield turn j and its surrounding coil turns is
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This again does not depend on j and so is the same for all n shield turns on the bottom disk. 
Thus, there are n such terms in the energy.

To the said energies, we must add the capacitative energy of the turns without wound-
in-shields between them. Letting ct be the turn–turn capacitance between regular winding 
turns, this energy is simply
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(12.92)

There are 2(N − n − 1) such terms in the energy. In addition, there is energy stored in the 
disk–disk capacitance, cd. Since we are assuming the voltage varies linearly along the disks, 
this capacitative energy is given by
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We are ignoring capacitative coupling to other disk pairs at this stage since our experimen-
tal setup consisted of an isolated disk pair. However, if this disk pair were embedded in a 
larger coil of similar disks, then (12.93) would need to be doubled before adding to the 
energy.

The total capacitative energy of the disk pair is found by adding the previously men-
tioned contributions. To simplify the formula, we define
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In terms of this parameter and the expression for ΔV given in (12.84), the total capacitative 
energy, Etot, is given by
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Extracting the equivalent or total capacitance from (12.95), we get

 
C c

n
N

N N c
N n

N
tot w t= æ

è
ç

ö
ø
÷ + -( ) + -( ) + + -( )é
ë

ù
û +

- -
4

1 2 1 2
1

22
2 2 2 2b b b b 22 3

æ
è
ç

ö
ø
÷ +

cd

 
(12.96)

At this point, Vbias and, hence, β are unspecified. This will depend on whether the shield 
is floating or whether it is attached at some point to a coil voltage. If the shield is floating, 
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we expect Vbias = V/2. If the shield is attached at the cross-over to the high-voltage terminal, 
then Vbias = V. If the leftmost or end shield turn on the top disk (i = n) is attached to the 
high-voltage terminal, then Vbias = V + (n − 0.5)ΔV. In terms of β,
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(12.97)

Other situations can be considered as well.
For the turn–turn capacitance, we used the expression (in SI units)
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where
Rave is the average radius of the coil
h is the bare copper height of a coil turn in the axial direction
τp is the 2-sided paper thickness of a coil turn
εo = 8.8542 × 10−12 F/m
εp is the relative permittivity of paper

The addition of 2τp to h is designed to take fringing effects into account. Also, the use of 
Rave is an approximation, which is reasonably accurate for coils with radial builds small 
compared with their radii. For the capacitance cw, the same expression was used but with 
τp replaced by 0.5(τp + τw) where τw is the 2-sided paper thickness of a shield turn. Since 
there are key spacers separating the disks and gaps between them, the disk–disk capaci-
tance is given by
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where
Ri and Ro are the inner and outer radii of the disk, respectively
fks is the fraction of the disk–disk space occupied by key spacers
τks is the key spacer thickness
εks is the key spacer relative permittivity
εair is the relative permittivity of air (=1) since the coils were tested in air

12.11.2  Circuit Model

Since quite a few assumptions went into deriving the capacitance formula in the last sec-
tion, we decided to model the disk pair by means of a circuit model including capacitative, 
inductive, and resistive effects as sketched in Figure 12.17. We include all mutual couplings 
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between the turns of the coil and wound-in-shield. The circuit is assumed to be excited by 
a current source, which is nearly a step function. The circuit equations are
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where
C is a capacitance matrix
M an inductance matrix
R a diagonal resistance matrix
A and B are matrices of ±1’s and 0’s

The voltage and current vectors, V and I, include the coil and shield turn voltages and cur-
rents. These equations are solved by means of a Runge–Kutta solver.
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FIGURE 12.17
Circuit model for a disk pair with wound-in-shields. The labeling scheme and circuit parameters are indicated.
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Since the experimental setup was in air, we used air core inductance and mutual induc-
tance expressions. The mutual inductance between two thin wire coaxial loops of radii, r1 
and r2, spaced a distance d apart is given by [Smy68] in MKS units:
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K(k) and E(k) are complete elliptic integrals of the first and second kinds, respectively, and 
μo = 4π × 10−7 H/m. For rectangular cross-section coils, Lyle’s method in conjunction with 
(12.101) could be used for a more accurate determination of the mutual inductance [Gro73]. 
However, for the turn–turn mutual inductances in our experimental coils, treating the 
turns as thin circular loops was nearly as accurate as Lyle’s method. The self-inductance of 
a single-turn circular coil of square cross-section with an average radius of a and square 
side length of c is given by [Gro73] in MKS units:
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This applies for c/2a ≤ 0.2. When the cross-section is not square, it can be subdivided into 
a number of squares and (12.102) together with (12.101) can be applied to compute the self-
inductance more accurately. In our experimental coil, the turn dimensions were such that 
the simple formula with c taken as the square root of the turn area agreed well with the 
more accurate calculation.

The turn–turn and turn–shield capacitances were the same as given in the last section. 
The capacitance cb in Figure 12.17 was taken as cd/N, where cd is the disk-to-disk capaci-
tance. We did not include the capacitance between shield turns on neighboring disks in our 
final calculations. Their inclusion had little effect on the total capacitance.

The resistances used in the circuit model were based on the wire dimensions but were 
multiplied by a factor to account for high-frequency losses. This factor may be estimated 
by examining the frequency dependence of the two main contributors to the coil loss, 
namely, the Joule, or I2R loss, and the eddy current loss due to stray flux carried by the 
conductor strands. Based on a formula in [Smy68] for cylindrical conductors, the Joule 
loss is nearly independent of frequency at low frequencies, which includes 60 Hz for our 
conductor dimensions. At high frequencies, the loss divided by the dc or 60 Hz loss is 
given by
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where
rcond is the radius of the conductor or in our case an effective radius based on the wire 

dimensions
σ is the wire’s conductivity
f is the frequency in Hz
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Based on our cable dimensions and for a typical frequency encountered in our calculations 
and experiment of ~0.15 MHz, we estimate that WJoule(f)/WJoule(f = 0) ~ 15.9. The eddy cur-
rent frequency dependence due to stray flux is given in [Lam66]. At low frequencies, this 
loss varies as f2, whereas at high frequencies, it varies as f0.5. Taking ratios of the high-to 
low-frequency eddy current loss, we obtain
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where b is the thickness of the lamination or strand in a direction perpendicular to the 
stray magnetic field. In our case, the cable was made of rectangular strands with dimen-
sions 1.4 mm × 4.06 mm. For the small dimension, Equation 12.104 gives a ratio of 
68,086 while for the large dimension, we get a ratio of 2,766. A detailed field mapping 
is necessary to obtain the eddy current loss contribution at low frequencies but typi-
cally this is about 10% of the dc loss, depending on the cable construction. If we assume 
that the small- and large-dimension eddy losses are equal at low frequencies, that is, 
each is 5% of the dc loss, then we find that the ratio of high- to low-frequency total loss 
based on the said ratios is given by Wtot(f)/Wtot(60 Hz) = 3557. This is only a crude 
estimate. Our data show that this ratio is about 1500 for our cable. Since the capacitance 
obtained from the simulation is nearly independent of the resistance used, we did not 
try to match the model’s resistance with the experimental values. A sample output is 
shown in Figure 12.18.

Two methods were used to extract the equivalent total capacitance from the circuit 
model. Since the voltages of each coil and shield turn were determined at each time step, 
the capacitive energy was simply summed and the total capacitance determined via
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FIGURE 12.18
Voltage across the coil pair versus time from the detailed circuit model calculations. (Reprinted with permission 
from Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 13(2), April 1998, 503–509. © 1998 IEEE.)
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where V is the voltage of turn i = 1 at the particular time step. At the end of the total time 
duration of about 200 time steps, the average and median total capacitances were calcu-
lated. These two values generally agreed fairly closely. The other method consisted of 
extracting the total capacitance from a simplified equivalent circuit as shown in Figure 12.19. 
This latter method was also used to obtain the total capacitance experimentally.

Using Laplace transforms, the circuit of Figure 12.19 can be solved analytically, assuming 
a step function current input of magnitude I. We obtain
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for t ≥ 0. Here,
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In the limiting case as R → 0, Equation 12.106 becomes
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In all the cases examined computationally or experimentally, the term (R/2L)2 was much 
smaller than 1/LC so that it can be ignored in the expression for ωo. Thus by measuring the 
oscillation frequency, we determine the combination LC. To obtain C, an additional capaci-
tance, C1, was placed in parallel with the coil and a new oscillation frequency, ω1, determined. 
Since this added capacitance does not change L, we have, taking ratios and squaring (12.107),
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Since ωo and ω1 can be measured or determined from the output of the circuit model and 
C1 is known, C can be obtained. We found good agreement between the two methods of 
determining C.

I

V C

R

L

FIGURE 12.19
Simplified circuit model for capacitance determination. (Reprinted with permission from Del Vecchio, R.M. et al., 
IEEE Trans. Power Deliv., 13(2), April 1998, 503–509. © 1998 IEEE.)
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12.11.3  Experimental Methods

A coil containing two disk sections was made of transposed cable. There were 10 turns per 
disk. The cable turns were 11.7 mm radial build by 9.19 mm axial height, including a 
0.76 mm (2-sided) paper cover. The inner radius was 249 mm. The outer radius depended 
on the number of shield turns but was approximately 392 mm. The wound-in-shield turns 
consisted of 3.55 mm radial build by 9.27 cm axial height magnet wire, including a 0.51 mm 
(2-sided) paper cover. The disks were separated by means of 18 key spacers equally spaced 
around the circumference. The key spacers were 44.5 mm wide by 4.19 mm thick.

The coil was excited by means of a current source, which produced a near step function 
current. A sample of the current input and coil voltage output is shown in Figure 12.20. 
This voltage vs time plot was Fourier analyzed to extract the resonant frequency. 
Frequencies were measured with and without an external capacitor of 10 nF across the coil 
in order to obtain the coil capacitance by the ratio method described previously.

Shield turns/disk of n = 3, 5, 7, 9 were tested, as well as the no shield case, n = 0. In addi-
tion, for each n value, tests were performed with the shield floating, attached to the high-
voltage terminal at the cross-over and attached to the high-voltage terminal at the end 
shield turn on the top disk. Other methods of attachment were also made for the n = 9 case 
to test for expected symmetries.

Because the disk pair was not contained in a tightly wound coil, there tended to be some loose-
ness in the winding. This could be determined by squeezing the disk turns tightly together and 
noting how much the radial build decreased. From this, we could determine how much loose-
ness there was in the insulation and correct for it. This amounted to about a 5% correction.
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FIGURE 12.20
Experimental output from one of the test runs on the coil showing the input current and voltage across the coil 
vs time. (Reprinted with permission from Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 13(2), April 1998, 
503–509. © 1998 IEEE.)
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12.11.4  Results

There are some uncertainties associated with the values of the relative permittivities to use 
in the capacitance calculations, particularly that of paper in air. For the pressboard key 
spacers, [Mos87] gives a method for determining its permittivity in terms of the board 
density, the permittivity of the fibers, and the permittivity of the substance filling the voids. 
For our key spacers in air, we obtain εks = 4.0 using this method. (For pressboard in oil, the 
value is εks = 4.5.) For paper, [Cla62] presents a graph of the dielectric constant vs density 
in air and oil. Unfortunately, paper wrapping on cable in not as homogeneous a substance 
as pressboard. Its effective density would depend on how the wraps overlap and how 
loosely or tautly it is wound. In addition, for transposed cable, the paper–copper interface 
is not a clean rectilinear one. This is because of the extra unpaired strand on one side of the 
strand bundle. We found that a value of εp = 1.5 was needed to get good overall agreement 
with the test data. This would correspond to an effective paper density of 0.5 g/cm3 accord-
ing to the graph in [Cla62]. At that density, paper in oil would have εp = 3.0 according to 
the same graph. For tightly wound paper in oil, values of εp = 3.5–4.0 are typically used. 
Thus, a paper permittivity of 1.5 for paper in air is not unreasonable.

Table 12.1 shows the test results along with the calculated values of the capacitance for 
different numbers of shield turns and different shield biasings. The overall agreement is 
good. Certainly, the trends are well reproduced. Even for the floating shield case, which 
has the lowest capacitative enhancement, there is a capacitance increase of a factor of 5 for 
3 shield turns/disk and a factor of about 13 for 9 shield turns/disk over the unshielded 
case. By biasing the shield in different ways, even greater increases are achieved.

In Table 12.2, the coil turn and shield turn voltages as calculated by the circuit model at 
time t = 30 μs are shown for the n = 9 case with the shields floating. As can be seen, the coil 

TABLE 12.1

Capacitance of Coil with Two Disks of 10 Turns/Disk and a Variable Number of Wound-in-Shield 
Turns/Disk

Ctot (nF)

Shield Turns n Calc Method Floating Attached to V at Crossover Attached to V at Top End

0 Measured 0.24
Analytic 0.264
Circuit model 0.287

3 Measured 1.20 2.33 3.21
Analytic 1.31 2.44 3.08
Circuit model 1.41 2.66 3.31

5 Measured 1.78 3.53 6.07
Analytic 2.03 3.94 6.04
Circuit model 2.21 4.34 6.73

7 Measured 2.80 5.73 11.8
Analytic 2.75 5.45 10.1
Circuit model 2.99 6.01 11.4

9 Measured 3.17 6.82 16.1
Analytic 3.49 6.99 15.5
Circuit model 3.83 7.61 17.9

Source: Reprinted with permission from Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 13(2), April 1998, 
503–509. © 1998 IEEE.
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volts/turn is about the same as the shield volts/turn, verifying the assumption made in 
the analytic model. In addition, Vbias ≈ V/2, as was also assumed in the simple model. Also, 
the voltage differences between the coil and shield turns fall into two groups of either 
~ 12.8 or 11.5 V in this case. This also corresponds to the simple model prediction of either 
NΔV = V/2 or (N − 1)ΔV = V/2 − ΔV volts. Thus, in the case where the shields are floating, 
the maximum shield turn−coil turn voltage is V/2. Based on the simple model, this holds 
regardless of the number of shield turns.

In Table 12.3, we show the corresponding output from the circuit model at t = 150 μs for 
the case where the shield is attached at the cross-over to the high-voltage terminal. (It was 
actually attached to shield turn i = 1 in the model.) We see again that the coil volts/turn ≈ 
shield volts/turn. According to the simple model prediction (β = 0), the voltage differences 
between the shield and adjacent turn on the top disk are 0 and ΔV as is also nearly the case 
for the circuit model. Along the bottom disk, the simple model gives voltage differences of 
2NΔV = V and (2N − 1)ΔV = V − ΔV and this is also nearly the case for the circuit model. 
Thus, the maximum coil-turn-to-shield-turn voltage is V. According to the simple model, 
this holds regardless of the number of shield turns.

The case where the end turn of the shield on the top disk is attached to the high-voltage 
terminal could be analyzed similarly, although this configuration is harder to achieve in 
practice. This configuration also has a higher coil-turn-to-shield-turn-voltage difference 

TABLE 12.2

Turn Voltages at t = 30 μs for a Coil of Two Disks with 10 Turns/Disk and 9 Shield Turns/Disk 
with the Shield Floating

Coil Turns Adjacent Shield Turn Shld-Adj Coil

# Volts ΔV # Volts ΔV ∣ΔV∣

1 24.27 1 11.43 12.84, 11.49
2 22.92 1.35 2 10.12 1.31 12.80, 11.39
3 21.51 1.45 3 8.73 1.39 12.78, 11.35
4 20.08 1.43 4 7.30 1.43 12.78, 11.35
5 18.65 1.43 5 5.87 1.43 12.78, 11.46
6 17.24 1.41 6 4.45 1.42 12.79, 11.44
7 15.89 1.35 7 3.09 1.36 12.80, 11.53
8 14.62 1.27 8 1.79 1.30 12.83, 11.63
9 13.42 1.20 9 0.52 1.27 12.90, 11.77

10 12.29 1.13
11 11.49 0.80
12 10.50 0.99 10 23.43 12.93, 11.94
13 9.45 1.05 11 22.27 1.16 12.82, 11.77
14 8.28 1.17 12 21.08 1.19 12.80, 11.63
15 6.98 1.30 13 19.78 1.30 12.80, 11.50
16 5.64 1.34 14 18.39 1.39 12.75, 11.41
17 4.25 1.39 15 16.99 1.40 12.74, 11.35
18 2.83 1.42 16 15.56 1.43 12.73, 11.31
19 1.40 1.43 17 14.14 1.42 12.74, 11.31
20 0 1.40 18 12.75 1.39 12.75, 11.35
Vbias = (Vshield turn 1 + Vshield turn 18)/2 = 12.09 ≈ V/2 = 12.14

Source: Reprinted with permission from Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 13(2), April 1998, 
503–509. © 1998 IEEE.



360 Transformer Design Principles

than the other methods of shield attachment. As expected, however, the price to pay for the 
higher capacitances is higher coil-turn-to-shield-turn voltage differences.

Several symmetric situations were noted in the experimental data. These symmetries 
were only checked for the n = 9 case but should apply to all n values according to the simple 
model. We found that attaching the high-voltage terminal to the end shield turn on the top 
disk (i = n) produced the same capacitance as attaching the low-voltage terminal, at 0 V in 
this case, to the end turn on the bottom disk (j = n). This symmetry can be seen in the simple 
formula (12.96) by using the appropriate values for β. Attaching the top-end shield turn to 
the low-voltage terminal produced the same capacitance as attaching the bottom-end shield 
turn to the high-voltage terminal. This can also be shown by means of the simple formula. 
Also the same capacitance was produced whether the shield cross-over was attached to the 
high- or low-voltage terminal. This also follows from the simple model.

For consistency, the inductance of our coil was extracted from the experimental data as 
well as from the circuit model output. We found L(data) = 280 μH and L(circuit model) = 
320 μH. Using an algorithm in Grover [Gro73], we obtained L(calc) = 340 μH. These are all 
within reasonable agreement. The decay constant R/2L appearing in (12.106) could be 
extracted from the data by analyzing the envelope of the damped sinusoid (Figure 12.20) 
and we found that it could be eliminated in the formula for ωo (12.107) in comparison with 
the 1/LC term. We also observed a significant resistance change when the frequency was 
changed by adding the external capacitance.

TABLE 12.3

Turn Voltages at t =150 μs for a Coil of Two Disks with 10 Turns/Disk and 9 Shield Turns/Disk 
with the Shield Attached at the Crossover to the High-Voltage Terminal

Coil Turns Adjacent Shield Turn Shld-Adj Coil

# Volts ΔV # Volts ΔV ∣ΔV∣

1 5.13 1 5.13 0, 0.29
2 4.84 0.29 2 4.87 0.26 0.03, 0.33
3 4.54 0.30 3 4.58 0.29 0.04, 0.35
4 4.23 0.31 4 4.28 0.30 0.05, 0.35
5 3.93 0.30 5 3.99 0.29 0.06, 0.36
6 3.63 0.30 6 3.69 0.30 0.06, 0.34
7 3.35 0.28 7 3.41 0.28 0.06, 0.33
8 3.08 0.27 8 3.14 0.27 0.06, 0.30
9 2.84 0.24 9 2.90 0.24 0.06, 0.28

10 2.62 0.22
11 2.42 0.20
12 2.24 0.18 10 7.52 5.28, 5.10
13 2.02 0.22 11 7.30 0.22 5.28, 5.06
14 1.77 0.25 12 7.05 0.25 5.28, 5.03
15 1.50 0.27 13 6.79 0.26 5.29, 5.02
16 1.22 0.28 14 6.51 0.28 5.29, 5.01
17 0.92 0.30 15 6.23 0.28 5.31, 5.01
18 0.62 0.30 16 5.94 0.29 5.32, 5.02
19 0.31 0.31 17 5.66 0.28 5.35, 5.04
20 0 0.31 18 5.38 0.28 5.38, 5.07

Source: Reprinted with permission from Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 13(2), April 1998, 
503–509. © 1998 IEEE.
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12.12  Multi-Start Winding Capacitance

Multi-start windings are a simple example of an interleaved type of winding. They are 
commonly used as tap windings. In these windings, adjacent turns have voltage differ-
ences, which can differ from the usual turn–turn voltage drop along typical disk or helical 
windings. Although multi-start windings are helical windings, they can be thought of as a 
collection of superposed series-connected helical windings as shown in Figure 12.21.

These windings essentially start over again and again, hence the name. Each start repre-
sents a constituent winding having a certain number of turns called turns per start. The 
number of starts is the same as the number of constituent windings. By connecting taps 
between the starts, the turns per start become the number of tap turns. Their advantage as 
tap windings compared with the standard type is that they allow a more balanced force 
distribution regardless of the tap setting and do not require the thinning of adjacent 
windings.

Although shown as side-by-side windings in the figure for explanatory purposes, the 
windings are superposed into one helical type of winding. The bottom-to-top connections 
are made external to this winding. The constituent windings are meshed in such a way that 
the voltage difference between adjacent turns in the composite winding is kept to one or 
two times the voltage drop along a constituent winding, which is really the best that can be 
done. Letting 1, 2, 3, … label turns from the different constituent windings, acceptable 
meshing schemes are shown in Figure 12.22 for various numbers of starts, Ns.

The turns are arranged along the winding according to Figure 12.22. The voltage differ-
ences between adjacent turns, measured in units of the voltage drop between starts, are 
also indicated in the figure. A pattern can be seen in the organization: Start with turn 1 
from start coil 1. Put turn 1 from start coil 2 at the end of the group. Put turn 1 from start 
coil 3 below turn 1. Put turn 1 from start coil 4 above turn 2. For N = 4 starts repeat this 
pattern using turn 2 from the different coils until you run out of turns per start. Otherwise, 
continue for N = 5 starts: Put turn 1 from start coil 5 below turn 1 from start coil 3 then 
continue to repeat this pattern until you run out of turns per start. For N = 6 starts, put turn 
1 from start coil 6 above turn 4 and repeat until you run out of turns per start, and so on, 
until you run out of start coils.

FIGURE 12.21
Schematic illustration of a multi-start winding.
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The capacitance is obtained by summing up the capacitative energy associated with the 
winding configuration. Letting ct be the turn-to-turn capacitance and ΔVt the voltage dif-
ference between turns, the energy associated with a pair of adjacent turns is given by 
Energy(turn–turn) = 1/2ct(ΔVt)2. Letting the voltage drop between starts be ΔVs, the total 
energy is obtained by summing all the turn–turn energies. As can be seen from Figure 12.22, 
each group of turns has two 1’s except for the last group that has only 1. If there are n turns/
start, there are n such groups. Hence, the energy for the 1’s is 2n − 1 times the energy asso-
ciated with voltage ΔVs across capacitance ct. The remaining turn–turn voltages in the 
group have a voltage of 2 × ΔVs across them. There are Ns − 2 such turns in the group. Since 
there are n such groups, the energy associated with these is n × (Ns − 2) times the energy 
associated with a voltage of 2ΔVs across capacitance ct. Combining these energies, we get 
a total energy of
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Since ΔVs = V/Ns, where V is the total voltage across the entire winding, by substituting 
this into (12.110), we can extract a total capacitance for the winding, Cms:
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ct will depend on the insulation structure of the winding, that is, whether the turns are 
touching, paper to paper, in the manner of a layer winding or whether there is an oil gap 
with key spacers separating them. In any event, the capacitance is much higher than that 
across a comparable helical winding where the turn–turn voltages are much smaller.
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FIGURE 12.22
Winding schemes for multi-start windings. The block numbers indicate the coil, which is associated with the 
turn. The numbers beside the blocks are the voltage differences between turns in units of the voltage drop 
between starts.
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Voltage Breakdown Theory and Practice

13.1  Introduction

A transformer’s insulation system must be designed to withstand not only the a.c. operat-
ing voltages, with some allowance for an overvoltage of ~15%, but also the much higher 
voltages produced by lightning strikes or switching operations. These latter voltages can 
be limited by protective devices, such as lightning or surge arrestors, but these devices are 
usually set to protect at levels well above the normal a.c. operating voltage. Fortunately, 
the transformer’s insulation can withstand higher voltages for the shorter periods of time 
characteristic of lightning or switching disturbances. Thus, insulation designed to be ade-
quate at the operating voltage can also be sufficient for the short-duration higher voltages 
that may be encountered.

Insulation design is generally an iterative process. A particular winding type is chosen, 
such as disk, helix, or layer, for each of the transformer’s windings. They must have the 
right number of turns to produce the desired voltage and must satisfy thermal, mechani-
cal, and impedance requirements. The voltage distribution is then calculated throughout 
the windings, using a suitable electrical model together with the appropriate input such as 
a lightning impulse excitation. Voltage differences and/or electric fields are then  calculated 
to determine if they are high enough to cause a breakdown, according to some breakdown 
criterion, across the assumed insulation structure. More elaborate path integrals are 
 sometimes used to determine breakdown. If the breakdown criterion is exceeded at some 
location, the insulation is redesigned and the process repeated until the breakdown criteria 
are met. Insulation redesign can consist of adding more paper insulation to the wire or 
cable, increasing the size of the oil or air ducts or resorting to interleaving the winding 
conductors or adding wound-in-shields or other types of shields.

Although voltages and electric fields can be calculated to almost any desired accuracy, 
assuming the material properties are well known, the same cannot be said for breakdown 
fields in solids or liquids. The theory of breakdown in gases is reasonably well estab-
lished, but the solid or liquid theory of breakdown is somewhat rudimentary. An oil 
breakdown model is presented here, which attempts to address this problem. Nevertheless, 
design rules have evolved based on experience. With suitable margins, these rules gener-
ally produce successful designs. Success is usually judged by whether a transformer 
passes a series of dielectric tests using standard impulse waveforms or a.c. power fre-
quency voltages for specified time periods without breakdown or excessive corona. These 
tests have been developed over the years in an effort to simulate a typical lightning or 
switching waveshape.

13
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13.2  Principles of Voltage Breakdown

We briefly discuss some of the proposed mechanisms of voltage breakdown in solids, liq-
uids, and gases with primary emphasis on transformer oil. This is because in oil-filled 
transformers, due to the higher dielectric constant of the solid insulation, the highest elec-
tric stress tends to occur in the oil. In addition, the breakdown stress of the oil is generally 
much lower than that of the solid insulation. The same situation occurs in dry-type trans-
formers, however the breakdown mechanism in the gas is much better understood.

In gases, breakdown is thought to occur by electron avalanche, also called the Townsend 
mechanism [Kuf84]. In this process, the electric field imparts sufficient energy to the elec-
trons between collisions with the atoms or molecules of the gas that they release or ionize 
additional electrons upon subsequent collisions. These additional electrons, in turn, acquire 
sufficient energy between collisions to release more electrons in an avalanche process. The 
process depends in detail on the collision cross-sections for the specific gas. These collisions 
can lead to elastic scattering, ionization, and absorption, and the collision cross-sections are 
highly energy-dependent. They have been measured for a variety of gases. In principle, 
breakdown can be calculated from known collision cross-sections, together with correc-
tions, due to the influence of other factors, such as the presence of positive ions, photo-
excitation, etc. In practice, the theory has served to illuminate the parametric dependence of 
the breakdown process and is even in reasonable quantitative agreement for specific gases.

One of the major results of the theory of gaseous breakdown is that the breakdown volt-
age across a uniform gap depends on the product of pressure and gap thickness or, more 
generally, on the product of gas density and gap thickness. This relationship is called the 
Paschen curve. A sketch of such a curve is shown in Figure 13.1. A fairly common feature 
of such curves is the existence of a minimum. Thus for a given gap distance, as the pressure 
is lowered, assuming we are to the right of the minimum, the breakdown voltage will drop 
and rise again as the pressure is lowered past the minimum. Care must be taken that the 
gap voltage is sufficiently far from the minimum to avoid breakdown. For a given gas pres-
sure or more accurately, density, the breakdown field depends only on the gap thickness.

Pressure × Gap distance
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FIGURE 13.1
Schematic Paschen curve.
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During the avalanche process, because the negatively charged electrons move much 
more rapidly than the positively charged ions and because they are pulled toward oppo-
site electrodes, a charge separation occurs in the gas. When the excess charge is large 
enough, as can occur in a well-developed avalanche for large gap distances or high values 
of pressure × gap thickness, the electric field produced by the excess charge approaches the 
applied field. When this occurs, the Townsend mechanism of breakdown gives way to a 
streamer type of breakdown. In this process, secondary breakdown paths or plasma chan-
nels form at the front of the avalanche, leading to a more rapid breakdown than can be 
accounted for by the Townsend mechanism alone. Theoretical calculations, based on ideal-
ized charge configurations, can account approximately for this type of breakdown.

In solids and liquids where the distance between electron collisions is much shorter 
than in gases so that the electrons have a harder time acquiring enough energy to pro-
duce an avalanche, the Townsend mechanism is not considered to be operative except 
possibly for extremely pure liquids. A streamer type of mechanism is considered to be 
much more likely, but the theory is not as developed. Moreover, especially in liquids, 
there are usually many types of impurities whose presence even in small concentrations 
can lower the breakdown stress considerably. This is well established experimentally 
where further and further purifications lead to higher breakdown stress to the point 
where the so-called intrinsic breakdown stress of a pure liquid can be reached but has 
rarely been measured.

In solids and liquids, the breakdown stress does not appear to be strictly a function of the 
gap thickness but rather appears to depend on the area of the electrodes or the volume of 
the material under stress. This would argue against a strictly Townsend mechanism of 
breakdown according to which, with the nearly constant density of most solids and liq-
uids, the breakdown should depend on the gap distance only. It should be noted, however, 
that the experimental evidence is fragmentary and sometimes contradictory.

An electrode area or volume dependence of breakdown is usually explained by means of 
a weak link theory. According to this theory, there is some weak spot, imperfection, or 
mechanism based on the presence of imperfections that causes the failure. Thus as the size 
of the specimen grows, weaker spots or more and greater imperfections are uncovered, 
resulting in failure at lower electric stress. Some support for this type of failure mechanism 
comes from studying the statistics of breakdown. There is much experimental evidence to 
show that breakdown probabilities follow an extreme value distribution, in particular, the 
Weibull distribution [Gum58]. This type of distribution is consistent with a weak link 
mechanism. In fact, Weibull invented it to account for failure statistics in fracture mechan-
ics, which can be associated with material flaws. In general form, the distribution function 
giving the probability of failure for a voltage ≤ V, P(V), is
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where Vo, a, and k are parameters >0. The probability density function, which is the deriva-
tive of the distribution function, when multiplied by ΔV gives the probability of failure in 
a small interval ΔV about V. It is
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The density function is, in general, asymmetric about the mode or most probable value and 
this asymmetry is usually taken as evidence that one is dealing with an extreme value 
 distribution in contrast to a Gaussian density function, which is symmetric about the mode 
or mean.

According to advocates of an electrode area dependence of the breakdown stress, the 
weak link can be a protrusion on the electrode surface where the field will be enhanced or 
it can be an area of greater electron emissivity on the surface. Advocates of the volume 
dependence of breakdown emphasize impurities in the material, which increase with vol-
ume [Wil53]. According to Kok [Kok61], impurities in liquids such as transformer oil tend 
to have a higher dielectric constant than the oil, particularly if they have absorbed some 
water. Thus, they are attracted to regions of higher electric field by the presence of gradi-
ents in the field. They will tend to acquire an induced dipole moment so that other dipoles 
will attach to them in a chain-like fashion. Such a chain can lead to a relatively high con-
ductivity link between the electrodes, leading to breakdown. The probability of forming 
such a chain increases with the amount of impurity present and hence with the volume 
of liquid.

Other mechanisms, which can account for some of the breakdown data, such as the for-
mation of bubbles in the breakdown process, have been summarized in [Gall75]. We know 
from numerous experiments that the breakdown electric stress in transformer oil is low-
ered by the presence of moisture, by particles such as cellulose fibers shed by paper or 
pressboard insulation, and by the presence of dissolved gas. It was even shown in one 
experiment that the breakdown stress between two electrodes depended on whether the 
electrodes were horizontal or vertical. Presumably, the dissolved gas and its tendency to 
form bubbles when the electric stress was applied was influencing the results, since in one 
orientation the bubbles would be trapped, while in the other, they could float away. In 
other experiments, causing the oil to flow between the electrodes increased the breakdown 
stress compared with stationary oil. The said influences make it difficult to compare break-
down results from different investigators. However, for a given investigator, using a stan-
dardized liquid or solid preparation and testing procedure, observed trends in the 
breakdown voltage or stress with other variables are probably valid.

Breakdown studies not concerned with time as a variable are generally done under 
impulse or a.c. power frequency conditions. In the latter case, the time duration is usually 
1 min. In impulse studies, the waveform is a unidirectional pulse having a rise time of 
trise = 1–1.5 μs and a fall time to 50% of the peak value of tfall = 40–50 μs as sketched in 
Figure 13.2. In most such studies, the breakdown occurs on the tail of the pulse, but the 
breakdown voltage level is taken as the peak voltage. However, in front-of-wave break-
down studies, breakdown occurs on the rising part of the pulse and the breakdown voltage 
is taken as the voltage reached when breakdown occurs. Although the variability in times 
for the rise and fall of the pulse is not considered too significant when breakdown occurs 
on the tail of the pulse, front-of-wave breakdown voltages are generally higher than those 
occurring on the tail. The polarity of the impulse can also differ between studies, although 
the standard is negative polarity since that is the polarity of the usual lightning strike. 
There is also a fair degree of variability in the experimental conditions for a.c. power fre-
quency breakdown studies. The frequency used can be 50 or 60 Hz, depending on the 
power frequency in the country where the study was performed. Holding times at voltage 
can be between 1 and 3 min or the breakdown occurs on a rising voltage ramp where the 
volts/second rise can differ from study to study. These differences can lead to differences 
in the breakdown levels reported, but they should not amount to more than a few percent. 
The ratio between the full wave impulse breakdown voltage and the a.c. rms breakdown 
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voltage is called the impulse ratio and is found to be in the range of 2–3. This ratio applies 
to a combination of solid (pressboard) insulation and transformer oil, although it is not too 
different for either to be considered separately.

There is some controversy concerning the breakdown mechanism in the different time 
regimes for transformer oil. Endicott and Weber [End57] found the same asymmetric prob-
ability density distributions for impulse and a.c. breakdown voltages, indicating that 
extreme value statistics are operative. They also found that both types of breakdown 
depended on the electrode area. On the other hand, Bell [Bel77] found that the impulse 
(front-of-wave) breakdown voltages had a symmetrical Gaussian probability density, 
whereas the a.c. breakdowns had an asymmetric probability density. They found, never-
theless, that the impulse breakdown levels depended on the stressed oil volume. According 
to this finding, the volume effect under impulse is not linked to extreme value statistics. 
One would have difficulty imagining a chain of dipoles aligning in the short times avail-
able during a front-of-wave impulse test. Palmer and Sharpley [Pal69] found that both 
impulse and a.c. breakdown voltages depended on the volume of stressed oil. However, 
they reported that both impulse and a.c. breakdown statistics followed a Gaussian distri-
bution. It would appear from these and similar studies that the breakdown mechanism in 
transformer oil is not understood enough to conclude that different mechanisms are opera-
tive in the different time regimes.

One of the consequences of the theoretical uncertainty in transformer oil breakdown and 
to a certain extent in, breakdown in solids also is that there is no accepted way to param-
eterize the data. Thus, some authors present graphs of breakdown voltage or stress vs 
electrode area; others show breakdown vs stressed oil volume, and others breakdown vs 
gap thickness. An attractive compromise appears in the work of Danikas [Dan90]. In this 
work and others [Bel77], breakdown is studied as a function of both electrode area and gap 
thickness. This also allows for the possibility of a volume effect should the dependence be 
a function of area × gap thickness. In fact, in [Dan90] the area effect appears to saturate at 
large areas, that is, the breakdown level is unchanged as the area increases beyond a given 
value. Thus, breakdown becomes purely a function of gap spacing at large enough areas. 
Higake et al. [Hig75] found that the breakdown electric stress becomes constant for large 
gap distances as well as for large volumes. This would suggest caution in extrapolating 
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FIGURE 13.2
Impulse waveshape.
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experimental results either in the direction of larger or smaller parameter values from 
those covered by the experiment.

At this point, we present some of the breakdown data and parameter dependencies 
reported in the literature. When graphs are presented by the authors, we have converted 
the best fit into an equation. Also, voltage values are converted to electric field values when 
the voltage is applied across a uniform gap. For consistency, we use kV/mm units for 
breakdown stress, mm for gap thickness, and mm2 or mm3 for areas or volumes in the for-
mulas. This will allow us to compare different results not only with respect to parameter 
dependencies but also with respect to numerical values. Generally, the breakdown volt-
ages are those for which the probability of breakdown is 50%. Thus, some margin below 
these levels would be needed in actual design.

13.2.1  Breakdown in Solid Insulation

We begin with breakdown in solid insulation, namely, oil saturated paper and pressboard. 
Samples are prepared by drying and vacuum impregnation and tested under oil. For paper 
at 25°C, Blume et al. [Blu51] report breakdown voltage stress Eb,ac versus thickness d for a.c. 
60 Hz voltages:
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with d in mm and t, the duration of the voltage application, in minutes. Palmer and 
Sharpley [Pal69] report the impulse breakdown in paper, Eb,imp, versus thickness d in mm 
at 90°C as
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In going from 90°C to 20°C, the impulse breakdown stress increases by about 10% accord-
ing to [Pal69]. Clark [Cla62] reports for Kraft paper at room temperature and a.c. test 
conditions

 
E

kV
mm d

b ac
rms

, .

.æ
è
ç

ö
ø
÷ =

32 8
0 33

 
(13.5)

The impulse ratio for paper, corrected for temperature and based on (13.4) and (13.5) is ~2.7.
Results from different investigators are difficult to compare because the thickness 

buildup is achieved by stacking thin layers of paper. The stacking processes could differ. 
Some could use lapping with different amounts of overlap as well as different thick-
nesses of the individual layers. Other possible differences could include the shape and 
size of the electrodes. Nevertheless, the exponent of the thickness dependence is nearly 
the same in different studies. Reference [Cla62] reports an area effect, but it is difficult to 
quantify.

For pressboard in oil at 25°C, Reference [Blu51] reports

 
E

kV
mm d f t

b ac
rms

, . . /

. .
.

.æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷ +æ
è
ç

25 7 1 75
0 5

0 5
0 33 0 137 1 4

öö
ø
÷
 

(13.6)



369Voltage Breakdown Theory and Practice

with the frequency f in Hz and time duration t in minutes. The frequency dependence was 
only tested in the range of 25–420 Hz but is expected to hold for even higher frequencies.

For pressboard at room temperature, using 25 mm sphere electrodes, Moser [Mos79] 
reports both the a.c. and impulse breakdown level as
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Thus, the impulse ratio for pressboard obtained from (13.7) is ~3.0.
Reference [Pal69] reports for pressboard in oil at 90°C the a.c. and impulse results as

 

E
kV
mm d

E
kV
mm d

b ac
rms

b imp
peak

, .

, .

.

.

æ
è
ç

ö
ø
÷ =

æ
è
ç

ö
ø
÷ =

27 5

91 2

0 26

0 26
 

(13.8)

The impulse ratio for pressboard based on (13.8) is ~3.3. The trend in the data between 
[Mos79] and [Pal69] is in the right direction since pressboard breakdown strength decreases 
with increasing temperature.

Based on the previously mentioned data, there does not appear to be much difference 
between the breakdown strength of oil-soaked paper or pressboard insulation whether 
under a.c. or impulse test conditions. Even the thickness dependencies are similar. Although 
Cygan and Laghari [Cyg87] found an area and thickness dependence on the dielectric 
strength of polypropylene films, it is not known how applicable this is to paper or press-
board insulation.

13.2.2  Breakdown in Transformer Oil

For transformer oil at 90°C, Reference [Pal69] reports breakdown electric fields that depend 
on volume Λ in mm3 according to
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This would imply an impulse ratio for oil of ~2.5. In contrast to paper insulation, the break-
down strength of transformer oil increases slightly with temperature in the range of −5°C 
to 100°C [Blu51]. Nelson [Nel89] summarizes earlier work on the volume effect for break-
down in oil by means of the formula
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with Λ in mm3. We should note that the logarithmic dependence on volume given in (13.9) 
cannot be valid for very large volumes since the breakdown stress would eventually 



370 Transformer Design Principles

become negative. In (13.10), the breakdown stress becomes unrealistically close to zero as 
volume increases.

References [End57], [Web56] present breakdown strength in oil versus electrode area, A, 
in the form
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In (13.11), E1 refers to the breakdown voltage for area A1, etc., for E2 and A2. The gap spac-
ing in both of these studies was 1.9 mm. Although the impulse conditions in this study 
were front of wave, the voltage ramp was kept slow enough in an attempt to approximate 
full wave conditions. Thus, we can reasonably obtain an impulse ratio from (13.11) of ~2.8.

Reference [Mos79] gives the a.c. (50 Hz, 1 min) partial discharge inception electric stress, 
Epd,ac, for oil as a function of the gap thickness only. While not strictly the breakdown 
strength, partial discharge maintained over a long enough time can lead to breakdown and 
is therefore undesirable. Separate curves are given for gas-saturated or degassed oil and 
for insulated and noninsulated electrodes. Fitting the curves, we obtain
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with d in mm.
Giao Trinh et al. [Tri82] analyzed transformer oil for dielectric strength dependence on 

both area and volume. They conclude that both area and volume effects can be present 
with the area effect becoming more important for ultraclean oil and the volume effect for 
oil having a higher particle content. Although the data show much scatter, they present 
curves for oils of different purities. For their technical-grade transformer oil, the middle 
grade of the three analyzed, the following formulas are approximate fits to their curves:
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with A in mm2 and Λ in mm3. They seem to be saying that it is immaterial, whether one 
describes breakdown in terms of an area or volume effect. However, the consequences of 
these two approaches are quite different. For areas and volumes in the range of ~103–107 mm2 
or mm3, the impulse ratio implied by the said formulas is in the range of ~2–3. In these 
formulas, as is also evident in the work of [Dan90], [Hig75], the dielectric strength 
approaches a constant value as the area or volume becomes very large. This is a reasonable 
expectation. On the other hand, dielectric strengths approach infinity as areas, volumes, 
and gap distances approach zero in all the said formulas. This is unlikely, although the 
formulas seem to hold for quite small values of these quantities.

It can be seen, by putting in typical values for d, A, and Λ as found in transformers in the 
said formulas, that the dielectric strength of paper or pressboard is approximately twice 
that of oil. However, the electric stress that occurs in the oil is typically greater than that 
which occurs in the paper or pressboard. For this reason, breakdown generally occurs in 
the oil gaps first. However, once the oil gaps break down, the solid insulation will see a 
higher stress so that it could, in turn, break down. Even if the solid insulation can with-
stand the higher stress, the destructive effects of the oil breakdown such as arcing or corona 
could eventually puncture the solid insulation. Thus, it would seem inappropriate to 
design a solid-oil insulation system so that the solid by itself could withstand the full volt-
age applied across the gap as has sometimes been the practice in the past, unless the insula-
tion is all solid. In fact, excess solid insulation, because of its higher dielectric constant than 
oil, increases the stress in the oil above that of a design more sparing of the solid insulation. 
This is an example of the enhancement factor discussed in an earlier chapter.

Because of the gap and volume dependence of oil breakdown strength, it is common 
practice to subdivide large oil gaps, as occurs for example between the transformer 
 windings, by means of one or more thin pressboard cylinders. Thus, a gap having a large 
distance or volume is reduced to several smaller gaps, each having higher breakdown 
strength. Hence, current practice favors a gap or volume effect over a pure area effect since 
gap subdivision would not be of benefit for an area effect. A combination of gap–area or 
gap–volume effect would also be consistent with current practice.

The breakdown data referred to previously apply to uniform gaps or gaps as reasonably 
uniform as practical. This situation is rarely achieved in design so the question arises as to 
how to apply these results in practice. In volume-dependent breakdown, it is suggested 
that only the oil volume encompassing electric field values between the maximum and 
90% of the maximum be used [Pal69], [Wil53]. Thus for concentric cylinder electrodes, for 
example, only the volume between the inner cylinder and a cylinder at some fraction of the 
radial distance to the outer cylinder would be used in the volume-dependent  breakdown 
formulas. For more complicated geometries, numerical methods such as finite elements 
could be used to determine this effective volume.

For gap-distance-dependent breakdown, the suggestion is to subdivide a possible break-
down path into equal-length subdivisions and to calculate the average electric field over 
each subdivision. The maximum of these average fields is then compared with the break-
down value corresponding to a gap length equal to the subdivision length. If it exceeds the 
breakdown value, breakdown along the entire path length is assumed to occur. This proce-
dure is repeated for coarser and coarser subdivisions until a single subdivision consisting 
of the entire path is reached. Other possible breakdown paths are then chosen and the 
procedure is repeated [Nel89], [Franc].

Another type of breakdown, which can occur in insulation structures consisting of solids 
and liquids or solids and gases, is creep breakdown. This occurs along a solid surface in 
contact with a liquid or gas. These potential breakdown surfaces are nearly unavoidable in 
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insulation design. For example, the oil gaps present in the region between windings are 
kept uniform by means of sticks placed around the circumference. The surfaces of these 
sticks bridge the gap, providing a possible surface breakdown path. Since breakdown 
along such surfaces generally occurs at a lower stress than breakdown in the oil or air 
through the gap itself, surface breakdown is often design limiting. Reference [Pal69] 
parameterizes the surface creep breakdown stress along pressboard surfaces in oil at power 
frequency, Ecb,ac, in terms of the creep area, Ac, in mm2 according to
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On the other hand, Reference [Mos79] describes creep breakdown along pressboard sur-
faces in oil in terms of the creep distance along the surface, dc, in mm according to
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For nonuniform field situations, the same procedure of path subdivision and comparison 
with the creep breakdown strength calculated by (13.16) is followed as described earlier for 
gap breakdown.

13.3  Geometric Dependence of Transformer Oil Breakdown

One of the difficulties apparent in the previous discussion is that there are different theo-
ries with different mechanisms to explain breakdown in transformer oil or other liquids. 
These theories do not provide detailed numerical predictions, as is the case for break-
down in gases where the mechanism of breakdown is better understood on a fundamen-
tal level [Ree73]. At best, they point to a parameter dependence of the breakdown process, 
such as a dependence on the gap length, electrode area, or stressed volume. Experimental 
data are then used to fit a formula with the desired parameter dependence. This raises a 
problem. Does one choose the parameter dependence to fit the different physical configu-
rations encountered in practice? This appears to be ad hoc. The method of gap subdivi-
sion described earlier comes closest to providing a general procedure to apply to all 
situations. The problem with this approach is that it does not appear to have any rational 
physical basis.

Often, the same breakdown data can be fit to a gap, area, volume, or other parameter 
dependence. For example, in a series of papers detailing the breakdown process in trans-
former oil [Top02], [Les02], [Top02a], the authors find a dependence of the breakdown or 
corona inception field on the electrode area over a wide range of areas. However, their own 
data were also fit to a breakdown field dependence on the radius of curvature of the elec-
trode in the point or rod-plane geometry used.

While statistically, area or volume effects seem to play some role in the breakdown pro-
cess, they do not provide a breakdown mechanism that can account for all the data. 
Indeed, there does not seem to be any concrete breakdown mechanism associated with 
the area effect. In practice, designers of high-voltage core-form transformers subdivide 
the vertical gaps between the windings with a series of thin pressboard cylinder barriers, 
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suggesting their belief in a gap dependence of the breakdown voltage. (This technique 
would also be effective for a volume-dependent breakdown voltage but not for an area-
dependent one.) In this design process, reliance is placed on gap-dependent partial dis-
charge inception curves such as those provided by [Mos79]. On the other hand, there are 
geometries within a transformer, which are not covered by a simple gap-dependent 
breakdown curve, for example, the stress at the corner of a disk, which is part of a disk or 
helical winding. This also applies to leads or cylindrical cables at high voltage next to the 
grounded transformer tank.

In this section, we develop a phenomenological theory of breakdown in oil that can be 
applied to all geometries. By this, we mean that we assume an underlying theory of break-
down but that the parameters of the theory are obtained from experiment. Basically, the 
theory derives its key parameters from planar gap breakdown but then can be used to 
predict breakdown in other geometries. We will mainly consider the extension to  cylindrical 
and spherical geometries since these can be derived analytically. However, some discus-
sion of the more general approach with examples will also be given.

We assume a Townsend type of breakdown mechanism for the oil but do not attempt to 
link the parameters of the theory to any fundamental electronic or molecular processes. As 
mentioned earlier, the parameters of the theory will be chosen to fit the gap-dependent 
planar breakdown data, and then these same parameters will be applied to the cylindrical 
and spherical geometries. Data for these geometries can then provide a test of the theory. 
We use the term breakdown in this section loosely to refer to actual breakdown or to corona 
or partial discharge inception voltage.

13.3.1  Theory*

We will focus on the electrons produced in the avalanche process and assume that they 
move with a velocity v proportional to the electric field E:

 v E= m  (13.17)

where μ is the mobility assumed constant. (Here as elsewhere, when we use the term 
e lectrons, we mean any charged complex or entity.) Actually, the electrons move opposite to 
the electric field so the mobility can be considered negative or, in later discussions, the 
applied voltage can be considered negative. We assume that all the electrons, even the 
newly released ones, achieve this equilibrium velocity instantaneously or in extremely 
short times. Letting n be the number of electrons per unit volume, the continuity or conser-
vation equation for electrons can be written [Dai73] as
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(13.18)

where γ is the number of electrons produced per unit volume per unit time. Ignoring dif-
fusion effects, which should be extremely slow compared with the breakdown process, 
and assuming steady-state conditions, Equation 13.18 becomes

 v v×Ñ + Ñ × =n n g (13.19)

*  This section follows closely our published paper [Del04], IEEE Trans. Power Deliv., 19(2), April 2004, 652–656. 
© 2004 IEEE.
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We will assume that γ depends on the electric field and has the form

 g b= ( )nvg E  (13.20)

where
β is a constant having the units of inverse length
g(E) is a unitless field-dependent quantity
n and v have their usual meanings

Note that βg(E) is the number of electrons produced or released by a single electron in an 
electric field E per unit distance traveled. This depends on the magnitude of the electron 
velocity via (13.17). nv is the flux of electrons, that is, the number of electrons per unit area 
per unit time. Hence, the product γ is the number of secondary electrons released per unit 
volume per unit time.

13.3.2  Planar Geometry

Applying (13.19) to a planar geometry as shown in Figure 13.3, where the E-field is 
u niform in the x direction so that ∇ · v = 0 by virtue of (13.17) and all quantities only 
depend on x, we have
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(13.21)

Canceling out v and rearranging, we get
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n
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(13.22)

Note that we are ignoring space charge effects since, in general, ∇ · E = ρ/ε, where ρ is the 
charge density and ε the permittivity. This effectively assumes that the electric field pro-
duced by any charge accumulation is small compared with the applied field and thus does 

d
Oil

E

x

V

V
=

0

FIGURE 13.3
Planar geometry. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 19(2), April 2004, 652–656. © 2004 IEEE.)
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not significantly distort it. While this is probably a good approximation for the incipient 
breakdown conditions we are considering here, it would probably not apply if the details of 
the breakdown process itself were being modeled. Equation 13.22 can be integrated to get
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(13.23)

where n0 is the number density of electrons at x = 0 and the integral is over the thickness of 
the gap, d. Since E is constant, this becomes
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We expect breakdown to occur when n(d)/n0 is greater than some large number. However,  
this is equivalent to stating that

 bg E d N( ) >  (13.25)

where N ~ 10 since e10 is a large number. The exact value is not significant since we will 
soon eliminate it from the equations. Since β is a constant, we can write more succinctly
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(13.26)

where κ is some characteristic constant having units of length. We can think of κ as the 
number of electrons, which must be released per unit electron times the distance over 
which this release must occur in order to cause breakdown. Thus, an energetic electron, 
which releases many secondary electrons, need only traverse a short distance to cause 
breakdown. On the other hand, a less energetic electron, which releases few secondary 
electrons, must traverse a longer distance to cause breakdown.

The planar gap breakdown data for a.c. voltages and degassed oil with noninsulated 
electrodes are given in [Mos79]. It has been fitted to the formula given previously in (13.12) 
and repeated here:
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where the rms breakdown field is in kV/mm and the gap distance d is in mm. Comparing 
(13.26) and (13.27), we see that g(E) must be of the form
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where Eo is a constant chosen to make g(E) unitless. Using (13.28) in (13.26), we get for the 
breakdown field
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We see that we should take 1/m = 0.36 or m = 2.778 in order to reproduce the exponential 
dependence in (13.27). If we take the arbitrary constant Eo = 100 kV/mm, we find that
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Thus, κ = 0.0083 mm is needed in order to fit (13.27).
For impulse waveforms, the impulse breakdown voltage for a given gap thickness has 

been shown by numerous experiments as cited earlier to be a constant multiple of the a.c. 
rms breakdown voltage, which on average is about 2.8. This is called the impulse ratio.  
Using this impulse ratio, the planar impulse breakdown is given in (13.30), with d in mm
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In order to fit this equation, m remains the same but now κ = 0.146 mm. This would imply 
that a greater electron avalanche is required to produce breakdown under the short- 
duration impulse conditions as compared with the much longer a.c. breakdown conditions 
for a given distance of electron travel. This has some intuitive appeal.

It is expected that β and, hence, κ will depend on oil quality or oil type. Also, m may 
depend on the type or quality of the oil. It is certainly well-known that impurities in the oil 
affect the breakdown value.

13.3.3  Cylindrical Geometry

We now apply these same principles to a cylindrical geometry as shown in Figure 13.4. The 
electric field in the gap between the inner cylinder of radius a and the outer cylinder of 
radius b is given by
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b
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E

r
Oil

V

V = 0

FIGURE 13.4
Cylindrical or spherical geometry. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 19(2), April 2004, 652–656. © 
2004 IEEE.)
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where
ar is a unit radial vector
r is the radial coordinate
V is the applied voltage

Since v is proportional to E by (13.17), v is also a radial r-dependent vector. In fact, because 
of the cylindrical symmetry, all quantities depend only on r. This greatly simplifies (13.19) 
when expressed in cylindrical coordinates. Using (13.17) and (13.31) and ignoring space 
charge effects, we have ∇ · v = 0 in cylindrical coordinates since
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Expressing the remaining terms in (13.19) in cylindrical coordinates, we have simply
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This is identical in form to (13.22) except that g(E) now depends on r through E. Thus, the 
breakdown condition becomes
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where m has been given numerically. Getting E(r) from (13.31), we can perform the integral 
in (13.33) to get as a breakdown condition
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where
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is the electric field at the inner cylinder as well as the maximum field in the oil gap between 
the cylinders. Solving for Ea, we find
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For the same choice of Eo, κ, and m used in the planar case, we get
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and for impulse conditions, assuming an impulse ratio of 2.8,
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a and b are in mm in the preceding formulas.

13.3.4  Spherical Geometry

The spherical geometry is also depicted in Figure 13.4 where a and b are now the radii 
of the inner and outer spheres, respectively. The electric field in the spherical gap is 
given by
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where the symbols have their usual meanings. Because of the spherical symmetry, all 
quantities depend only on r. Also, in view of (13.17) and (13.39) and ignoring space charge 
effects, ∇ · v = 0 in spherical coordinates since
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Therefore, Equation 13.19 becomes, in these coordinates,
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Thus, (13.40) is of the same form as (13.22) except that E is a function of r. Thus, the break-
down condition becomes identical to (13.33), except that the E(r) dependence is different. 
Substituting from (13.39) and performing the integral, we get
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where

 

E
V

a
a
b

a =
-æ

è
ç

ö
ø
÷1
 

(13.42)



379Voltage Breakdown Theory and Practice

is the E-field at the inner sphere and the maximum field in the oil gap. Solving for Ea,
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Choosing E0, κ, and m from the planar fit, we have
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For impulse waveforms, we have
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with a and b in mm.

13.3.5  Comparison with Experiment

Note that for an isolated cylinder or sphere, where b ≫ a, we have from (13.36) and (13.43)
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Taking the ratio
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This ratio should be constant, independent of the radius of the cylinder or sphere and inde-
pendent of the waveform, provided they are the same for the two cases. For m = 2.778, this 
ratio is 1.4.

Reference [Wil53], citing data for oil obtained by Peek in 1915 [Pee29], shows this ratio to 
be nearly constant for different radii. However, the ratio found is 1.6. This could reflect a 
different type of oil used then since m could depend on the oil type or quality. Or it could 
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reflect the fact that the necessarily finite length cylinders used in the experiments were not 
a sufficiently close approximation to the ideal infinite-length ones analyzed here.

In the case of an isolated sphere (b ≫ a) under impulse conditions, we have from (13.45)
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Breakdown data for impulse conditions obtained by [Les02] for point and rod electrodes 
reasonably far from the ground plane were fit to the expressions
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where a is the radius of curvature of the tip in mm. Although the geometry is not quite that 
of an isolated sphere, it is reasonably close so that the favorable comparison with (13.49) is 
meaningful.

13.3.6  Generalization

We should note that the breakdown formulas for the cylindrical and spherical geometries 
reduce to the planar case when a and b become large. This is expected since locally the 
cylindrical and spherical gaps start looking more and more like planar gaps. However, for 
small a, the breakdown formulas depart significantly from the planar case. In fact, for b 
large compared with a, as (13.49) indicates, the formulas depend only on the radius of cur-
vature of the inner electrode. The gap or distance between a and b plays no role. As a 
decreases, the breakdown strength increases. Apart from the confirmation of this effect 
provided by [Les02], transformer designers know that the breakdown stress at the corners 
of the individual disks in a disk winding, where small radii of curvature are present, can 
be much higher than the allowable breakdown stress in the gaps between windings.

Although expressions for breakdown have been found for idealized geometries, in prin-
ciple, Equation 13.19 could be solved for any geometry. This requires first solving for the 
electric field. Then v and g(E) become known so that n can be found throughout the vol-
ume where E exists. By examining the boundary values of n, one could then see if it has 
been multiplied sufficiently from its starting electrode value to cause breakdown. n would 
need to be set at some value, say 1, on the starting electrode.

While the described procedure requires a considerable calculational effort, it may be pos-
sible to justify a simpler procedure for a general geometry. For example, having solved for 
the E-field, one might perform the integral
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along possible breakdown paths and then compare it with κ where Eo = 100 kV/mm, 
κ = 0.0083 mm, and m = 2.778 are reasonable choices for standard transformer oil and a.c. 
voltages. Assuming an impulse ratio of 2.8, one needs to use κ = 0.146 mm for 
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impulse conditions. In performing the integral in (13.51), one should always remain tan-
gential to the E-field or perpendicular to the equipotential surfaces since the electrons are 
assumed to move in this fashion. More specifically, the breakdown condition would 
become
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where the integral is taken along a most likely breakdown path, P. This would then gener-
alize (13.33), which was used for planar, cylindrical, and spherical geometries, although in 
these three cases, the most likely breakdown path is clear. Note that the integral in (13.52) 
is in mm, that is, the same unit as κ. Also, if there is insulation present and E(s) is calculated 
without including the enhancement effect of this insulation, then an enhancement factor 
should multiply E(s) in (13.52). If this can be considered constant along the path, then it can 
be factored out of the integral as an overall multiplier. Thus, if the constant enhancement 
factor is η, then ηm should multiply the integral.
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This shows that the presence of an enhancement factor lowers the threshold for 
breakdown.

On the other hand, if one wants to determine the voltage that produces breakdown for a 
given situation, it is necessary to assume that the E(s)’s in (13.53) are proportional to the 
voltage V that is producing the E-fields. This is the case for the three geometries considered 
in the equation. Thus to ensure that equality holds in (13.53) for the given E(s)’s used in the 
equation, we need to multiply E(s) by a factor X to be determined. This leads to the break-
down condition
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Breakdown equality was assumed in the special geometries considered thus far, although 
these did not include an enhancement factor. This equality would apply to new or non-
ideal geometries when the breakdown voltage needs to be determined.

13.3.6.1  Breakdown for the Cylinder-Plane Geometry

Another case where the breakdown path is clear is for the cylinder-plane geometry. Here, 
the most likely breakdown path is from the point on the cylinder nearest the ground plane 
along the shortest straight line to the ground plane. The electric field along this line is given 
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by Equation 11.41. As a numerical example, let the radius of the cylinder be 10 mm with a 
5 mm thick paper covering. The distance from the cylinder center to the ground plane is 
allowed to vary. The breakdown path is therefore along a straight line from the ground 
plane to the paper cover. In this case, we use an enhancement factor for a cylinder geome-
try given in Equation 11.19. The enhancement factor varied with the distance to the ground 
plane but was about 1.05. The gap is filled with oil and the only solid insulation is the 
paper cover. The breakdown voltage level in kV was calculated for impulse breakdown 
using (13.54) and includes a 20% margin. It is plotted versus the distance from the cylinder 
center to the ground plane in Figure 13.5. To get the a.c. breakdown levels with a 20% mar-
gin, divide the kV values on the figure by 2.8.

13.3.6.2  Breakdown for the Disk–Disk-to-Ground Plane Geometry

In Chapter 11, we calculated the electric field near the corner of the disk–disk-to-ground 
plane geometry using conformal mapping. The field was calculated a paper distance away 
from the corner and included an enhancement factor to account for the paper and other 
insulation. We can use this solution method here to calculate the field along a possible 
breakdown path starting at the outer surface of the corner paper.

In this method, the initial E-field vector defines a direction away from the paper surface. 
We set a sufficiently small step size and find the next point a step size away from the sur-
face in the direction of the initial E-field. At this new point, we calculate a new E-field and 
use its direction to find the next point a step size away from the second field. Using the 
direction determined by the second E-field, we get a third point another step size away 
from the second point and calculate the third E-field here. This process is continued until 
we encounter a surface such as the ground plane or the paper surface of the second disk. 
An example of such a path is shown in Figure 13.6. In this example, the disk–disk separa-
tion was 10 mm and the 2-sided paper cover was 1 mm so that the gap from disk metal to 
disk metal was 11 mm. The gap from the disk metal to the ground plane was 100.5 mm, 
including the 1-sided paper cover. The 2 disks were at 100 and 80 kV. The path started on 
the outer corner paper of the right disk at 100 kV and ended on the ground plane. 
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Breakdown kV with a 20% margin versus the distance from the cylinder center to the ground plane for a cylinder 
of radius = 10 mm and with a paper cover of 5 mm.
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The maximum corner E-field was selected as the starting point from the three positions 
shown in Chapter 11.

The integral in (13.51) was performed along this path for the impulse value of κ = 0.146. 
Using the enhancement factor described in Chapter 11, which was 1.09 for this case, the 
calculated breakdown field was 30.0 kV/mm. The maximum field occurs at the outer 
paper surface at the disk corner.

As another example, the disk–disk gap was set to 21 mm, including a 1 mm 2-sided 
paper cover, and the disk-to-ground plane was set to 150.5 mm including a 1-sided paper 
cover. The disk voltages were 100 and 50 kV. In this case, the breakdown path was from one 
disk to the other as shown in Figure 13.7. Here, the enhancement factor was 1.08 and the 
breakdown field was 34.0 kV/mm for impulse conditions.

Another example is with a gap spacing of 4.5 mm, including a 0.5 mm thick 2-sided 
paper cover, and a distance to the ground plane of 50.25 mm, including a 0.25 mm thick 
1-sided paper cover. The disk voltages were 100 and 80 kV. The breakdown path is shown 
in Figure 13.8. In this case, the enhancement factor was 1.07 and the breakdown E-field was 
40.0 kV/mm for impulse conditions.

It should be noted that the calculated E-fields for the larger disk–ground plane gaps are 
probably unrealistically high. The E-field along the breakdown path for this last case is 
plotted in Figure 13.9. This E-field does not include the enhancement factor or the multi-
plier required to reach the breakdown level. This is the E-field tangential to the path, which 
is also the E-field magnitude since it is directed along the path.

It should be noted that the calculated breakdown fields for the larger disk–ground plane 
gaps are probably unrealistically low. This is because the two disks are assumed to extend 
indefinitely in the horizontal directions, maintaining their voltage levels. This means that 
higher fields are present over the longer lengths of the breakdown paths than would 
 normally occur in practice. This is not a concern when the breakdown path is between the 
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two disks since, although the gap between the disks extends indefinitely in the vertical 
direction, the breakdown path length is relatively short and is confined to the region near 
the disk corner where the field calculation is more realistic. In practice, there is often a limit 
placed on the corner E-field, which is in the range of 30–35 kV/mm. This is consistent with 
the previously described results.
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When pressboard or other barriers are present, the breakdown path should only be taken 
up to the barrier because the breakdown avalanche would stop at this point. This is consis-
tent with the practice of subdividing gaps to increase the breakdown electric field levels.

13.3.7  Discussion

We have shown how it is possible to start from the planar geometry breakdown data, 
assuming a simple Townsend breakdown mechanism, to arrive at a prediction of the 
breakdown data in other geometries, which agrees quite well with the experimental data 
in these geometries. Although we referred to electrons participating in the breakdown 
mechanism, this could clearly refer to any charged complex or entity and almost certainly 
not to bare electrons. Furthermore, although we refer to breakdown, this could also be 
interpreted as corona or partial discharge inception voltage, depending on what the planar 
breakdown data refer to.

This entire exercise highlights the unity of the breakdown process, regardless of the geom-
etry in which it occurs. It is clearly unphysical to invoke area or volume effects to explain 
breakdown in curved geometries but not in planar geometries. Most of the data support a 
gap effect for planar geometries, which is characteristic of a Townsend-type mechanism. In 
addition, the common and effective practice of inserting pressboard barriers in large oil 
gaps to increase the breakdown voltage is a tacit acknowledgement of a gap effect.

This work has emphasized the need for more oil breakdown data in as close to ideal as 
possible cylindrical and spherical geometries, where mathematical methods may be 
applied without much approximation. The startling conclusion given in (13.48) that the 
breakdown voltage ratio for spherical and cylindrical electrodes of the same radius subject 
to the same voltage waveform is a constant, independent of the radius of the electrode, 
provided they are sufficiently isolated, and should be rechecked experimentally. Although 
ideal spherical geometries can be reasonably approximated, an ideal cylinder (infinitely 
long) is not easily accessible. Perhaps an equation similar to (13.48) can be derived for 
finitely long cylinders, provided breakdown occurs near the center. This should approach 
the infinite case as the cylinder length/radius increases and would at least provide a guide 
as to when the cylinder is long enough.
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There are essentially two parameters in the methodology discussed here, m and κ. (Eo is 
really arbitrary.) The parameter m appears to be rather insensitive to experimental break-
down conditions, while κ certainly depends on the breakdown waveform, whether one is 
considering full or partial breakdown, and also on oil quality. Whether these parameters 
can be obtained in a more fundamental way from the properties of oil remains to be seen. 
At present, one may expect to parameterize m and κ in terms of waveform duration, the 
type of breakdown, and oil impurity levels based on experimental data.

13.4  Insulation Coordination

Insulation coordination concerns matching the insulation design to the protective devices 
used to limit the voltages applied to the terminals of a transformer by lightning strikes or 
switching surges and possibly other potentially hazardous events. Since the insulation 
must withstand the normal operating voltages that are present continuously as well as 
lightning or switching events that are of short duration, how breakdown depends on the 
time duration of the applied voltage is of major importance in insulation coordination. We 
have seen previously that the impulse ratio is ~2–3 for oil-filled transformer insulation. 
This means that the breakdown strength of a short-duration impulse voltage lasting 
~5–50 μs is much higher than the breakdown strength of a long-duration (~1 min) a.c. volt-
age. It appears that, in general, breakdown voltages or stresses decrease with the time 
duration of the voltage application for transformer insulation. The exact form of this break-
down vs time dependence is still somewhat uncertain, probably because of variations in 
material purity and/or experimental methods among different investigators.

References [Blu51], [Cla62] show a time-dependent behavior of relative strength of oil or 
pressboard that is schematically illustrated in Figure 13.10. Three regions are evident on 
the curve, labeled A, B, and C. For short durations, <10 μs, there is a rapid fall-off in the 
strength with increasing time. This is followed by a flat portion, B, which extends to about 
1,000 μs for oil and to about 20,000 μs for pressboard. In region A, there is a more gradual 
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fall-off approaching an asymptotic value at long times. The combination of an oil press-
board gap also produces a curve similar to Figure 13.10.

Using statistical arguments, that is, equating the probability of breakdown for times 
less  than t for a fixed voltage across an oil gap under corona-free conditions, which is 
1 − exp(−t/to) where to is the average time to breakdown, to Equation 13.1 with Vo taken to 
be 0, Reference [Kau68] obtains the breakdown voltage vs time relationship for an oil gap 
in the form
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Experimentally, they find that for times from a few seconds to a few weeks, k is between 
15 and 30. This relationship cannot, however, hold for very long times since it predicts 
breakdown at zero voltage at infinite time. To correct this, one could use the same statisti-
cal argument to show that
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where Vo is the infinite time breakdown voltage. This can be rearranged to the form of
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Picking a V1, t1 pair, this can be written for a general V, t pair:
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Dividing by the gap thickness, this can be written in terms of the breakdown stress, Eb, as
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where Eb,o is the infinite time breakdown stress. This last equation is very similar to (13.6) 
in its time dependence. As shown in Figure 13.10, the time-dependent behavior of 
 transformer oil breakdown is more complicated over a time span from μs to years than the 
formulas discussed would suggest.

At short times in the μs region, the breakdown voltage or stress vs time characteristic 
changes rapidly with time. Impulse waveshapes as shown in Figure 13.2 are somewhat 
complicated functions of time. In order to extract a single voltage–time duration pair from 
this waveshape for comparison with the breakdown curve, the common practice is to take 
the peak voltage and the time during which the voltage exceeds 90% of its peak value. 
Thus, a standard impulse wave, which rises to its peak value in 1.2 μs and decays to 50% 
of its peak value in 50 μs, spends about 10 μs above its 90% voltage level. A switching surge 
test waveshape is similar to that of Figure 13.2, but the rise time to peak value is ~100 μs 
and the fall time to the 50% level is ~500 μs. The time spent above the 90% of peak voltage 
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level is ~200 μs. Therefore, we would expect breakdown to occur on a switching surge test 
at a lower voltage than for a full wave impulse test.

Two other types of impulse test are the chopped wave test and front-of-wave test, 
although the latter is sometimes considered unnecessary in view of modern methods of 
protection. A standard chopped wave, as shown in Figure 13.11, rises to its peak in ~1.2 μs 
and abruptly falls to zero with a slight undershoot at the chop time of ~3 μs. It is above its 
90% of peak voltage for ~3 μs. The front of wave is chopped on the rising part of the wave 
and is above 90% of its maximum value for ~0.5 μs. The generally accepted breakdown 
levels corresponding to these different times, normalized to the full wave breakdown level, 
are given in Table 13.1.

We have included in Table 13.1 two other points, the 1 min a.c. test point and the essen-
tially infinite time nominal voltage point. For the 1 min test point, we have used an impulse 
ratio of 2.8. Thus, the normalized breakdown peak voltage level is 1/2.8 × √2 = 0.5 and the 
duration above 90% of the peak voltage is 0.287 × 60 s = 17.2 s. We have taken the nominal 
system voltage to be half the 1 min test voltage. Other values for these could have been 
chosen with equal justification. For instance, an impulse ratio of 2.4 is commonly assumed 
in setting test values and the nominal voltage can be a factor of 2.5–3.0 below the 1 min test 
level. Note that the nominal system voltage used here is from terminal to ground.

We can produce a reasonable fit to these tabular values with an equation of the form 
(13.58). Letting Vb,rel be the breakdown levels relative to the full wave level, we obtain
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with t in μs. Table 13.1 is based on practical experience in testing transformers. The numbers 
can only be regarded as approximate, and different choices are often made within a reason-
able range about the values shown. This would influence the fit given in (13.60) or possibly 
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require a different parameterization. This parameterization may have no fundamental sig-
nificance since it is not based on any carefully controlled experiment. However, its form, 
which agrees with the more fundamentally based equation (13.58), is noteworthy.

In practical applications, a table like Table 13.1 provides a way of linking the various test 
voltages to the full wave impulse voltage that is also called the basic impulse level (BIL). 
Since the required impulse test levels are usually linked to the lightning or surge arrestor 
protection level, whereas the a.c. test levels or nominal voltage level are not, they can be 
specified independently. For example, a 500 kVrms line-to-line transformer (= 288 kVrms line 
to ground = 408.2 kVpeak line to ground) would correspond to a full wave impulse level of 
1633 kV according to Table 13.1. However, the user may have sufficient protection that 
only a 1300 kV impulse test is required. Nevertheless, the insulation would have to be 
designed to withstand a full wave 1633 kV impulse test, even though not performed, since 
that level of protection is required to guarantee satisfactory operation at the nominal 
500 kVrms line-to-line voltage. As another example, one may have breakdown stress vs 
 distance, area, or volume curves for 1 min a.c. test conditions. In order to compare these to 
the stress levels generated in a simulated impulse test calculation, one needs to know the 
relative breakdown level factors given in Table 13.1.

13.5  Continuum Model of Winding Used to Obtain the Impulse 
Voltage Distribution

For very short times after the application of a voltage to a winding terminal, the voltage 
distribution along the winding is governed primarily by capacitive coupling. This is 
because the winding inductance limits the flow of current initially.

13.5.1  Uniform Capacitance Model

In the uniform capacitance model, a winding is represented by the capacitive ladder dia-
gram given in Figure 12.1. The discussion here is somewhat simpler since the voltages on 
the neighboring windings, core, or tank are assumed to be at zero potential. In this case, the 
differential equation derived in Equation 12.12 becomes
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TABLE 13.1

Breakdown Voltage Durations and Normalized 
to the Full Wave Impulse Level

Type Duration (μs) Breakdown Level

Front of wave 0.5 1.3
Chopped wave 3 1.1
Full wave 10 1.0
Switching surge 200 0.83
1 min a.c. 17.2 × 106 0.5 peak
Nominal a.c. ∞ 0.25 peak
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where a = C /Cg s  with Cg, the total ground capacitance, and Cs, the series capacitance. 
L is the winding height and x is measured from the high-voltage end.

If a voltage Vo is suddenly applied at the line end and the other end of the winding is 
grounded, the voltage distribution along the winding, as given by (12.55), is
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When the nonimpulsed end of the winding is floating when the voltage Vo is applied to the 
line end, the voltage distribution as given by the solution of (13.61) is
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Equation 13.62 is replotted in Figure 13.12 for several values of α. This is done here for 
comparison with the solution of (13.63), which is plotted in Figure 13.13. As can be seen, 
the slope of the curve for (13.62) becomes very steep at the line end as α increases. This 
implies that the disk–disk voltage ΔVd increases with increasing α since this is given 
approximately as
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where w is the disk–disk spacing, assumed small compared with L. This has its maximum 
value at the line end where x = 0,
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For the ungrounded or floating-end winding, Equation 13.63 is plotted in Figure 13.13. 
The maximum stress again occurs at the line end and, using (13.63), is
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which is somewhat less than (13.65), since ∣tanh α∣ ≤ 1. When α is large, say >3, tanh α ≈ 1, 
so (13.65) and (13.66) are essentially equal. If α is small, say <0.1, ΔVd,line = Vo(w/L) for the 
grounded-end case, while ΔVd,line ≈ 0 for the floating-end case.

Since the disk–disk stress increases with α and by implication, the turn–turn stress also, 
this suggests that to reduce α we need to increase Cs or decrease Cg or both. This has led to 
winding schemes such as interleaving, which can dramatically increase the series capaci-
tance. Interleaving schemes can be quite complicated and need not be applied to the whole 
winding. In addition, the scheme may vary within a given winding. A multistart winding 
is an example of a simple interleaving scheme for increasing the series capacitance of a tap 
winding. Another method of increasing the series capacitance is by means of wound-
in-shields, which can be applied to a section of the winding near the line end where they 
are most needed. Decreasing Cg is not as promising since this would involve, at least in a 
simple approach, increasing the winding-to-winding or winding-to-tank distance for an 
outer winding or winding to core distance for and inner winding. Such changes could 
conflict with impedance or cooling requirements.
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13.5.2  Traveling Wave Theory

An improvement over the static capacitance model is a model that includes the winding 
inductance in an approximate way. This is the traveling wave theory as developed by 
Rudenberg [Rud68], [Rud40]. This is also a continuum uniform winding model with the 
circuit parameters defined on a per-unit-length basis. A new variable, the inductance per 
unit length is introduced to take inductive effects into account. This can only be regarded 
as approximate since it ignores the mutual inductance between the different sections of the 
winding. However, this approximation can be justified to some extent mathematically and 
by comparison with experiment.

Without going into all the details, which can be obtained from the references given 
 earlier, the disk–disk voltages along the winding are given by
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with x, the distance along the winding, measured from the line end. This has its maximum 
at the line end where x = 0, which is given by
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For α > 3, which is somewhat typical, tanh α ≈ 1, so that, comparing (13.68) with its coun-
terparts in the purely capacitive cases, this disk–disk voltage drop is about 18% lower.

Norris [Nor48] has proposed an improved version of (13.67), which has the form
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where Kg ≤ 1 can be found as a solution of the equation [Rud68], [Rud40]
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This reduces to a quartic equation, which can be solved analytically for Kg as a function 
of x. At x = 0 and for α > 3, Equation 13.69 is equal to the disk–disk voltage drop in the 
capacitive case, as can be seen by comparison with (13.65). Norris has also suggested cor-
rections for incoming waves having finite rise and fall times and gives procedures for 
handling nonuniform windings. 
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High-Voltage Impulse Analysis and Testing

14.1  Introduction

Lightning strikes and switching surges are probably the most serious threats to the electri-
cal system of a transformer. Although protective gear is normally used to limit the severity 
of these threats, this protection typically limits the maximum voltage of the impulse to the 
basic impulse level (BIL) of a transformer. The BIL is therefore the design level and is often 
below the maximum lightning strike voltage. However, because it is a pulse of short dura-
tion, many high-frequency components of the voltage are present in the pulse. This in turn 
excites capacitive and inductive elements present in the transformer. For this reason, a 
circuit model of the transformer, which includes these elements along with resistive 
 elements, is desirable.

14.2  Lumped Parameter Model for Transient Voltage Distribution

In this section, we develop a circuit model of the transformer that can be used to analyze 
impulse and other transient electrical shocks to a transformer. This model includes capaci-
tive, inductive, and resistive elements. The inductive elements include mutual inductances 
between elements in the same winding and between different windings and the effects of 
the iron core. The coils can be subdivided into as fine or coarse a manner as is consistent 
with the desired accuracy. Moreover, the subdivisions can be unequal so that accuracy in 
certain parts of the coil can be increased relative to that in other parts. The approach taken 
is similar to that of Miki et al. [Mik78] except that it includes winding resistance and the 
effects of the iron core. Also, the differential equations describing the circuit are organized 
in such a way that circuit symmetries can be exploited and other circuit elements such as 
nonlinear varistors may be included.

14.2.1  Circuit Description

A transformer is approximated as a collection of lumped circuit elements as shown in 
Figure 14.1. Although not shown, mutual inductances between all the inductors are 
assumed to be present. The subdivisions may correspond to distinctly different sections of 
the coil, having different insulation thicknesses, for example, or may simply be present for 
increased accuracy. The core and tank are assumed to be at ground potential. The presence 
of the tank only affects the capacitance to ground of the outer coil but not the inductance 

14
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calculation. Other elements such as grounding resistors, capacitors, inductors, or nonlinear 
elements may be added. Terminals or nodes may be interconnected, shorted to ground, or 
connected to ground via a resistor, reactor, capacitor, or varistor.

In order to analyze the circuit of Figure 14.1, we isolate a representative portion as shown 
in Figure 14.2. We adopt a node numbering scheme starting from the bottom of the inner-
most coil and proceeding upward. Then continue from the bottom of the next coil, etc. 
Similarly, a section or subdivision numbering scheme is adopted, starting from the bottom 
of the innermost coil, proceeding upward, etc. These numbering schemes are related. In 
the figure, we have labeled the nodes along a winding with i, (p’s, q’s, and s’s for nodes on 
adjacent windings) and the winding sections with j. Our circuit unknowns are the nodal 
voltages Vi and section currents Ij directed upward as shown.

Considering the voltage drop from node i − 1 to node i, we can write
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where Mjk is the mutual inductance between sections j and k. Defining a section current 
vector I, a nodal voltage vector V, an inductance matrix M, where Mjj = Lj, and a diagonal 
resistance matrix R, we can compress this formula as
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FIGURE 14.1
Circuit model of a transformer. The number of coils and subdivisions within a coil are arbitrary.
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where B is a rectangular matrix whose rows correspond to sections and columns to nodes 
such that Bji−1 = 1 and Bji = −1, where nodes i − 1 and i bracket section j. The inductance 
matrix M is a symmetric positive definite matrix. Equation 14.2 holds independently of 
how the terminals are interconnected or what additional circuit elements are present.

Applying Kirchhoff’s current law to node i, we obtain
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where the p-sum is over all nodes connected to node i via shunt capacitances Kip. Cj is set 
to zero when node i is at the bottom of the coil and Cj+1 = 0 when node i is at the top of the 
coil, although a small value for capacitive coupling to the yokes could be used. dVp/dt = 0 
when node p is at ground potential such as when connected to the core or tank. Defining a 
capacitance matrix C, Equation 14.3 can be rewritten as
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where A is a rectangular matrix whose rows correspond to nodes and columns to sections 
and where Aij = 1 and Aij+1 = −1, with sections j and j + 1 on either side of node i. One of 
these terms is 0 when i is at the end of a coil.

When a nodal voltage Vi is specified, for example, at the impulsed terminal, as Vi = Vs, 
Equation 14.3 is replaced by

 
dV
dt

dV
dt

i s=
 

(14.5)

q

p

Kiq

Kip

Cj

Cj+1

Lj

Lj+1

Rj

Rj+1

s

Kis

i –1

i +1

i

Ij+1

Ij

FIGURE 14.2
Representative portion of Figure 14.1.
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If Vs = 0 as for a grounded terminal, then (14.5) becomes dVi/dt = 0. When node i is shorted 
to ground via a resistor Rs, a term Vi/Rs is added to the left-hand side of (14.3). If node i is 
grounded by means of a capacitor Cs, a term Cs dVi/dt is added to the left-hand side of 
(14.3). For a shorting inductor Ls uncoupled from all the other inductors, a term ∫Vi dt/Ls 
is added to the left-hand side of (14.3). Other situations such as a resistor or varistor joining 
two nodes can be accommodated.

When several nodes are joined together, say, nodes i, r, s, …, their Kirchhoff’s current law 
equations are simply added. The resulting equation replaces the node i equation. Then the 
node r, s, … equations are replaced by

 
dV
dt

dV
dt

dV
dt

dV
dt

r i s i- = - = ¼0 0, ,
 

(14.6)

The net result of all these circuit modifications is that the capacitance matrix in (14.4) may 
be altered and the right-hand side may acquire additional terms, for example, terms involv-
ing V for a resistor, ∫V dt for an inductor, and the impulsed voltage Vs. Thus, Equation 14.4 
is replaced by

 
¢ = + ( )C A
d
dt

f V, Vs
V

I
 

(14.7)

where
C′ is the new capacitance matrix
f depends on the added elements

This procedure lends itself to computer implementation.
Equations 14.2 and 14.7 can now be solved simultaneously by means of, for example, a 

Runge–Kutta algorithm starting from a given initial state. Linear equations must be solved 
at each time step to determine dI/dt and dV/dt. Since M is a symmetric positive definite 
matrix, the Cholesky algorithm may be used to solve (14.2) while (14.7) may be solved by 
Gaussian elimination. LLT or LU factorization is first performed on the respective matrices 
and the factors are used subsequently to solve the linear equations at each time step,  saving 
much computation time.

14.2.2  Mutual and Self-Inductance Calculations

The transformer core and coil geometry including the iron yokes is assumed to have cylin-
drical symmetry. The iron is assumed to be infinitely permeable. A typical coil section is 
rectangular in cross section and carries a uniform current density azimuthally directed. 
The yokes extend outward to infinity and we ignore the tank walls. This geometry corre-
sponds to that used in the Rabins’ inductance and mutual inductance calculations of 
Section 9.4. There formulas are given for the mutual inductances between coil sections on 
the same or different coils and for the self-inductances of coil sections. These are used in 
the circuit model discussed here.

14.2.3  Capacitance Calculations

The series capacitances must take into account the type of coil, whether helix, disk, 
 multi-start, or other. Series and shunt capacitances incorporate details of the paper and 
pressboard insulation, the placement of key spacers and sticks, and the oil duct geometry. 
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Except when wound-in-shields are present, the formula developed by Stein as discussed 
in Chapter 12 is used for the series disk capacitances. This formula was found to produce 
the best results in the work reported by Miki et al. [Mik78]. Simple standard formulas are 
used for helical and multi-start windings as well as for shunt capacitances as discussed in 
Chapter 12. Basically, a shunt capacitance per unit length is calculated, assuming the coils 
are infinitely long, and this is multiplied by the length of the section to get the section to 
section or section to ground shunt capacitances. The nearest-neighbor sections on adjacent 
windings are used in this calculation.

The series capacitance for a section containing several disks is obtained by adding the 
single disk capacitances in series, that is, dividing the single disk capacitance by the 
 number of disks in the section. Since the subdivisions need not contain an integral number 
of disks, fractional disks are allowed in this calculation. Other subdivision schemes could 
be adopted that restrict the sections to contain an integral number of disks. When wound-
in-shields are present, only an integral number of disk pairs are allowed in the subdivision. 
The finer the subdivisions or the greater their number, the greater is the expected accuracy. 
However, too fine a subdivision, for example, less than the height of a disk, could be coun-
terproductive. Fine subdivisions can also lead to convergence problems for the Fourier 
sums in the mutual inductance calculation.

14.2.4  Impulse Voltage Calculations and Experimental Comparisons

The standard impulse voltage waveform can be mathematically represented as

 V t A e es
t t( ) = -( )- -a b

 (14.8)

where α, β, and A are adjusted so that Vs rises to its maximum value in 1.2 μs and decays to 
half its value in 50 μs. It is desirable to have an analytic formula, which is smoothly differ-
entiable such as (14.8) since the derivative is used in the solution process. Other waveforms 
such as a chopped wave may also be used. Procedures may be developed for extracting the 
parameters used in (14.8) from the desired rise and fall times and peak voltage. In our 
experimental recurrent surge oscillograph (RSO) tests discussed later, the actual rise and 
fall times were 3 and 44 μs, respectively, and the parameters in (14.8) were adjusted 
accordingly.

We tested a 45 MVA autotransformer having four windings as shown in Figure 14.3. The 
high-voltage (HV or series) winding consists of two coils in parallel with two ends joined 
at the center where the impulse is applied. The other two ends are joined at the autopoint 
with the low voltage (LV or common) and X-line tap windings. The HV and LV windings 
are disk windings. The tap winding is a multi-start winding and is grounded for the 
impulse test. The tertiary voltage (TV) winding is a helical winding and is grounded at 
both ends for the impulse test. These windings represent one phase of a 3-phase trans-
former, but the phases are essentially isolated from each other for the impulse test.

Both the HV and TV windings contain tapped sections along their lengths. The tap turns 
are out on the HV winding and in on the TV winding during the impulse test. In the calcu-
lations, a direct short is placed across the tapped out sections. In the vicinity of these tap 
sections, the turn density is lowered in the LV winding (thinning) for better short circuit 
strength. In the calculations, these thinned areas are specified as one or more separate sub-
divisions with their own properties, which differ from those of the subdivisions in the rest 
of the winding.
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Although nodal voltages and section currents are calculated throughout the transformer 
as a function of time, voltage differences can easily be obtained. In fact, disk–disk voltages 
are calculated throughout all the windings, and the maximum occurring over the time 
duration of the pulse is printed out for each winding. Similarly, the maximum voltage dif-
ference occurring between adjacent windings for the duration of the pulse is also printed 
out. Secondary quantities such as maximum electric fields in the oil and corner electric 
fields on the disks can likewise be obtained.

Experimentally, only voltages along the HV coil and at the tap positions on the tertiary 
winding were easily accessible in the tests conducted. In an RSO test, a repetitive series of 
pulses having the shape described by (14.8) are applied to, in our case, the HV terminal. 
This repetitive input results in persistent oscilloscope displays of the output voltages for 
easy recording. The peak applied voltage is usually low, typically several hundred volts. 
This test simulates an impulse test done at much higher voltages to the extent that the sys-
tem is linear. This is likely to be a good assumption provided the core does not saturate and 
provided nonlinear circuit elements such as varistors do not come into play. In our RSO 
test, the transformer was outside the tank. Thus, the dielectric constant of air was used in 
the capacitance formulas. In addition, the tank distance, which affects the ground capaci-
tance of the outer coil, was taken as very large.

For the tests conducted here, the computer outputs of interest were the voltages to 
ground at the experimentally measured points. We present a sufficient number of these in 
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Schematic diagram of impulsed autotransformer.
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the following figures to indicate the level of agreement between calculation and experi-
ment. We chose to normalize the input to 100 at the peak of the impulse waveform. 
The units can therefore be interpreted as a percent of the BIL.

It quickly became apparent in comparing the simulations with experiment that the section 
resistances that were obtained from the wire geometry and the d.c. or power frequency resis-
tivity were not adequate to account for the damping observed in the output waveforms. 
In fact, we found it necessary to increase this resistivity by a factor of about 3000 to account for 
the damping. Such a factor is not unreasonable in view of the fact that the eddy currents 
induced by the stray flux associated with the impulse waveform contain high-frequency com-
ponents that induce much higher losses than those occurring at power frequency. A factor of 
this magnitude was estimated for the experiment involving wound-in-shields in Chapter 12. 
A better approach, which we subsequently adopted, is to Fourier analyze the current wave-
forms and calculate the effective resistivity using the formula given in Chapter 12. This 
involves running the calculation at least twice, once to obtain the waveforms using an assumed 
resistivity, Fourier analyzing the waveforms to obtain a better estimate of the effective resistiv-
ity, and then rerunning the calculation with the recalculated resistivity.

Each of the two halves of the HV coil had 52 disks having 12 radial turns each. The 
impulse was applied to the center of the leg where the two halves are joined. Output volt-
ages are recorded relative to this center point. Figure 14.4 shows the experimental and 
calculated voltage waveform four disks below the impulsed terminal. The impulse voltage 
is also shown for comparison. Figure 14.5 shows the voltage 12 disks below the impulsed 
terminal. There is good agreement in the major oscillations but some differences in the lower-
amplitude higher-frequency oscillations. Figure 14.6 shows the experimental and theoreti-
cal voltages at the tap position, which is about 30 disks below the impulsed t erminal. 
Figure 14.7 shows the voltage to ground at the upper tap position on the TV winding. 

Nodal voltage vs. time

Impulse

100

80

60

40

20

0

–20
0 10 20 30 40

Time (μs)

Ki
lo

vo
lts

50 60 70 80 90

Impulse HV 4 disks below HV Experiment

FIGURE 14.4
Experimental and calculated voltage to ground four disks below the HV impulsed terminal. The impulse voltage 
is also shown.
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FIGURE 14.5
Experimental and calculated voltage to ground 12 disks below the HV impulsed terminal.
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Experimental and calculated voltages to ground at the tap position on the HV winding, about 30 disks below the 
impulsed terminal.
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This is a transferred voltage via capacitive and mutual inductive effects. There is good 
agreement between theory and experiment in overall magnitude and major oscillations, 
but the higher-frequency ripple is not as well predicted. Figure 14.8 shows another way to 
present the calculations. This shows the voltage as a function of relative coil position along 
the top HV winding at various instants of time. Note the flat portion of the curves at a rela-
tive position of ~0.75 that corresponds to the tap section with the taps out. Note also that 
the high capacitance of the multi-start tap winding effectively grounds the autopoint. 
Maximum disk–disk voltages could be obtained by examining such curves although this is 
more easily done by programming.

14.2.5  Sensitivity Studies

We studied the sensitivity of the calculations to two of the inputs to which some uncer-
tainty is attached, namely, the effective resistivity of the copper and the number of subdivi-
sions along the coils. The resistivity was increased from its d.c. value to 3000 times its d.c. 
value and the waveform studied at several locations along the HV winding. The effect of 
increased resistivity was to increase the damping of the waveform at longer times but had 
little effect on the waveform at short times.

Generally, each coil has a minimum number of subdivisions dictated by the number of 
physically different coil sections. In our case, this was about 6–8 per coil. The multi-start 
coil, however, has only one section. Because of its construction, it cannot be meaningfully 
subdivided into axial sections as can the other coils. In fact, the capacitances to neighboring 
coils must be coupled equally to both the top and bottom nodes because its voltage is not 
a unique function of position. We increased the number of subdivisions in helical and disk 
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coils from the minimum value of 7 up to 22. Once the number of subdivisions is above 
12/coil, the results were fairly insensitive to any further refinement. Thus, one does not 
have to be overly concerned about the number of subdivisions used, provided they are 
above some reasonable minimum, which in this case is ~12/coil.

14.3  Setting the Impulse Test Generator to Achieve Close-to-Ideal 
Waveshapes* 

An important issue, which arises when performing an impulse test, is how to select the 
impulse test generator settings in order to produce the ideal or nearly ideal waveshape. 
It is sometimes difficult to approximate the ideal waveform, particularly the full wave 
one, and a trial and error approach is often taken. Here, we describe an approach that 
couples a circuit model of the impulse generator with a transformer circuit model and 
show how, from this combination, we can arrive at close to ideal settings for the 
 generator, provided such settings are possible. An alternate approach to determining 
the optimum impulse generator settings, which makes use of a genetic algorithm, is 
described in [Sam15].

In order to simulate the effect of a lightning strike on the power lines that are con-
nected to a transformer, standards organizations have arrived at a standard voltage 
waveform to  be applied to the various transformer terminals undergoing an impulse 

* This section is largely based on [Del02], IEEE Trans. Power Deliv., 17(1), January 2002, 142–148. © 2002 IEEE.
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test. Although these waveforms differ in peak value or BIL level, they have similar time 
characteristics. For a full wave, which is the only type we consider here, they have the 
general appearance shown in Figure 14.9. The key parameters are the rise time to reach 
the peak value, tp, and the fall time to fall to 50% of the peak value, tf. A common param-
eterization for this waveform is given by (14.8), where α, β, and A can be determined 
from tp, tf, and the BIL level. More specifically, the standards often specify tp = 1.2 μs and 
tf = 50 μs, that is, a 1.2 × 50 waveform.

Impulse generators for large power transformers are generally of the Marx type [Kuf84], 
that is, they employ a number of capacitor stages, which are charged in parallel at a lower 
voltage and discharged in series at a much higher voltage. We will only be concerned with 
the discharge configuration and with its equivalent circuit. Generally, each stage has a 
front resistor in series with the capacitor and a tail resistor in parallel with the capacitor. 
There are also charging resistors in the circuit, which are in parallel with the entire combi-
nation, although these are large and could be ignored. A circuit model of an individual 
stage is illustrated in Figure 14.10. In addition, there is some inductance associated with 
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FIGURE 14.9
Standard full wave impulse waveform. (From Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 17(1), January 
2002, 142–148. © 2002 IEEE.)
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FIGURE 14.10
Circuit model of a generator stage. Rf is the front resistor, Rt the tail resistor, Rq the charging resistor, and Cg the stage 
capacitance. (From Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 17(1), January 2002, 142–148. © 2002 IEEE.)
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each stage, but it is unclear where this occurs. We will simply lump it into one inductor in 
the overall circuit model. We should note that these stages are not always series connected 
but that some of them may be connected in parallel in order to obtain a more desirable 
overall capacitance value.

By suitably choosing the front and tail resistances and the series–parallel combination of 
stages, it is generally possible to approximate the waveform of Figure 14.9. However, this 
usually requires a trial and error process or having experience with previous impulse tests 
on similar transformers. There are even cases where it does not seem possible to achieve 
the desired waveform by varying the generator parameters. This is usually a matter of the 
tail falling too quickly so that the 50% of peak voltage value is reached at times <50 μs. In 
such cases, it is sometimes permissible to add a grounding resistor to one of the non-
impulsed windings to help boost the tail. In these cases, it would be helpful to know in 
advance that the proper waveform cannot be achieved by changing the generator param-
eters alone before undue effort is spent on this process.

Here, we outline a method for obtaining a set of generator parameters, if they exist, 
which will produce an impulse waveform closely approximating the ideal one. This 
method requires a suitable circuit model of the impulse generator as well as one for the 
transformer. Such a combined model should come reasonably close to predicting the actual 
impulse waveform achieved when the generator parameters in the model are the same as 
those used for the test. Given such a combination, one is already ahead of the game because 
one can now perform trial and error parameter variations on the computer in an attempt 
to achieve the desired waveform rather than on the test floor. However, this tedious pro-
cess can be circumvented by relatively little additional effort, as will be discussed later. 
First, we detail the generator circuit model and then briefly discuss the transformer circuit 
model before treating the combination.

14.3.1  Impulse Generator Circuit Model

Although we will discuss the Marx-type generator here, the method could be applied to any 
generator with the following provisos. The generator should be capable of producing the 
desired waveform, at least with a simple load, say, a capacitive load. Its overall circuit model 
description should also be available or reasonably possible to develop. To this end, we 
assume that each stage of the Marx generator is identical and that each series unit is made 
up of either one stage or the same number of stages in parallel. Thus, if we have n series 
units and each consists of m stages in parallel, there are altogether mn stages in the circuit.

Since the waveforms are not sinusoidal, we will use Laplace transforms to analyze the 
circuit. Thus, we replace circuit elements by their Laplace transforms so that resistances 
remain the same but a capacitance C becomes 1/sC and an inductance L becomes sL in the 
circuit analysis, where s is the Laplace variable. Thus, the impedance of a single stage 
shown in Figure 14.10, Z, is given by
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The impedance of the n series units, each consisting of m parallel stages, Zgen, is given by
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(14.11)

Thus, we can define an equivalent impedance, Z1,eq = (n/m)Z1, and an equivalent charging 
resistor, RQ = (n/m)Rq, so that
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(14.13)

We can therefore define an equivalent front resistor, RF = (n/m)Rf, an equivalent tail resistor, 
RT = (n/m)Rt, and an equivalent generator capacitance, CG = (m/n)Cg, so that (14.13) becomes
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Thus, we see that (14.12) and (14.14) have the same form as (14.9) and (14.10) but with 
 different values for the circuit parameters. They therefore have the same circuit diagram. 
We redraw this in Figure 14.11a for the overall generator.
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FIGURE 14.11
Circuit models of the impulse generator. (a) Equivalent generator circuit built from the individual stages shown 
in Figure 14.10, (b) generator circuit with inductance, and (c) generator circuit with the measuring equipment 
represented by RM, CM, and the inactive chopping gap represented by RCh, CCh, added. (From Del Vecchio, R.M. 
et al., IEEE Trans. Power Deliv., 17(1), January 2002, 142–148. © 2002 IEEE.)
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We mentioned previously that the generator has some inductance. We include this as one 
lumped element as shown in Figure 14.11b. From the manufacturer’s data, this inductance 
appears to have a contribution from each stage, adding a term proportional to (n/m) to the 
overall inductance, as well as a constant contribution. During the full wave test, there is 
measuring equipment at the generator output as well as an inactive chopping gap circuit. 
The latter, nevertheless, contributes something to the generator load. Both of these contri-
butions can be adequately represented in the circuit model shown in Figure 14.11c.

Since the transformer circuit model is solved by means of coupled differential equations, 
we will develop a similar set of equations for the generator so that the circuits can be 
solved simultaneously. In addition, we can use these equations without the transformer 
attached to check the generator output at no load against test measurements and thus 
verify the accuracy of the generator model. We redraw the generator circuit, indicating the 
voltages and currents that must be solved for, in Figure 14.12. In this figure, IL is the load 
current that enters the transformer and V is the impulse voltage. The initial condition is 
that the generator capacitor be initially charged to some voltage, Vo, that is, VG = Vo at t = 0.

Using Kirchhoff’s laws, the circuit equations can be reduced to
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The last equation must be combined with an equation for V from the transformer circuit 
when the transformer is attached. When the transformer is not attached, setting IL = 0 in 
(14.19) allows one to solve for V in terms of the other unknowns. When V, obtained 
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FIGURE 14.12
Generator circuit with unknown voltages and currents labeled. (From Del Vecchio, R.M. et al., IEEE Trans. Power 
Deliv., 17(1), January 2002, 142–148. © 2002 IEEE.)
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from (14.19) with IL = 0, is substituted into Equations 14.15 through 14.18, we obtain a 
coupled set of four differential equations in four unknowns that can be solved, starting 
from the initial condition. Once solved, we can use (14.19) with IL = 0 to find V, the output 
voltage without transformer. Figure 14.13 shows a comparison of the calculated and mea-
sured generator voltage output without transformer. Similar good agreement was obtained 
with a variety of generator settings.

14.3.2  Transformer Circuit Model

The transformer circuit model was discussed in Chapter 13. This model is very detailed. It 
includes the winding section’s self-inductances and the mutual inductances between all 
the winding sections, the section resistances, section series capacitances, and section capac-
itances to the neighboring windings and/or core and tank.

As discussed in Chapter 13, the capacitance equations can be combined into a matrix 
equation for the nodal voltages Vi, where i ranges over all the nodes:
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(14.20)

Here
C is a capacitance matrix
A is a matrix whose entries are ±1 or 0
V is a vector of nodal voltages
I is a vector of branch currents

Impulse waveform

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100
Time (μs)

kV

FIGURE 14.13
Comparison of calculated and measured impulse generator output without a transformer load. The two 
curves practically coincide. (From Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 17(1), January 2002, 
142–148. © 2002 IEEE.)
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These can be solved, along with a set of differential equations for the currents obtained 
from the inductive–resistive branches.

In the normal solution method, if node k is the impulsed node, the kth equation in (14.20), 
corresponding to Vk, is replaced by
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(14.21)

When the impulse generator is attached to node k, instead of (14.21), we add IL from (14.19) 
to the right-hand side of (14.20) for the kth voltage node and change V to Vk in (14.15) 
through (14.19). We then solve all these equations simultaneously, starting with VG = Vo on 
the generator capacitor. Figure 14.14 shows a comparison of a calculated versus measured 
impulse waveform for a particular choice of generator parameters with the transformer 
attached. The calculated curve is obtained without any optimization. From this compari-
son, we see that the method is capable of reproducing the test waveform fairly well, 
although it is far from the ideal waveform.

14.3.3  Determining the Generator Settings for Approximating the Ideal Waveform

With the transformer attached, we redraw the circuit of Figure 14.12 to include the trans-
former, which we represent as a lumped impedance ZTr in Figure 14.15. We do not need to 
know ZTr explicitly. For purposes of calculation, the impulsed transformer node is  connected 
to node 1 in the figure so that the transformer circuit is in parallel with all the elements 
between 1 and 1′. We now lump all the impedances in the dashed box in Figure 14.15 
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Comparison of a calculated with measured impulse waveform with transformer attached and without optimiza-
tion. The smoother (faster falloff) curve is the measured waveform. (From Del Vecchio, R.M. et al., IEEE Trans. 
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together into a load impedance ZL. This impedance remains fixed as we consider varia-
tions in the generator parameters RF, RT, and CG. Note that we are including the charging 
resistor as well as the measuring circuit and inactive chopping circuit in ZL. These remain 
fixed for the given transformer and BIL level. At this point, we include the generator induc-
tance in the circuit to the left of ZL; however, its effect on the impulse waveform is small 
provided RF is large enough.

With ZL as a load, the remaining circuit can be analyzed by means of Thevenin’s theorem 
as stated, for example, in [Des69]. For linear network elements, as is the case here, we can 
replace the network to the left of the terminals labeled 1 and 1′ in Figure 14.15 by an equiv-
alent network consisting of a voltage source and an impedance in series with it. The volt-
age source is the open circuit voltage at terminals 1, 1′ and the series impedance is obtained 
by setting all independent sources to zero and all initial conditions to zero. There are no 
sources in our circuit, but there is an initial condition on the capacitor. The open circuit 
voltage is that on a capacitor initially charged to a voltage Vo in parallel with a resistor RT. 
Thus, the open circuit voltage, eoc, is

 e V eoc o
t R CT G= - /

 (14.22)

Its Laplace transform is

 
E

V R C
sR C

oc
o T G

T G
=

+1  
(14.23)

The Laplace transform of the equivalent impedance is
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(14.24)

Substituting the Thevenin equivalent circuit, the circuit of Figure 14.15 becomes that of 
Figure 14.16. We have indicated in Figure 14.16 the location of the impulse voltage V.

We see that the impulse voltage, V, in Figure 14.16 is given by
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FIGURE 14.15
Circuit model of the generator with transformer attached, represented by the load ZTr. (From Del Vecchio, R.M. 
et al., IEEE Trans. Power Deliv., 17(1), January 2002, 142–148. © 2002 IEEE.)
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Now consider two cases. First, the generator parameters are set to some starting values 
based on a reasonable estimate of what might produce the desired waveform and the 
resulting voltage V is recorded. Next, the ideal voltage VI is produced by the unknown 
generator parameters, which we will label with a superscript I for ideal. Since Eoc and Zeq 
depend on these unknown parameters, we also label them with a superscript I. However, 
ZL remains the same since it does not depend on the variable generator parameters. 
Thus, we have
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Solving (14.25) for ZL and substituting into (14.26), we find
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(14.27)

The ideal waveform is given in (14.8). Its Laplace transform, using superscript I to label the 
parameters, is
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Zeq
I  is given by (14.24) with superscript I labeling the generator parameters. However, the 

presence of LG makes it difficult to achieve the ideal waveform. This is pretty clear from 
[Kuf84], where it is shown that the ideal waveform is generated by the circuit to the left of 
the 1, 1′ terminals in Figure 14.15 without LG and with a capacitive load. We cannot elimi-
nate LG, but it can be shown that its effect on the waveform will be reduced if
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(14.29)

that is, if the inductive time constant is much less than the time to reach the peak voltage. 
We will assume this condition here and thus eliminate LG from (14.24). The practical impli-
cations of this will be discussed later.
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FIGURE 14.16
Thevenin equivalent circuit of Figure 14.15. (From Del Vecchio, R.M. et al., IEEE Trans. Power Deliv., 17(1), January 
2002, 142–148. © 2002 IEEE.)
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We also eliminate LG in generating the waveform V for the initial simulation and we 
assume that it has the same form as (14.8) and therefore the same Laplace transform as 
given in (14.28) but without the I superscript labeling the parameters. Thus, Equations 
14.15 through 14.19 need to be modified for the initial simulation by eliminating LG from 
them. With these approximations, both sides of (14.27) will have the same form and differ 
only in the I superscripting labeling. Note that the waveform parameters, A, α, β, for the 
initial simulation can be determined by a variety of curve-fitting methods. After some 
 algebra, Equation 14.27 becomes
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where
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To achieve equality in (14.30), we require
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Since the ideal waveform parameters are known, the only unknown parameters in these 
equations are R R C and VF

I
T
I

G
I

o
I, , , . Thus, we have four equations in four unknowns that can 

be solved uniquely. Letting
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we find
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14.3.4  Practical Implementation

In order to get a reasonable set of starting parameters for the generator, we adopt the sim-
pler model of the generator and load discussed in [Kuf84]. The circuit diagram is given in 
Figure 14.17. Starting with an initial generator capacitor voltage of Vo, the voltage across 
the load CL is given by
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α and β can be expressed in terms of the circuit parameters, but since we are assuming an 
ideal waveform, α and β are known and we want to express the circuit parameters in terms 
of them. These are given by
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FIGURE 14.17
Simple generator–load model for obtaining starting generator parameters. (From Del Vecchio, R.M. et al., IEEE 
Trans. Power Deliv., 17(1), January 2002, 142–148. © 2002 IEEE.)
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From these equations, we see that we must assume some values for CG and CL. CG can 
be selected based on BIL considerations or from experience. CL can be calculated 
roughly from a simplified capacitive model of the transformer, but its selection is 
not critical.

Having chosen these initial parameters for the generator, the generator–transformer 
circuit model is solved to obtain the impulse voltage as a function of time. We do not 
include inductance in the generator model at this stage. The waveform is then analyzed 
to obtain A, α, β. To do this, we use a least squares curve-fitting procedure. The output 
waveform is only considered out to times where it remains positive. This is because 
(14.8) is inherently positive provided β > α, which is always the case when the waveform 
begins with a positive slope. The new generator parameters are then calculated from 
(14.36) through (14.41).

The capacitance calculated from (14.39) is usually not obtainable exactly from the dis-
crete possibilities arising from grouping the stages into series–parallel combinations. We 
therefore use the series–parallel combination that comes closest to achieving the desired 
capacitance. The front and tail resistances calculated from the procedure outlined earlier 
also cannot be realized exactly in practice. Their values must also be approximated, using 
the finite pool of available resistors.

We have found that for cases where the tail of the waveform droops significantly, RT
I  can 

become negative. This is due to y in Equation 14.37 becoming negative. In this case, we set 
y to a small value, say, y = 0.1, and recalculate RT

I . The calculation is then repeated with the 
new parameters and the resulting waveform reanalyzed. If RT

I  is still negative, the process 
is repeated. After a few iterations, if the new RT

I  still remains negative, the process is 
stopped. A printout of the parameters before the last recalculation reveals that RT

I  has 
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become extremely large and yet the waveform still has a drooping tail. This indicates that 
even if RT

I ®¥, an open circuit, the ideal waveform cannot be achieved. One is then left 
with the possibility of adding grounding resistors to one or more windings in order to 
obtain the desired waveform.

When the new generator parameters obtained from (14.36) through (14.41) are positive 
or after the last iteration in the case where the new RT

I  persists in being negative, the gen-
erator inductance is included in the circuit model. The transient calculation is then per-
formed with these new parameters, including the inductance. Although the ideal waveform 
is usually well approximated when RT

I  does not become infinite, there is often a voltage 
spike near the peak of the waveform due to the generator inductance. Not only does this 
increase the peak voltage beyond the desired BIL level, but it tends to decrease the time to 
peak value tp below the desired value. To counteract this, we have found that by artificially 
increasing the tp value of the ideal waveform from, say, 1.2 to 2.0 μs, a larger value of RF

I  is 
obtained, thus reducing the LG/RF time constant, as discussed previously in the context of 
Equation 14.29. The inductance peak is thereby considerably reduced and the rise time 
increases to a value closer to the optimum.

Figure 14.18 shows an example of a calculated impulse waveform obtained using the 
initially estimated values for the generator parameters, CG = 500 nF, RF = 177 Ω, RT = 142 Ω. 
The top curve is the ideal waveform. The generator waveform has the time parameters of 
tp = 3.15 μs, tf = 29.5 μs. Figure 14.19 shows the waveform resulting from the recalculated 
parameters of C nF R and RG

I
F
I

T
I= = =596 90 249, ,W W. As can be seen, it comes very close 

to the ideal curve. Its time parameters are tp = 1.10 μs, tf = 50.5 μs. We should note that the 
recalculated generator parameters depend to a limited extent on the initial choice for these 
parameters.

Impulse waveform

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100
Time (μs)

kV

FIGURE 14.19
Waveform achieved with recalculated generator parameters. It nearly coincides with the ideal waveform. 
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No-Load and Load Losses

15.1  Introduction

Transformer losses are broadly classified as no-load and load losses. No-load losses occur 
when the transformer is energized with its rated voltage at one set of terminals, but the 
other sets of terminals are open circuited so that no through or load current flows. In this 
case, full flux is present in the core and only the necessary exciting current flows in the 
windings. The losses are predominately core losses due to hysteresis and eddy currents 
produced by the time-varying flux in the core steel.

Load losses occur when the output is connected to a load so that current flows through 
the transformer from input to output terminals. When measuring load losses, the output 
terminals are shorted to ground and only a small impedance-related voltage is necessary 
to produce the desired full load current. In this case, the core losses are small because of the 
small core flux and do not significantly add to the measured losses. In operation, both 
types of losses are present and must be taken into account for cooling considerations.

Load losses are broadly classified as I2R losses due to Joule heating produced by current 
flow in the coils and as stray losses due to the stray flux as it encounters metal objects such 
as tank walls, clamps or bracing structures, and the coils themselves. Because the coil con-
ductors are often stranded and transposed, the I2R losses are usually determined by the 
d.c. resistance of the windings. The stray losses depend on the conductivity, permeability, 
and shape of the metal object encountered. These losses are primarily due to induced eddy 
currents in these objects. Even though the object may be made of ferromagnetic material, 
such as the tank walls and clamps, their dimensions are such that hysteresis losses tend to 
be small relative to eddy current losses.

Although losses are usually a small fraction of the transformed power (<0.5% in large 
power transformers), they can produce localized heating that can compromise the opera-
tion of the transformer. Thus, it is important to understand how these losses arise and to 
calculate them as accurately as possible so that, if necessary, steps can be taken at the 
design stage to reduce them to a level that can be managed by the cooling system. Other 
incentives, such as the cost, which the customer attaches to the losses, can make it worth-
while to find ways of lowering the losses.

Modern methods of analysis, such as finite element or boundary element methods, have 
facilitated the calculation of stray flux losses in complex geometries. These methods are not 
yet routine in design because they require a fair amount of geometric input for each new 
geometry. However, some of these programs support the use of macros, which can quickly 
generate a standard geometry based on key parameters that can be changed for different 
designs. These methods can provide useful insights in cases where analytic methods are not 
available or are very crude. Occasionally, a parametric study using such methods can extend 

15
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their usefulness beyond a specialized geometry. We will explore such methods, in particular 
the finite element method, when appropriate. However, we are largely concerned here with 
analytic methods, which can provide useful formulas covering wide parameter variations.

Typical power transformers have 3-phase cores so that the stray flux arises from the 
 currents in all three phases. Analytic formulas are generally based on single-phase approx-
imations. Although these formulas are based on physical principles, they generally require 
modifications obtained by comparison with test data. The necessity for such modifications 
can arise from the idealized geometries assumed in the calculation or from the ignored 
effects of 3-phase flux. 3D finite element methods are now available for modeling all three 
phases, including the effects of 3-phase flux. Even here, some approximations must be 
made to make the calculations tractable. We will explore this approach later and compare 
it with other methods.

15.2  No-Load or Core Losses

Cores in power transformers are generally made of stacks of electrical steel laminations. 
These are usually in the range of 0.23–0.46 mm in thickness and up to about 1 m wide or as 
wide as can be accommodated by the rolling mill. Modern electrical steels have a silicon 
content of about 3% that gives them a rather high resistivity, ~50 ×10−8 Ω m. Although 
higher silicon content can produce even higher resistivity, the brittleness increases with 
silicon content and this makes it difficult to roll them in the mill as well as to handle them 
after. Special alloying, rolling, and annealing cycles produce the highly oriented Goss 
 texture (cube on edge) with superior magnetic properties such as high permeability along 
the rolling direction. Thus, it is necessary to consider the orientation of the laminations in 
relation to the flux direction when designing a core.

Although the thinness of the laminations and their high resistivity are desirable character-
istics in reducing (classical) eddy current losses, the high degree of orientation (>95%) 
 produces large magnetic domains parallel to the rolling direction as sketched in Figure 15.1. 

Rolling
direction

v

FIGURE 15.1
Idealized magnetic domain pattern in highly oriented electrical steel. The up and down arrows show the magne-
tization directions. The side-pointing small arrows show the direction of domain wall motion for increasing up 
magnetization. v is their velocity.
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The lines between domains with magnetizations pointing up and down are called domain 
walls. These are narrow transition regions where the magnetization vector rotates through 
180°. During an a.c. cycle, the up domains increase in size at the expense of the down 
domains during one part of the cycle and the opposite occurs during another part of the 
cycle. This requires the domain walls to move in the direction shown in the figure for 
increasing up magnetization. As the domain walls move, they generate eddy current 
losses. These losses were calculated by [Pry58] for the idealized situation shown in the 
figure. They found that these losses were significantly higher than the losses obtained 
from a classical eddy current calculation, which assumes a homogeneous mixture of many 
small domains. These nonclassical losses depend on the size of the domains in the zero 
magnetization state where there are equal-sized up and down domains. This is because 
the maximum distance the walls move and hence their velocity depend on the zero mag-
netization domain size. The larger this size, the greater the domain wall’s velocity and the 
greater the loss.

In order to decrease the nonclassical eddy current losses, it is therefore necessary to 
reduce the domain size. This is accomplished in practice by laser or mechanical scrib-
ing. A laser or mechanical stylus is rastered across the domains (perpendicular to their 
magnetization direction) at a particular spacing. This introduces localized stress at the 
surface since the scribe lines are not very deep. The domain size is dependent on the 
stress distribution in the laminations. Localized stresses help to refine the domains. 
Thus, after scribing, the laminations are not annealed since this would relieve the 
stress. Figure 15.2 shows the domain pattern in an oriented electrical steel sample 
before and after laser scribing. The domain patterns are made visible by means of spe-
cialized optical techniques. One can clearly see the reduction in domain size as a result 
of laser scribing in this figure. The losses were reduced by ~12% as a result of laser 
scribing in this example.

Another type of loss in electrical steels is hysteresis loss. This results from the domain 
walls encountering obstructions during their motion. At an obstruction, which can be a 
crystal imperfection, an occlusion or impurity, or even a localized stress concentration, 

(a) (b)

FIGURE 15.2
Effect of laser scribing on the domain wall spacing of oriented electrical steel: (a) before scribing and (b) after 
scribing. (Courtesy of Armco Inc.)
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the domain wall is pinned temporarily. However, because of the magnetizing force driv-
ing its motion, it eventually breaks away from the pinning site. This process occurs very 
suddenly and the resulting high wall velocity generates localized eddy currents. These 
localized eddy current losses are thought to be the essence of what are called hysteresis 
losses. Thus, all losses in electrical steel are eddy current losses in nature. These hysteresis 
losses occur even at very low, essentially d.c., cycle rates. This is because, although the 
domain walls move very slowly until they  encounter an obstacle, the breakaway process 
is still very sudden. Thus, in loss separation studies, the hysteresis losses can be measured 
independently by going to low cycle rates, whereas the total loss, including hysteresis, is 
measured at operational cycle rates. In high-quality electrical steel, the hysteresis and 
eddy current losses contribute about equally to the total loss.

A novel approach to eliminating hysteresis losses involved using the magnetic material 
at saturation. In this case, there are no domain walls and hence no wall pinning. Voltage is 
produced in coils surrounding the magnetic core by rotating the saturated flux vector so 
that the component linking the coil is sinusoidal [Kra88]. This could be accomplished by 
means of a toroidal core. This would not eliminate the classical eddy current losses and 
would require a material having a low excitation current to produce saturation in order to 
be practical.

The manufacturer or supplier of electrical steel generally provides the user with loss 
curves that show the total loss per kilogram or pound as a function of induction at the 
frequency of interest, usually 50 or 60 Hz. One of these curves is shown in Figure 15.3a. 
This curve is generally measured under ideal conditions, that is, low stress on the lamina-
tions, and uniform, unidirectional, and sinusoidal flux in the laminations, so that it 
 represents the absolute minimum loss per kg or lb to be expected in service. Another useful 
curve, which the manufacturer can provide, is a curve of the exciting power per unit weight 
versus induction at the frequency of interest. A sample curve is shown in Figure 15.3b. 
Again, this is an idealized curve, but it can be useful in estimating the power and current 
needed to energize the transformer.

15.2.1  Building Factor

As mentioned previously, the specific core losses at the operating induction provided by 
the manufacturer are minimum expected losses so that multiplying by the core weight 
produces a total core loss, which is generally lower than what is measured in practice. The 
discrepancy is a result of the fact that stacked cores require joints where the induction must 
not only change direction but must bridge a gap between different laminations. Also 
stresses produced in the steel due to cutting and stacking operations increase the losses. 
There are other causes of this discrepancy such as burrs produced by cutting, but all of 
these can be lumped into a building factor, which multiplies the ideal core loss to produce 
the measured core loss. These building factors are generally in the range of 1.2–1.4 and are 
roughly constant for a given core building practice.

Many attempts have been made to understand these extra losses, particularly in the 
region of the core joints, and have led to improved joint designs such as a step-lapped 
joint where the joint is made gradually in a steplike manner. Studies have shown that 
near the joints where the flux changes direction by 90°, the induction vector rotates and 
this produces higher losses. Thus, another approach to implementing a building factor 
approach is to apply a multiplier to the ideal losses for the amount of steel in the joint 
region only. This joint multiplier would be higher than the average multiplier and could 
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be as high as ~1.7. The advantage of this approach is that cores having different frac-
tions of their overall weight in the joint regions should receive more accurate overall 
loss determinations.

15.2.2  Interlaminar Losses

The core laminations are coated with a glass-like insulating material. This is usually very 
thin, on the order of a few microns, to keep the space factor reasonably high (>96%). Like 
any other material, the coating is not a perfect insulator. Thus, eddy currents, driven by the 
bulk flux in the core, can flow perpendicularly through the stacked laminations, which 
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Exciting power—Armco TRAN-COR H (9 mil, 60 Hz)

6

8

10

12

14

16

18

20

0.01 0.10 1.00 10.00
Exciting power (VA/lb)

In
du

ct
io

n 
(T

es
la

)

(b)

FIGURE 15.3
Graphs of core loss and exciting power based on a polynomial fit to data. (a) Manufacturer’s curve of specific core 
loss versus induction. (b) Manufacturer’s curve of specific exciting power versus induction. (Courtesy of Armco 
Inc., TRAN-COR H® is a registered trademark of Armco Inc.)
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produces interlaminar losses. This is sketched in Figure 15.4 for a rectangular cross-sectional 
core. Of course, the eddy current paths are completed within the laminations where the 
resistance is much lower. The coating must be a good enough insulator to keep these losses 
low relative to the normal intralaminar losses. The insulative value of the coating is deter-
mined not only by the intrinsic resistivity of the coating material, which must be high, but 
also by its thickness. Although the thickness is generally not perfectly uniform, it should 
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FIGURE 15.4
Interlaminar eddy currents produced by the bulk core flux. (a) Eddy current paths in laminated core, (b)  geometry 
for loss calculation, and (c) geometry for surface resistivity calculation.
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not vary so much that bald spots are produced. In high-quality electrical steels, two types 
of coatings are generally applied, a first glass-like coating and a second coat of special 
composition designed to apply a favorable stress to the steel. The two coatings make the 
occurrence of bald spots unlikely.

The insulating value of the coating is determined by measuring the resistance across a 
stack of laminations or ideally a single lamination as shown in Figure 15.4c. In terms of the 
parameters shown, the effective resistance across a lamination of area A is
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(15.1)

where
ρc is the coating resistivity and tc its two-sided thickness
ρs is the steel resistivity and ts its thickness, t = tc + ts is the combined thickness
fc and fs are fractional thicknesses of the coating and steel, respectively

It is often convenient to express the result in terms of a surface resistivity, ρsurf = ρefft, 
where t is the thickness of one lamination. Its units are Ω m2 in the SI system.

We now estimate the interlaminar losses with the help of the geometry shown in 
Figure 15.4b. Assume a stack of core steel of width w and stack height h and infinitely 
long in the direction perpendicular to the page. A uniform sinusoidal flux with peak 
induction Bo and angular frequency ω flows through the stack perpendicular to the page. 
Using Faraday’s law,
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applied to the rectangle of area 4xy shown dashed in the figure. By symmetry and Lenz’s 
law, the electric field points as shown on the two vertical sides of the rectangle. The electric 
field is nearly zero along the horizontal sides since here the electric field is within the 
metallic laminations. Thus, from (15.2), we have

 E y xy B E B xo o4 4( ) = - ( ) Þ = -w w  (15.3)

where E is the magnitude of the electric field, which points down on the right and up on 
the left sides of the rectangle. In these directions, we also have

 E Jeff= r  (15.4)

where
J is the current density
ρeff is the effective resistivity perpendicular to the stack of laminations derived 

previously

The interlaminar losses are given by
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(15.5)
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where the volume integral is over the lamination stack, assumed uniform in the direction 
into the paper so that the losses calculated are losses per unit length. The factor of 1/2 
comes from time averaging J, which is assumed to be expressed in terms of its peak value. 
Thus, from (15.3) through (15.5), we get
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where we have used ω = 2πf. The specific loss (loss per unit volume) is given by

 
P

Loss
hw

f B hwo

eff
int

int= =
æ

è
ç

ö

ø
÷

p
r

2 2 2 2

6
 

(15.7)

since we assumed unit length in the other dimension. To find the loss per unit weight or 
mass, divide by the density of the core steel in the appropriate units. Equation 15.7 is in the 
SI system where w is in meters, Bo in Tesla, ρeff in Ω m, f in Hz, and Pint in W/m3.

The interlaminar loss should be compared with the normal loss at the same peak induc-
tion. For typical values of the parameters, it is generally much smaller than the normal loss 
and can normally be ignored. As a numerical example, let f = 60 Hz, w = 0.75 m, Bo = 1.7 T, 
and ρeff = 20 Ω m. We get Pint = 481 W/m3. The density of electrical steel is 7650 kg/m3 so 
that Pint = 0.063 W/kg. This is a fairly small loss compared with the normal losses at 1.7 T 
of ~1.3 W/kg. However, a high enough interlaminar resistance must be maintained to 
achieve these low losses.

15.3  Load Losses

15.3.1  I2R Losses

I2R losses in the coil conductors are generally the dominant source of load losses. They are 
normally computed using the d.c. value of resistivity. However, in the case of wires with 
large cross-sectional areas carrying a.c. current, this normally requires that they be made of 
stranded and transposed conductors. To get a feeling for how a.c. current affects resistance, 
consider the resistance of an infinitely long cylinder of radius a, permeability μ, and d.c. 
conductivity σ = 1/ρ, where ρ is the d.c. resistivity. Let it carry current at an angular 
 frequency ω = 2πf. Then the ratio of a.c. to d.c. resistance is given by [Smy68]
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The ber and bei functions along with their derivatives ber′ and bei′ are given in [Dwi61]. 
This resistance ratio, which can also be regarded as the ratio of an effective a.c. to d.c. resis-
tivity, is plotted in Figure 15.5.
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As a numerical example, consider a copper cylinder with the following parameters: 
a = 2.52 cm, ρ = 2 × 10−8 Ω m, μ = 4π × 10−7 H/m, and f = 60 Hz resulting in x = 1.95. Then 
we find Rac/Rdc ≈ 1.15, that is, a 15% effect. Making the conductor out of strands, insulated 
from each other, is not sufficient to eliminate this effect. In addition, the strands must be 
transposed so that each strand occupies a given region of the cross-sectional area as often 
as any other strand. This is accomplished in modern transposed cables, which use typically 
5–80 strands.

With this remedy or the use of small wire sizes, I2R losses can be calculated using the d.c. 
resistance formula

 
I R Loss

A
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(15.9)

where
ρ is the resistivity at the temperature of interest
ℓ is the length of the conductor, A its cross-sectional area = the sum of the areas of all 

wires in parallel
I is the total current flowing into cross-sectional area A

The temperature-dependent resistivity obeys the formula

 r r aT T To o( ) = + -( )éë ùû1  (15.10)

over a wide range of temperatures, where ρo is the resistivity at T = To and α is the tem-
perature coefficient of resistivity. For pure copper at To = 20°C, ρo = 1.72 × 10−8 Ω m and 
α = 0.0039. For pure aluminum at To = 20°C, ρo = 2.83 × 10−8 Ω m and α = 0.0039. Alloying 
these materials can change these resistivities considerably. The temperature depen-
dence indicated in (15.10) is significant for copper and aluminum. For example, both 
copper and aluminum resistivities and hence I2R losses increase about 30% in going 
from 20°C to 100°C.
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FIGURE 15.5
Plot of the a.c. to d.c. resistance ratio for an infinitely long cylinder.
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15.3.2  Stray Losses

These are losses caused by stray or leakage flux. Figure 15.6 shows the leakage flux pattern 
produced by the coil currents in the bottom half of a single phase or leg of a transformer, 
assuming cylindrical symmetry about the centerline of the core. This was generated with a 
2D finite element program. The main components, core, coils, tank, and clamp, are shown. 
Shunts on the tank wall and clamp were given the material properties of transformer oil so 
they are not active. Figure 15.7 shows the same plot but with the tank and clamp shunts 
activated. These are made of the same laminated electrical steel as the core. The shunts 
divert the flux from getting into the tank or clamp walls so that the stray losses in Figure 15.7 
are much less than those in Figure 15.6. Calculations show that the losses in the clamp were 
reduced by a factor of 8 with the shunts present relative to the losses without the shunts. 
For the tank wall, this reduction was about a factor of 40. The stray flux pattern depends 

FIGURE 15.6
Stray flux in the lower half of a core leg with no shunts present. Although shown in the figure, they were given 
the magnetic properties of air (transformer oil).
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on the details of the winding sizes and spacings, the tank size, the clamp position, etc. The 
losses generated by this flux depend on whether shunts or shields are present as well as 
geometric and material parameters.

In addition to the coils’ stray flux, there is also flux produced by the leads. This flux can 
generate losses, particularly if the leads are close to the tank wall or clamps.

As Figures 15.6 and 15.7 indicate, there is also stray flux within the coils themselves. This 
flux is less sensitive to the details of the tank and clamp position or whether shunts or 
shields are present. Therefore, other methods besides finite elements, such as Rabins’ 
method, which uses a simplified geometry, can be used to accurately calculate this flux in 
or near the coils. The coil flux generates eddy currents in the wires or individual strands of 
cable conductors. The losses depend on the strand size as well as its orientation relative to 
the induction vector and the induction vector’s magnitude. The localized losses are there-
fore different at different positions in the coil.

FIGURE 15.7
Stray flux in the lower half of a core leg with shunts present.
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There are other types of stray loss that occur either in the case of an unusual design 
or when a manufacturing error occurs. In the latter category, extra losses are generated 
when a transposition is missed or misplaced in a coil made of two or more wires or 
cables in parallel.

We will examine many of these types of stray loss in this chapter, deriving analytic 
 formulas or procedures for evaluating them where possible or relying on finite element 
studies or other numerical methods if necessary.

15.3.2.1  Eddy Current Losses in the Coils

In order to study the effect of stray flux on losses in the coils, we examine an individual 
wire or strand that could be part of a transposed cable. This is assumed to have a rectangu-
lar cross section. The magnetic field at the site of this strand segment will point in a certain 
direction relative to the strand’s orientation. This vector can be decomposed into compo-
nents parallel to each side of the rectangular cross section as shown in Figure 15.8a. (In a 
transformer with circular coils surrounding the core, there is little or no magnetic field 
directed azimuthally along the length of the wire.) We analyze the losses associated with 
each component of the magnetic field separately and add the results. This is accurate for 
linear magnetic materials such as copper or aluminum. We will see in the following that 
the eddy currents tend to concentrate along the sides of the rectangular strand to which the 
field component is parallel. Thus, the eddy current patterns associated with the two field 
components do not overlap significantly in any case.

Consider the losses associated with the y component of an external magnetic field as shown 
in Figure 15.8b, where the coordinate system and geometric parameters are indicated. 

b/2 b/2

c x

y

z

Ho

(b)

HHy

Hx
(a)

FIGURE 15.8
Geometry for calculating losses in a conducting strand due to an external magnetic field. (a) Magnetic field at the 
location of a conducting strand. (b) Coordinate system for loss calculation.
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We assume an idealized geometry where the strand is infinitely long in the z direction. 
This implies that none of the electromagnetic fields have a z dependence. We further 
assume that the magnetic field, both external and internal, has only a y component. 
Applying Maxwell’s equations in this coordinate system and with these assumptions, we 
obtain in the SI system
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where
μ is the permeability
E is the electric field
H is the magnetic field

In the case of metallic conductors with a relative permeability of 1, μ = μo = 4π × 10−7 H/m 
in the SI system. We have ignored the displacement current term, which is only important 
at extremely high frequencies. In the metallic conductor, we have Ohm’s law in the form

 J E= Þ =s sJ Ez z (15.12)

where σ is the electrical conductivity. There is only a z component to J and E as (15.11) 
shows. The return paths for the eddy currents are infinitely far along the conductor’s 
length in both the + and −z directions. Combining (15.11) and (15.12), we obtain
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where Hy is a function of x and t.
Let Hy have a sinusoidal time dependence of the form
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 (15.14)

Then (15.13) becomes
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Hy is only a function of x in (15.15). Solving (15.15) with the boundary condition that 
Hy = Ho at x = ±b/2, where b is the strand width normal to the field direction and Ho is the 
peak amplitude of the external field, we get
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and from (15.11)
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The eddy current loss per unit length in the z direction is
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where c is the strand dimension along the y direction. The factor of 1/2 comes from taking 
a time average and using peak values of the field. The integration through only half the 
thickness is possible because of the symmetry of the integrand. The factor of 2 involved 
cancels the factor of 2 in the denominator. Note that, from (15.15),
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Using this expression for k, we have the identities
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Substituting into (15.18), integrating, and dividing by the cross-sectional area = cb, we get 
the specific eddy current loss (loss/unit volume) as
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This is in Watts/m3 in the SI system. Divide by the density in this system to get the loss per 
unit mass or weight.

This last equation applies over a broad frequency range, up to where radiation effects 
start becoming important. At the low-frequency end, which applies to transformers at 
power frequencies (small qb), this reduces to
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where we have used σ = 1/ρ, where ρ is the resistivity, ω = 2πf, where f is the frequency, and 
Bo = μHo.

As a numerical example, let Bo = 0.05 T, which is a typical leakage induction value in the 
coil region, ρ = 2 × 10−8 Ω m for copper at its operating temperature, σ = 5 × 107 (Ω m)−1, 
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ω = 2πf = 2π(60) rad/s, b = 6.35 × 10−3 m, and μ = 4π × 10−7 H/m. Then q = 108.8 m−1 and 
qb = 0.691. This is small enough that the small qb limit should apply. Thus, we get from 
(15.22) Pec = 2.985 × 104 W/m3. The exact formula (15.21) yields Pec = 2.955 × 104 W/m3. 
Using the density of copper dCu = 8933 kg/m3, we obtain Pec = 3.35 W/kg on a per unit 
mass basis. The I2R loss on a per volume basis associated with an rms current of 3 × 106 A/m2 
(a typical value) in a copper winding of the resistivity given earlier is 1.8 × 105 W/m3 so 
that the eddy current loss amounts to about 17% of the I2R losses in this case.

The losses given by (15.21) or (15.22) must be combined with the losses given by a similar 
formula with Ho or Bo referring to the peak value of the x component of the field and with 
b and c interchanged. This will give the total eddy current loss density at the location of the 
strand. A method of calculating the magnetic field or induction at various locations in the 
coils is needed. From the axisymmetric field calculation (flux map) given in Figures 15.6 
and 15.7, we obtain values of the radial and axial components of the field. These replace the 
x and y components in the loss formulas given earlier. These loss densities will differ in 
different parts of the winding. To obtain the total eddy current loss, an average loss density 
can be obtained for the winding, and this is multiplied by the total weight or volume of the 
winding. However, in determining local winding temperatures and especially the hot spot 
temperature, we need to know how these losses are distributed along the winding.

From (15.17), (15.19), and (15.20), we can obtain the eddy current loss density as a func-
tion of position in the strand:
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This vanishes at the center of the strand (x = 0) and is a maximum at the surface (x = ±b/2). 
The parameter q measures how fast this drops off from the surface. The more rapid is the 
falloff, the larger the value of q. The reciprocal of q is called the skin depth δ and is given by
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For copper at ~60°C, σ = 5 × 107 (Ω m)−1, and f = 60 Hz, we get δ = 9.2 mm. For aluminum 
at ~60°C, σ = 3 × 107 (Ω m)−1, and f = 60 Hz, we get δ = 11.9 mm. Thus, the skin depth is 
smaller for copper than for aluminum, which means that the eddy currents concentrate 
more toward the surface of copper than that of aluminum.

The high-frequency limit of (15.21) (large qb) is
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This increases as the square root of the frequency.

15.3.2.2  Tie Plate Losses

The tie plate (also called flitch plate) is located just outside the core in the space between 
the core and innermost winding. It is a structural plate that connects the upper and lower 
clamps. Tension in this plate provides the clamping force necessary to hold the transformer 
together if a short circuit occurs. It is usually made of magnetic steel or stainless steel and 
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could be subdivided into several side-by-side vertical plates to help reduce the eddy cur-
rent losses. Figure 15.9 shows a schematic diagram of one of the tie plates associated with 
one leg. There is another on the opposite side of the core leg. These generally have a rect-
angular cross section.

Since the flux plots in Figures 15.6 and 15.7 are for a 2D axisymmetric geometry, it was 
not possible to include the tie plate. (This would have made it a solid cylinder around the 
core.) However, the flux pattern shown in the figures should not be greatly altered by their 
presence since they occupy a fairly small fraction of the core’s circumference. As the flux 
pattern in the figures shows, the flux is primarily radial at the location of the tie plate. 
However, with an actual tie plate present, there will be some axial flux carried by the tie 
plate. This will depend on the permeability of the tie plate relative to that of the core. We 
can estimate the axial tie plate flux by reference to Figure 15.10 where we show two side-
by-side solids of permeabilities μ1, μ2 and cross-sectional areas A1, A2 carrying flux. We 
assume that the coils producing this flux create a common magnetic field H at the location 
of the solids. (The field inside an ideal solenoid is a constant axial field.)

The induction inside each solid is given by

 B H B H1 1 2 2= =m m,  (15.26)

so that
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Using this last expression, we can estimate the induction in the tie plate due to the verti-
cal field. We can use the ratio of relative permeabilities in this formula. These are a.c. 

Coil

Tie plate

Core yoke

Core
leg

FIGURE 15.9
Tie plate location in a transformer.
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permeabilities, which we take to be ~5000 for the core and ~200 for a magnetic steel tie 
plate. With a core induction of 1.7 T, which is typical, we find that Bmag t.p. = 0.068 T. For 
a stainless steel tie plate of relative permeability = 1, we obtain Bs.s. t.p. = 0.00034 T. Thus, 
the axial induction is not insignificant for a magnetic steel tie plate but ignorable for a 
stainless steel one.

Let us first look at the losses due to the radial induction since these are common to both 
magnetic and stainless steel tie plates. We have studied these losses using a 2D finite ele-
ment analysis. Figure 15.11 shows a flux plot for a magnetic steel tie plate, assuming a 
uniform 60 Hz sinusoidal flux density of 1 Tesla peak value far from the plate. The plate is 
assumed to be infinitely long in the dimension perpendicular to the page. Only 1/2 the 
geometry is modeled, taking advantage of symmetry about the left-hand axis. There is a 
space between the tie plate and the high-permeability core surface, which is along the bot-
tom boundary of the figure. This space allows for insulation and cooling duct. The loss 
density contours are shown in Figure 15.12. This shows that the eddy currents are 

A1 A2

H

B1 B2

µ1 µ2

FIGURE 15.10
Dissimilar magnetic materials in a common magnetic field.

FIGURE 15.11
Flux lines for a magnetic steel tie plate in a uniform 60 Hz magnetic field of 1 Tesla peak value normal to its 
 surface. The tie plate of 9.5 mm thickness is separated from the high-permeability core along the bottom by a 
space for insulation and cooling. Only the right half of the geometry is modeled.
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concentrated near the surface due to the skin effect. Figure 15.13 shows a similar flux plot 
for a stainless steel tie plate. Note that there is little eddy current screening so the flux pen-
etrates the plate without much distortion. Figure 15.14 shows the loss density contours for 
the stainless steel tie plate. There is much less surface concentration of the eddy currents. 
Although we only calculate eddy current losses with a finite element program, the hyster-
esis losses in a magnetic steel tie plate make up only a small fraction of the total losses for 
typical tie plate dimensions.

The finite element study was repeated for different tie plate widths (perpendicular to 
the flux direction) while keeping the thickness (along the flux direction) constant at 
9.5 mm. The results are shown in Figure 15.15, where the losses per unit length in the 
 infinitely long direction and per T2 are plotted. To get the actual loss, multiply the ordi-
nate by the tie plate length or portion of the tie plate length affected by the losses and by 
the square of the peak radial induction in T2. Figure 15.16 shows the same information as 
plotted in Figure 15.15 but on a log–log plot. This allows the extraction of the power 
dependence of the loss on the width of the tie plate. The material parameters assumed 
were as follows: for magnetic steel, resistivity = 25 × 10−8 Ω m and relative permeability = 
200, and for stainless steel, resistivity = 75 × 10−8 Ω m and relative permeability = 1. We 
obtain for the losses
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FIGURE 15.12
Loss density contours for the magnetic steel tie plate shown in Figure 15.11. Only the right half of the tie plate is 
shown. The key is in W/m3.



433No-Load and Load Losses

X

X

Y

Z

Z

Y

Named Expr
5.9490e+008
5.5772e+008
5.2054e+008
4.8336e+008
4.4618e+008
4.0900e+008
3.7181e+008
3.3463e+008
2.9745e+008
2.6027e+008
2.2309e+008
1.8591e+008
1.4873e+008
1.1154e+008
7.4363e+007
3.7181e+007
0.0000e+000

FIGURE 15.14
Loss density contours for the stainless steel tie plate shown in Figure 15.13. The key is in W/m3.

FIGURE 15.13
Flux lines for a stainless steel tie plate in a uniform 60 Hz field of 1 Tesla peak value normal to its surface. The 
 situation is otherwise the same as described in Figure 15.11.
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with the loss in Watts/mm, the tie plate width w in mm, and the peak induction Bp in Tesla. 
These are losses/unit length in mm along the tie plate length.

Although this study was performed for a specific tie plate thickness of 9.5 mm, it is 
an example of the kind of study that can be done with a finite element code and that 
can be parameterized for future design use without the necessity of repeating it for 
each new case.
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FIGURE 15.15
Losses for 9.5 mm thick tie plates made of magnetic and stainless steel versus the tie plate width. The tie plates 
are in a uniform 60 Hz magnetic field of 1 Tesla peak value directed normal to the tie plate surface.
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Same as Figure 15.15 but on a log–log scale.
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We can estimate the losses in the tie plate due to axial flux by resorting to an idealized 
geometry. We assume the tie plate is infinitely long and the flux is driven by a uniform 
axial magnetic field parallel to the tie plate’s surface. We are also going to assume that its 
width is much greater than its thickness. In fact, we assume an infinite width. Thus, as 
shown in Figure 15.17, the only relevant dimension is the y-dimension through the sheet’s 
thickness. The eddy currents will flow primarily in the x direction. We ignore their return 
paths in the y direction, which are small compared to the x-directed paths.

Applying Maxwell’s equations and Ohm’s law to this geometry, we obtain in SI units the 
same equation as (15.13) except that the fields are z-directed:
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Thus, using the previous results but altering the notation to fit the present geometry, 
we get
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This is a loss per unit volume (W/m3) in the tie plate due to axial flux. Since the eddy cur-
rents generating this loss are at right angles to the eddy currents associated with the radial 
flux normal to the surface, there is no interference between them and the two losses can be 
added.

For magnetic steel at 60 Hz with μr = 200, μ = μr4π × 10−7 H/m, σ = 4 × 106 (Ω m)−1, and 
c = 9.5 × 10−3 m, we have qc = 4.14. This is large enough that (15.30) must be used without 
taking its small qc limit. Substituting the parameters just given for magnetic steel and 
using Bo = 0.07 T (Ho = Bo/μ), we obtain Ptp,axial = 925 W/m3 = 0.925 × 10−6 W/mm3.

To compare with the radial flux loss formula for magnetic steel given previously, Equation 
15.28, we must specify the tie plate width and use the same thickness of c = 9.5 mm. Using 
w = 127 mm and Bp = 0.14 T and the same value of c yields Ptp,radial = 2.64 W/mm. This must 
be divided by the tie plate area in mm = 9.5 × 127 = 1206 mm2. This yields Ptp,radial = 0.0022 
W/mm3. Thus, it appears that for a magnetic steel tie plate, the loss associated with the 
axial flux is much less than the loss associated with the radial flux. In any event, these two 
losses must be added to get the total loss.

Since the tie plate loss is mainly due to radial flux and this depends on the width to a 
power ~2–3, the losses can be reduced by reducing the width of an individual tie plate 
while keeping their total cross-sectional area constant, since this area is necessary to 

c/2

c/2x

y

z

Ho

(a) (b)

FIGURE 15.17
Geometry of an idealized plate or sheet driven by a uniform sinusoidal magnetic field parallel to its surface 
( perpendicular to page): (a) sheet geometry and (b) eddy current paths.
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provide the required mechanical strength. Thus, subdividing the tie plates either with axial 
slots or into separate plates can reduce the loss while maintaining the necessary axial ten-
sile strength.

15.3.2.3  Tie Plate and Core Losses due to Unbalanced Currents

There is a more specialized type of loss, which can occur in transformers that have a 
large unbalanced net current flow. The net current is the algebraic sum of the currents 
flowing in all the windings. This, in contrast with the net ampere-turns, which are 
always nearly exactly balanced, can be unbalanced. To visualize the magnetic effect of a 
winding’s current, consider a cylindrical (solenoidal) winding carrying a current that 
flows in at the bottom and out at the top. Outside the winding, the net upward current 
appears equally distributed around the cylinder. The magnetic field outside the cylin-
der associated with this current is the same as that produced by the current flowing 
along the centerline of the cylinder, ignoring end effects. In a core-form transformer, 
some of the windings carry current up and some down. The algebraic sum of all these 
currents can be considered as being carried by one cylinder of radius equal to a weighted 
average of the contributing windings, weighted by their current magnitudes. Outside 
this radius, the field is that of a straight wire along the centerline carrying the algebraic 
sum of the currents.

The field around a long straight wire carrying a current I is directed along concentric 
circles about the wire and has the magnitude in SI units
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(15.31)

where
r is the radial distance from the centerline
φ, the azimuthal angle, indicates that the field is azimuthally directed

We are using boldface type here to indicate that the current is a phasor quantity, since we 
are considering a 3-phase transformer on a single 3-phase core. This field cuts through the 
transformer core windows as shown in Figure 15.18. The alternating flux passing through 
the core window induces a voltage around the core structure that surrounds the window. 
The tie plates, including their connection to the upper and lower clamps, make a similar 
circuit around the core windows so that voltage is induced in them as well.

We can calculate the flux due to the coil in Figure 15.18a through the left-hand window, 
labeled 1 in the figure, Φa1, using (15.31)
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where
μo is the permeability of oil or air = 4π × 10−7 H/m
h is the effective winding height
d is the leg center-to-center distance
rw is the effective winding radius
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h can be obtained as a weighted average of the contributing windings, as was done for rw. We 
have integrated all the way to the centerline of the center leg. This is an approximation since 
the flux lines will no doubt deviate from the ideal radial dependence given in (15.31) near the 
center leg. The flux through window 2 due to the phase a current, Φa2, is similarly
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FIGURE 15.18
Field around a cylindrical winding located on a transformer leg and carrying a net upward current: (a) phase a 
coil, (b) phase b coil, and (c) phase c coil.
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Using the same procedure, we find the flux through the two windows due to phases b and c 
shown in Figure 15.18b and c:
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Thus, the net fluxes through windows 1 and 2 are 
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Considering Ia, Ib, Ic to be a positive sequence set of currents and performing the phasor 
sums given earlier, we get 
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From Faraday’s law, the voltages induced by the two fluxes are 

 
V

I
V V1

2
2 1

2
3 1 2= - æ

è
ç

ö

ø
÷ + =m w

p
q qo a

w

j jh d
r

g e eln ,
 

(15.37)

The direction of these voltages or emf’s is given by Lenz’s law, that is, they try to oppose 
the driving flux. We can assume that V1 is the reference phasor and thus drop the minus 
sign and phase factor from its expression. Then V2 is given by (15.37) with a-phase of θ2–θ1 
relative to the reference phasor.

The induced voltages will attempt to drive currents through the tie plates and core in 
loops surrounding the two windows. However, the current flow will be opposed by the tie 
plates’ and core’s resistances and by the self- and mutual inductances of the metallic win-
dow frames, whether formed of core sections or of tie plate and clamp sections. We can 
treat these as lumped parameters, organized into the circuits of Figure 15.19.

There are three circuits involved since there are two tie plate circuits on either side of the 
core plus the core circuit. These are essentially isolated from each other except for coupling 
through the mutual inductances. Although the tie plate circuits on either side of the core 
share the top and bottom clamps in common, they are sufficiently symmetric that they can 
be regarded as separate circuits. We assume that magnetic coupling exists only between 
window 1 loops or window 2 loops but not between a window 1 loop and a window 
2 loop. To make the circuit equations more symmetric, we have positioned V2 in the circuit 
in such a way that it is necessary to take the negative of the expression in (15.37).
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Thus, we have for the voltage sources in the circuits of Figure 15.19, assuming V1 is the 
reference phasor,
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where f is the frequency in Hz.
Using the notation of Figure 15.19 and assuming sinusoidal conditions, we can write the 

circuit equations as

 

V

V

V

V

V

V

1

2

1

2

1

2

0 0
0 0

æ

è

ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
÷÷

=

Z R j M j M
R Z j M j M

j M

c

c

w w
w w

w 00 0
0 0

0 0
0 0

Z R j M
j M R Z j M

j M j M Z R
j M j M R Z

c

c

c c c c

c c c c

w
w w

w w
w w

æ

è

ç
ç
ç
ç
ç
ç
çç

öö

ø

÷
÷
÷
÷
÷
÷
÷÷

æ

è

ç
ç
ç
ç
ç
ç
çç

ö

ø

÷
÷
÷
÷
÷
÷
÷÷

= +

¢

¢

I

I

I

I

I

I

1

2

1

2

1

2

2

c

c

where Z R jww wL Z R j Lc c c, = +2  

(15.39)

V1 V2

L L
R R R

I1 I2

V1 V2

Lc Lc

Rc Rc Rc

Ic1 Ic2

V1 V2

L L
R R R

I1΄ I2΄

Mc

Mc
M

FIGURE 15.19
Equivalent circuits for tie plates and core driven by voltages induced through unbalanced currents. Here 1 and 2 
refer to the tie plate circuits on one side of the core, 1′ and 2′ to the tie plate circuits on the other side of the core, 
and c1 and c2 to the core circuits.
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Note that R is the resistance of the tie plates associated with one leg side and Rc the core 
resistance of one leg. The mutual and self-inductances refer to one window of the core. 
These can be solved for the currents using complex arithmetic. However, it is possible to 
solve them using real arithmetic by separating the vectors and matrix into real and imagi-
nary parts. Thus, given a matrix equation,

 V I= M  (15.40)

where V and I are complex column vectors and M a complex matrix, write 

 V V V I I I= + = + = +Re Re Rej j , j,Im Im ImM M M  (15.41)

Here, boldface type indicates vector quantities. Substituting this separation into real and 
imaginary parts into (15.40), we get 
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This reduces to two separate equations: 

 V I I V I IRe Re Re Re Re,= -( ) = +( )M M M MIm Im Im Im Im  (15.43)

which can be organized into a larger matrix equation 

 

V

V

I

I
Re Re

Re

Re

Im

Im

Im Im

æ

è
ç

ö

ø
÷ =

-æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷

M M

M M  
(15.44)

Here, the separate entries are real vectors and matrices. Thus, we have doubled the dimen-
sion of the original matrix Equation 15.39 from 6 to 12, but this is still small, considering 
the power of modern computers.

The remaining issues concern how to evaluate the resistances and the self- and mutual 
inductances in (15.39). The resistance of a tie plate, R, can simply be taken as its d.c. resistance 
since it has a relatively small thickness. We can ignore the resistance of the clamps since these 
should have a much larger cross-sectional area than the tie plates. The core, with its fairly large 
radius and high permeability, will have an enhanced a.c. resistance relative to its d.c. value. It 
can be estimated from Figure 15.5, using an effective a.c. permeability and conductivity.

Since we do not expect extreme accuracy in this calculation, in view of the approximations 
already made, we can use approximate formulas for the self- and mutual inductances. For 
example, [Gro73] gives a formula for the inductance of a rectangle of sides a and b made of 
wire with a circular cross section of radius r and relative permeability μr, which is, in SI units, 
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L is in Henrys and lengths are in meters in this formula. This formula can be applied directly 
to calculate the inductance of the core window. By defining an effective radius, it can be 
applied to the tie plate loop as well. In calculating the core inductance, remember that the 
core current generates magnetic field lines in the shape of concentric circles about the core 



441No-Load and Load Losses

centerline so that the appropriate relative permeability is roughly the effective permeability 
perpendicular to the laminations. For a stacking factor of 0.96 and infinitely permeable lam-
inations, the effective perpendicular permeability is μr = 25. Similarly, the effective tie plate 
relative permeability is close to 1.0 for both magnetic and stainless steel tie plates.

The mutual inductance terms are not quite so important so that an even cruder approxima-
tion may be used. Reference [Gro73] gives an expression for the mutual inductance between 
two equal coaxial squares of thin wire that are close together. Letting s be the length of the 
side of the squares and d their separation, the mutual inductance, in SI units, is
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In this equation, M is in Henrys and lengths in meters. With a little imagination, this can 
be applied to the present problem. Once (15.39) or its equivalent (15.44) is solved for the 
currents, the losses, which are I2R-type losses, can be calculated. As a numerical example, 
we found the core and tie plate losses due to an unbalanced current of 20,000 amps rms at 
60 Hz in a transformer with the following geometric parameters:

Winding height (h) 0.813 m
Winding radius (rw) 0.508 m
Leg center-to-center distance (d) 1.727 m
Core radius 0.483 m
Tie plate and core height 5.08 m
Tie plate width 0.229 m
Tie plate thickness 9.525 × 10−3 m

The tie plates were actually subdivided into three plates in the width direction, but this 
does not affect the calculation. For magnetic steel tie plates, the calculated core loss was 
11 W and the total tie plate loss was 1182 W. For stainless steel tie plates, the calculated core 
loss was 28 W and the total tie plate loss was 2293 W. For the magnetic steel case, the current 
in the core legs was about 200 amps and in the tie plates about 600 amps. For the  stainless 
steel case, the current in the core legs was about 300 amps and in the tie plates about 500 
amps. The stainless steel losses are higher mainly because of the higher resistivity of the 
material coupled with the fact that the impedances, which limit the currents, are mainly 
inductive and hence nearly the same for the two cases.

15.3.2.4  Tank and Clamp Losses

Tank and clamp losses are very difficult to calculate accurately. Here, we are referring to the tank 
and clamp losses produced by the leakage flux from the coils, examples of which are shown in 
Figures 15.6 and 15.7. The eddy current losses can be obtained from finite element calculations, 
especially 3D ones that can model the rectangular tank as well as leakage flux from all three 
phases simultaneously. These tend to be fairly time consuming and not very routine.

However, much can be done with a 2D approach. We refer to a study in [Pav93] where 
several projection planes in the real 3D geometry were chosen for analysis with a 2D finite 
element program. The losses calculated with this approach agreed very favorably with test 
results. As that study and our own show, 2D models allow one to quickly assess the impact 
on losses of design changes such as the addition of tank and/or clamp shunts made of 
laminated electrical steel or the effect on losses of aluminum or copper shields at various 
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locations. In fact, the losses in Figure 15.7 with tank and clamp shunts present were dra-
matically reduced compared with those in Figure 15.6 where no shunts are present. While 
the real losses may not show as quantitative a reduction, the qualitative effect is real. 
Another study, which was done very quickly, using the parametric capability of the 2D 
modeling, was to assess the impact of extending the clamp shunts beyond the top surface 
of the clamp. We found that some extension was useful in reducing the losses caused by 
stray flux hitting the vertical side of the clamp.

An example of where a 3D approach is crucial in understanding the effect of design 
options on losses concerns the laminated steel shunts on the clamps. The side clamps 
extend along all three phases of a transformer as shown in the top view of Figure 15.20. 
Should the clamp shunts be made of laminations stacked flat on top of the clamps or should 
the laminations be on edge, that is, stacked perpendicularly to the top surface of the clamp? 
In addition, should the shunts extend uninterrupted along the full length of the clamps or 
can they be subdivided into sections that cover a region opposite each phase but with gaps 
in between? 2D models cannot really answer these questions. In fact, in a 2D model the flux 
in the clamp shunts is forced to return to the core eventually, whereas in a 3D model the 
clamp shunt flux from the three phases can cancel within the shunts for shunts that are 
continuous along the sides. Because of the laminated nature of the shunt material, the mag-
netic permeability and electrical conductivity are both anisotropic. This will affect both the 
flux and eddy current patterns in the shunts in a way that only a 3D model that allows for 
these anisotropies can capture. We will present some results obtained with a 3D finite 
 element program later in this section, which will examine this clamp shunt issue as well as 
obtain tank and clamp losses that can be compared with test data. But first it is worthwhile 
to consider analytic methods of obtaining these stray losses.

It is useful to have analytic formulas for tank or clamp losses. Once obtained, these 
enable a quick calculation of such losses at the design stage. By comparing these calculated 

End clamp

Side clamp

Winding

FIGURE 15.20
Geometry of clamp arrangement from a top view.
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losses with test data, one can assess their reliability. Often, simple correction factors can be 
applied to obtain better agreement with test data. Here, we present an analytic method for 
calculating tank losses based on solving Maxwell’s equations in a simplified geometry 
[Lei99]. To appreciate the approximations, which are made, consider the flux pattern near 
the tank wall produced by a generic 2-winding transformer as shown in Figure 15.21a. 
The windings have no taps and uniform current density. Clamps are also absent.
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FIGURE 15.21
Flux pattern near the tank wall for a simple 2-winding transformer with uniform current densities in the 
 windings (a). Radial B-field along a vertical line next to the tank wall (b).
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Essentially, the flux enters the tank wall from the top of the windings and exits from the 
bottom of the windings. These directions could be reversed without changing the analysis. 
Figure 15.22 shows some details of the flux in the tank wall near the top of the windings. 
The flux enters the wall and is directed downward within the tank wall, increasing toward 
the winding center from the gradual accumulation of stray flux entering the tank wall. 
After passing through the vertical position corresponding to the windings’ center, the flux 
begins to leave the tank wall and reenter the windings near their bottom. Thus, the vertical 
flux in the tank wall reaches a maximum at the windings’ center. This is also the place 
where the losses in the tank wall are highest.

We will make the approximation that the flux (B-field) enters the tank wall perpendicu-
larly and that this perpendicular flux has a sinusoidal distribution along the tank wall 
with the vertical center at a zero of the sine function. As Figure 15.21b shows, this is 
approximately true for the simple geometry shown. Further refinement could be achieved 
through Fourier analyzing the flux component perpendicular to the tank wall and apply-
ing the present analysis to each Fourier component. We will assume that the only other 
B-field component is vertically directed along and within the tank wall. The B-field is 
assumed to be independent of the azimuthal direction (into the plane of the paper in 
Figure 15.21a).

The geometry analyzed is shown in Figure 15.23. This shows the tank wall in a  horizontal 
position. The flux from the windings is entering and leaving the tank wall in the z  direction. 
The flux within the wall is directed mainly in the y direction with some in the z direction. 
The wall is assumed to be infinite in the x direction, that is, the flux distribution is indepen-
dent of this dimension. The losses calculated will be per unit length in this direction so that 

FIGURE 15.22
Flux pattern in the tank wall from accumulation of stray flux from the top of the windings.
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the actual losses can be obtained by multiplying the calculated losses by an effective length 
in the x direction.

We assume that the tank is a homogeneous solid with permeability μ and conductivity σ. 
We assume the fields are sinusoidal with angular frequency ω = 2πf, with f being the actual 
frequency in Hz. The relevant Maxwell’s and Ohm’s law equations to solve are 
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We are assuming that 

 H j k= ( ) + ( )H y,z H y,zy z  (15.48)

where j and k are unit vectors in the y and z directions, respectively. Using this, the fifth 
line equation in (15.47) becomes 
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Let k2 = jωμσ. The j and k component equations in (15.49) can be solved separately. They 
both have the same form and differ only in the boundary conditions. Beginning with the k 
equation, we have 
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FIGURE 15.23
Geometry of tank wall with flux entering normal to its surface facing the windings. The wall is oriented 
h orizontally in this depiction. L is the effective height of the tank wall and will be taken as the wavelength of the 
sinusoidal B or H field normal to the tank wall.
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With L the wavelength of the sinusoidal flux impinging normal to the tank wall, we assume 
a solution of (15.50) of the form 
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Substituting into (15.50), we obtain for β
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Noting that the skin depth, δ, in the tank wall is given by (15.24), we can express β in terms 
of this skin depth:
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For magnetic steel tank walls, the skin depth is very small especially when compared 
with L, the length of the surface flux wave, so that πδ/L ≈ 0. Using this approximation,
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Thus, the exponential term in (15.51) becomes
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Noting that z is negative into the tank wall, according to Figure 15.23 where z is zero at the 
tank surface facing the windings and becomes negative into the tank wall, we see that the 
exponential term falls off rapidly with negative z.

We can obtain the solution for Hy by noting that, according to (15.47),
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Integrating (15.56), we get
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Thus, we get for H
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We see from this that the y component of flux along the tank wall peaks at y = 0, whereas 
the z component of flux is zero at this point. This is what we expect from the finite element 
figures, Figures 15.21and 15.22.

We can obtain the current density J by referring to (15.47):
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Using the expression for β given in (15.52) and the definition of skin depth, we obtain for J
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The current density is directed along the unit vector i, that is, in the x direction.
From this, we can get the loss density/unit volume, Pvol:
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Note that the z exponent is now real, indicating that the loss density drops off very rapidly 
with z with no oscillations. It is useful to integrate the z dependence out so that the loss 
density would represent an effective surface loss density, Psurf. Because of the small skin 
depth and rapid exponential falloff, the z integral can be taken from z = −∞ to z = 0. Thus, 
we get for Psurf
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We see that this loss density peaks at y = 0, that is, at the winding center.
To get the total losses per unit length in the x direction, we need to integrate (15.62) over 

the cosine wave of flux from y = −L/2 to L/2. Doing this, the cos2 integral equals L/2 so we 
obtain
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Using the approximation for β given in (15.54), which should be very accurate in this con-
text, this last formula can be simplified to
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where the relationship between H and B has been used. Noting the definition of skin depth, 
we see that these losses increase with frequency to the 3/2 power, increase with conductiv-
ity to the ½ power (inversely with the resistivity to the ½ power), and inversely with the 
permeability to the ½ power. It has the usual dependence on the square of the amplitude 
of the B-field but a surprising dependence on the cube of the surface B-field wavelength, 
which is a little larger than the winding height.

As a numerical example, consider a magnetic steel tank wall with μr = 200, μ = μr4π × 
10−7 H/m, σ = 4 × 106 (Ω m)−1, ω = 2πf = 2π(60 Hz), L = 2 m, and Bo = 0.05 T. For these param-
eters, we get δ = 2.3 × 10−3 m. We find the loss/meter in the x direction = 82.4 kW/m. This 
should be multiplied by the effective length these losses are present in the x direction, 
which should be ≈ the diameter of the outer winding in meters, to get the total loss/leg at 
the tank wall. For a 3-phase unit, this loss should be multiplied by 3 to account for the 
losses on one tank side, although this factor could be changed by 3-phase effects. For the 
other tank side and the tank ends, the B-field amplitude and wavelength need to be calcu-
lated for them and the same formula applied. Some additional effort must be applied to 
estimate the wavelength and amplitude of the approximate B-field wave at the tank sur-
face, based on the Rabins’ method of finding the B-field or on a finite element calculation. 
To reduce these losses, tank shunts are often used.

15.4  Tank and Shield Losses due to Nearby Busbars

When busbars carrying relatively high current pass close to the tank wall, their magnetic 
field induces eddy currents in the wall, creating losses. The busbars are usually parallel to 
the tank wall over a certain length. Because of the magnetic field direction, laminated mag-
netic shunts positioned near the busbar are not as effective at reducing these losses as are 
metallic shields made of aluminum or copper. Since busbars are usually present from all 
three phases, the question arises as to how the grouping of 2 or 3 busbars from different 
phases would affect the losses. Intuitively, we expect a reduction in the losses due to some 
cancellation in the magnetic field from the different phases.

15.4.1  Losses Obtained with 2D Finite Element Study

These loss issues can be studied by means of a 2D finite element program if we assume the 
busbars are infinitely long in the direction along their length. This geometry allows one to 
calculate losses per unit length that can be multiplied by the total busbar length to get a rea-
sonable approximation to the total loss. This can be made into a parametric study by varying 
the distance of the busbars from the tank wall. Other parameters such as busbar dimensions 
could be varied, but this would greatly complicate the study. We chose rather standard sized 
busbars (76.2 mm × 12.7 mm) with the long side perpendicular to the tank wall and separa-
tion distances of 82.6 mm when a grouping of busbars from different phases was studied. 
Of  course, a particular geometry can always be studied if desired. Because eddy current 
losses are proportional to the square of the current when linear magnetic materials are 
involved, it is only necessary to calculate the losses at one current. These losses were studied 
with and without the presence of an aluminum shield, which was 12.7 mm thick and 
230–300 mm wide placed flat on the tank wall. The losses in the busbars themselves were not 
considered in the study. We quote some of the qualitative results of this study here as an 
example of the useful insight that can be gained by such finite element analyses.



449No-Load and Load Losses

For the case of a single busbar, the losses in the tank wall without a shield drop off with 
the distance from the busbar to the tank wall, d, while the losses with shield are relatively 
constant with this distance. The losses with the shield include any losses in the tank as 
well. We found that shielding reduces the losses by about a factor of 5 at close distances 
(<150 mm) and a factor of 2–3 at further distances compared with the unshielded losses.

For the two-busbar case, we found that the losses without shield can be cut nearly in half 
by pairing two phases compared with leaving them separate. We also found that shielding 
is very effective in reducing these losses.

For a group of 3 busbars, the losses are considerably reduced relative to the single- or 
double-busbar case. In this case, shielding does not provide much improvement. This is 
because the 3-phase currents sum to zero at any instant of time, producing little net mag-
netic field at distances large relative to the conductor spacings.

It thus appears that loss reduction from busbars near bare tank walls can be achieved by 
pairing two or three phases together, the latter being preferable. Shielding is very effective 
in reducing the losses associated with 1 or 2 busbars from different phases but not for 
3 busbars where the losses are small anyway.

15.4.2  Losses Obtained Analytically*

To further facilitate the calculation of the tank or shield losses due to the busbars, it is use-
ful to have an analytic formula. Such a formula can be obtained if the tank or shield is 
allowed to be infinitely wide. Naturally, the losses would concentrate near the vicinity of 
the busbars so that the infinite approximation should have little influence on the real phys-
ical situation but makes the calculation feasible.

Previous work in this area focused on plate losses due to a current sheet [Jai70] and on 
plate losses due to a delta function current [Kul99]. These results can be extended by consid-
ering an arbitrary collection of busbars approximated by a collection of delta function cur-
rents. The busbars can carry currents of differing magnitudes and phases, and these properties 
are inherited by their associated delta function current approximations. Different busbar 
cross sections can be approximated by strategically positioning the delta function current 
filaments. For example, a rectangular shape can be approximated by a central current fila-
ment and one at each corner of the rectangle for a total of five filaments, each one carrying 
1/5 of the total current. Other shapes, such as circular, can be approximated by a central fila-
ment and others along the circumference. Additional filaments can be positioned for greater 
accuracy. It should be noted that we consider the currents in the busbars to be uniformly 
distributed. Thus, we do not take into account the current redistribution in solid busbars, 
which would result from the a.c. currents within the busbar or any of its neighbors.

15.4.2.1  Current Sheet

[Jai70] solved the problem of a current sheet positioned a height h above a conducting 
plate of thickness d and carrying a current/unit width of

 J k= ( )J ax ej t
0 cos w

 (15.65)

as shown in Figure 15.24. The current is directed along the positive z-axis as indicated by the 
unit vector k in (15.65). ω is the angular frequency, ω = 2πf, where f is the frequency in Hz, 

* This section is based on [Del03], IEEE Trans. Magn., 39(1), January 2003, 549–552. © 2003 IEEE.
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and j is the imaginary unit. a is a parameter that plays the role of an inverse wavelength. 
J0 has units of current/unit sheet width or amps/m in SI units that are used here.

The geometry in Figure 15.24 extends to infinity in all directions so that the plate and sheet 
are assumed to be infinitely long and wide. The plate and sheet are surrounded by air or any 
medium of relative permeability 1 and 0 conductivity. Because of uniformity in the z direction, 
the solution only depends on the x and y coordinates. The solution will be given in SI units. 
It must be found throughout all space in order to satisfy all the boundary conditions.

Here, we are only interested in the solution in the plate, in particular the electric field E. 
Since it is z-directed like the current, we will drop the vector notation. The E-field in the 
plate due to the current sheet is given by
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(15.66)

δ is the skin depth and j is the imaginary unit. In SI units, μ0 = 4π × 10−7 is the vacuum 
 permeability, μr the relative permeability, and σ the conductivity of the plate. The plate 
thickness is d.

15.4.2.2  Delta Function Current

The dependence of E on x is that of a cosine function. This suggests that it could be part of 
a Fourier expansion of a general function. In particular, the delta function of x, centered at 
the origin, has the expansion
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FIGURE 15.24
Current sheet geometry. J indicates the direction of the current in the sheet, which is spread out over the entire 
sheet. (From Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 549–552. © 2003 IEEE.)
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Thus, a current filament in the z direction carrying a current I0 can be written as
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(15.68)

Basically, to get I, we are summing over an infinite number of current sheets, each one 
contributing a current/unit width of
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Since Maxwell’s equations, including the constitutive relations as assumed here, are linear 
and since the E-fields are unidirectional, the solution in the plate for the current in (15.68) 
is given in terms of (15.66) by
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Now consider a δ function offset from the origin by an amount b. This is given by the 
expansion
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Had we assumed the sheet current in (15.65) depended on cos[a(x − b)], the solution would 
have gone through unchanged except that cos[a(x − b)] would replace cos(ax) in (15.66). 
Therefore, the corresponding δ function solution would be given by (15.70), again with the 
cosine function replacement. More generally, if the current phase were different from 0 so 
that the time dependence was given by exp[j(ωt + ϕ)], the same solution would have 
resulted with exp[j(ωt + ϕ)] replacing exp(jωt). The two types of delta function current 
 filament are shown in Figure 15.25.
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FIGURE 15.25
Delta function currents (filaments). (From Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 549–552. © 
2003 IEEE.)
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The electric field in the plate from a general filament carrying current I, offset in space 
and time phase, is therefore given by
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15.4.2.3  Collection of Delta Function Currents

Since we can approximate any shaped busbar or busbar collection with a number of cur-
rent filaments, we now consider the electric field in the plate due to such a collection. 
Again, because Maxwell’s equations and the constitutive relations are linear, the net E-field 
in the plate, ET, is simply the vector sum of all the individual E-fields. Since these vectors 
are collinear, we can take the scalar sum, ET = ∑iEi, where Ei are the individual fields due to 
delta function currents and have the form of (15.72), with the individual current filaments 
and their parameters labeled with i. Thus, we have hi = the height of the filament above the 
plate, bi its offset from the origin, Ii its current, and ϕi its phase displacement in time.

The eddy current loss/unit length in the z direction in the plate for such a collection of 
current filaments is given by
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where * denotes complex conjugation. The integral is over the cross-sectional area of the 
plate. We are assuming that the current and E-field magnitudes are rms quantities so that 
a factor of ½ does not appear in (15.73). We note that
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A typical term in the integrand is E Ei k
* . The time exponential term in this product becomes 

exp[j(ϕi − ϕk)]. However, the E Ek i
* term, which also occurs in the sum, will have as a time 

exponential term exp[j(ϕk − ϕi)]. Both of these terms are multiplied by the same factor and 
can therefore be added. Thus, in their sum, only the cosine part of this complex exponential 
survives since the cos function is an even function and the sine function an odd function of 
its argument. Thus,
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Thus, a cos(ϕi − ϕk) term should multiply each term in the E Ei k
*  product so that when the 

double sum is performed, a factor of 2 will occur as required by (15.75).
The remaining factor involves integrals over x, y, a, and a′. Both a and a′ integrals are 

needed to express the two different E’s. An example of an E, expressed in terms of an a 
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integral, is given in (15.72). An E expressed in terms of an a′ integral would have a replaced 
by a′. The x integral in (15.73) involves only the cos functions:
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Letting ξ = x – bi, this can be rewritten as
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Expanding the second cosine term, we get for the product in (15.77)
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Making use of
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we obtain for the integral in (15.76)
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Thus, the a′ integral in (15.73), when (15.72) is used for the individual Eδ terms with their 
proper indices, can be done immediately, removing the delta function, and we are left with
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Making use of
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we get for (15.81), after performing the y integral,
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where
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and
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The a integral is left to be performed numerically. The integral is well behaved at a = 0 and 
→ 0 as a → ∞. Therefore, it need only be evaluated to large enough a so that the integrand 
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becomes negligible. Also, since the i, k term in the double sum equals the k, i term for i ≠ k, 
we need to evaluate only one of these terms and multiply the result by 2.

15.4.2.4  Model Studies

The methods outlined here were used to obtain the plate losses due to several configura-
tions of rectangular busbars. Each of the busbars was modeled with a current filament in 
the center and one at each corner. Thus, the filament current associated with a busbar is 1/5 
the busbar current. In the cases studied here, all the busbars carried the same current but 
with different phases. We used different plate materials with characteristics given in 
Table 15.1.

The losses obtained from (15.84) through (15.86) were compared with plate losses 
obtained with a 2D finite element program [Ansoft]. We simulated the infinite geometry by 
choosing a plate width large compared with the busbar–plate separation and by using 
 balloon boundary conditions.

The first configuration studied was that of a single busbar positioned as shown in 
Figure 15.26. The busbar dimensions here and in all the subsequent configurations studied 
were t = 12.7 mm and w = 76.2 mm. The plate thickness d = 12.7 mm and was kept the same 
in all the studies. The current details, separation distance H, and the loss comparisons are 
shown in Table 15.2. The agreement is very good.

The 3-phase busbar configuration studied is shown in Figure 15.27. An additional param-
eter, the separation distance between busbars, s, is shown in the figure. All the busbars are 
a distance H from the plate and currents from a balanced 3-phase system. For the param-
eters chosen, the analytic losses are compared with the finite element results in Table 15.3. 
Again, the agreement is very good.

t

w

H

dPlate

Busbar

FIGURE 15.26
Single-busbar geometry. (From Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 549–552. © 2003 IEEE.)

TABLE 15.1

Plate Characteristics

Plate Material Relative Permeability Conductivity (Ω m)−1

Mag steel 200 4 × 106

Stainless 1 1.333 × 106

Aluminum 1 3.6 × 107

Copper 1 5 × 107

Source: Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 
549–552. © 2003 IEEE.
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15.5  Tank Losses Associated with the Bushings

Current enters and leaves a transformer tank via the bushings. The bushings are designed to 
handle the voltage stresses associated with the voltage on the leads without breakdown as 
well as to dissipate heat due to the losses in the conductor that passes through the bushings. 
The conductor or lead, which must pass through the tank wall, creates a magnetic field, 
which can generate eddy currents and accompanying losses in the tank wall near the lead. 
These losses must be calculated and appropriate steps taken to reduce them if necessary.

TABLE 15.2

Loss Comparisons for a Single Busbar

Plate Material H (mm) Analytic (W/m) Finite Element (W/m)

Mag steel 127 1183 1197
Stainless 127 987 985
Aluminum 127 61.1 60.8
Copper 127 48.9 48.7
Mag steel 254 859 878
Stainless 254 664 670
Aluminum 254 34.3 34.6
Copper 254 27.4 27.7

Source: Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 549–552. © 2003 IEEE. 
The busbar current was 5000 amps rms at 60 Hz. d = 12.7 mm.

H

dPlate

s s

FIGURE 15.27
3-phase busbar geometry. (From Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 549–552. © 2003 IEEE.)

TABLE 15.3

Loss Comparisons for a 3-Phase Busbar System

Plate Material H (mm) s (mm) Analytic (W/m) Finite Element (W/m)

Mag steel 127 101.6 214 213
Stainless 127 101.6 236 230
Aluminum 127 101.6 34.1 32.4
Copper 127 101.6 27.2 26.1

Source: Del Vecchio, R.M., IEEE Trans. Magn., 39(1), January 2003, 549–552. © 2003 IEEE. 
The currents in the busbars were 5000 amps rms at 60 Hz with phases of 0°, 120°, and 240°. d = 12.7 mm.
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We can obtain a reasonable estimate of the tank losses due to a lead penetrating the tank 
wall by resorting to an idealized geometry as shown in Figure 15.28. Thus, we assume an 
infinitely long circular cross section lead passing perpendicularly through the center of a 
circular hole in the tank wall. We can assume that the tank wall itself is a circle of large 
radius centered on the hole. Since the losses are expected to concentrate near the hole, the 
actual radial extent of the tank would not matter much. Also since most of the magnetic 
field, which generates eddy currents in the tank, comes from the portion of the lead near 
the tank, the infinite extent of the lead does not greatly affect the calculation.

The geometry in Figure 15.28 is axisymmetric. Thus, we need to work with Maxwell’s 
equations in a cylindrical coordinate system. We assume the tank wall has permeability μ 
and conductivity σ. Combining Maxwell’s equations with Ohm’s law inside the tank wall 
and assuming that H varies harmonically in time as

 H r H r,t ej t( ) = ( ) w
 (15.87)

we get

 Ñ =2H Hjwms  (15.88)

where H in (15.88) is only a function of position since the time dependence has been 
f actored out.

Conductor

Hole

Tank

(a)

Eddy current path

r

z

I

c/2
c/2

a

(b)

FIGURE 15.28
Idealized geometry and parameters used to calculate losses due to a lead passing through the tank: (a) top view 
and (b) side view.
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Because the problem is axisymmetric, H does not depend on φ, the azimuthal angle. We 
also assume that H has only a φ component. This is all that is needed to produce the 
expected eddy current pattern indicated in Figure 15.28b, where the eddy currents 
approach and leave the hole radially and the paths are completed along short sections in 
the z direction. The approximate solution we develop here will neglect these z-directed 
eddy currents, which should not contribute much to the total loss if the plate is thin enough. 
Thus, we have

 H ar H r,z( ) = ( )j j (15.89)

where aφ is the unit vector in the azimuthal direction. Expressing (15.88) in cylindrical 
coordinates and using (15.89), we get
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We need to solve this equation subject to the boundary conditions
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where
a is the radius of the hole in the tank wall
c is the tank wall thickness
I is the current in the lead

Once a solution is found, the current density J is given by
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where r and k are unit vectors in the r and z directions.
To solve (15.90), we use a separation of variables technique and write

 H r,z R r Z zj ( ) = ( ) ( ) (15.93)

Substituting into (15.90) and dividing by RZ, we obtain
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Thus, we have two terms, which are separately a function of r and z and whose sum is a 
constant. Hence, each term can be separately equated to a constant so long as their sum is 
jωμσ. We choose
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Letting k2 = jωμσ so that

 
k j q q= +( ) =1

2
,

wms
 

(15.96)

we can solve the first equation in (15.95) up to an overall multiplicative constant, Zo, by

 Z z Z kz Z qz qz j qz qzo o( ) = ( ) = ( ) ( ) + ( ) ( )éë ùûcosh cosh cos sinh sin  (15.97)

This equation takes into account the symmetry about the z = 0 plane. The second equation 
in (15.95) is solved up to an overall multiplicative constant, Ro, by
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Thus, the complete solution to (15.94), using the boundary conditions (15.91), is
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This does not exactly satisfy the first boundary condition in (15.91) except in the limit of 
small qc/2.

Solving for the eddy currents, Equation 15.92, we see that the z-directed currents are zero 
when we substitute the solution (15.99). We expect that the losses contributed by these 
short paths will be small. Solving for the r-directed eddy currents, we obtain
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and the loss density as a function of position, assuming I is an rms current, is

 

J Iq
r

qz qz
qc qc

r
2 2

2
2

2 2
s s p

= æ
è
ç

ö
ø
÷

( ) - ( )
( ) + ( )

é

ë
ê
ê

ùcosh cos
cosh cos ûû

ú
ú  

(15.101)

This drops off with radius as 1/r2 and so is highest near the opening. The total loss is given by
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The upper limit of the r integration, b, is chosen to be a large enough radius that the tank 
area of interest is covered. The result will not be too sensitive to the exact value chosen. 
Performing the integrations, we obtain
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For a magnetic steel tank wall, using μr = 200, σ = 4 × 106 (Ω m)−1, f = 60 Hz, and c = 9.52 × 10−3 m, 
we get qc = 4.15. Thus, the small qc approximation to (15.103) cannot be used. However, for 
a stainless steel tank wall of the same thickness and frequency, using μr = 1, μ = 4π × 10−7 
H/m, and σ = 1.33 × 106 (Ω m)−1, we have qc = 0.17 so the low qc limit may be used. This 
low-frequency limit is
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where ω = 2πf and σ = 1/ρ have been substituted. Applying these last two equations to 
the case where I = 1000 amps rms (for normalization purposes), the hole radius 
a = 165 mm, the outer radius b = 910 mm, and using the parameters given earlier for 
the two types of steel, we get Lossbush(mag steel) = 61.9 W/(kArms)2 and Lossbush(stainless) = 
5.87 × 10−3 W/(kArms)2. These losses are associated with each bushing. Applying this to 
a situation where the lead is carrying 10 kArms, the loss in a magnetic steel tank wall 
would be 6190 W per bushing and in a stainless steel tank wall 0.587 W per bushing. 
These need to be multiplied by the number of bushings carrying the given current to 
get the total tank loss associated with the bushings. Thus, when high currents flow in 
the leads, it might be worthwhile to insert a stainless steel section of tank around the 
bushings, especially since these losses are concentrated in the part of the tank wall near 
the opening.

Another method of reducing these losses is to use a stainless steel insert only around part 
of the opening. This will reduce the effective permeability as seen by the magnetic field, 
which travels in concentric circles about the center of the opening. We can estimate the 
effective permeability by using a magnetic circuit approach. This could then be substituted 
into the previous formulas to calculate the loss. A finite element 3D calculation, however, 
shows that this underestimates the loss. Apparently, the flux is not confined to the tank 
wall as it essentially is when the material is all magnetic steel, but can travel around the 
stainless insert in the surrounding air or oil.

15.5.1  Comparison with a 3D Finite Element Calculation

In order to check the analytic result given earlier, a 3D finite element analysis was per-
formed, using a large number of elements within the tank wall so that the eddy current 
distribution could be captured and used to obtain the losses. The losses were also calcu-
lated using the impedance boundary method, which requires far fewer elements. The 
geometry, shown in Figure 15.29, consists of a circular disk with a hole in it. The outer 
diameter of the disk is 305 mm and the diameter of the hole is 132 mm. The disk is 9.5 mm 
thick and made of low-carbon magnetic steel with a relative permeability of 200 and a 
conductivity of 4 × 106 (Ω m)−1. The lead is 1270 mm long and has a diameter of 25.4 mm. 
The rms current in the lead is 5800 amps at 60 Hz.

Figure 15.30 shows the surface loss densities on the plate obtained with the surface 
impedance boundary method. The figure shows that the highest losses are near the center 
hole as expected.

The total loss, using the impedance boundary method, was 1095 W. When the disk was 
internally subdivided into a large number of 3D finite elements and the losses calculated 
by integrating the eddy current losses in the standard manner, a loss of 998 W was 
obtained. The two methods are in near agreement on this problem. Using the analytic 
formula developed earlier for the losses, the losses obtained were 1019 W. This agrees 
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FIGURE 15.29
Geometry of lead passing through a plate with a hole in it to simulate a lead passing through a tank top.
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FIGURE 15.30
Surface losses on the magnetic steel disk. The scale is in W/m2. Peak currents were used in generating this plot, 
so the loss densities include the factor of 2, which is necessary, if rms currents are used.
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with both types of finite element analyses. We should note, however, that all the methods 
used assume that the material is linear. This could require some correction for saturation 
effects as discussed in the next chapter.

It is worth noting here that an exact analytic solution of (15.88) for the lead passing 
through a hole in the tank top has been found, without assuming that the currents are 
all azimuthally directed [Max15]. In addition, the temperature distribution using the loss 
distribution in (15.101) or the exact loss distribution has also been found [Max16].
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Stray Losses from 3D Finite Element Analysis

16.1  Introduction

Modern methods of analysis, such as finite element or boundary element methods, have 
facilitated the calculation of stray flux losses in complex geometries. These methods are not 
yet routine in design because they require a fair amount of geometric input for each new 
geometry. However, some of these programs support the use of macros that can quickly 
generate a standard geometry based on key parameters, which can be changed for differ-
ent designs. These methods can provide useful insights in cases where analytic methods 
are not available or are very crude.

Typical power transformers have 3-phase cores so that the stray flux produced arises 
from the currents in all 3 phases. Analytic formulas are generally based on single-phase 
assumptions. Although these formulas are based on physical principles, they generally 
require modifications obtained by comparison with test data. The necessity for such modi-
fications can arise from the idealized geometries assumed in the calculation or from the 
ignored effects of 3-phase flux. 3D finite element methods are now available for modeling 
all 3 phases, including the effects of 3-phase flux. Even here, some approximations must be 
made to make the calculations tractable. We will explore this approach in this chapter and 
compare it with other methods and test results.

16.2  Stray Losses on Tank Walls and Clamps*

Stray loss studies were performed for a 3-phase, 3-legged core. Because all 3 legs can be 
modeled and 3-phase currents used, one would expect greater accuracy for these losses as 
compared with analytical or 2D finite element analyses. Because anisotropic conductivity 
and permeability can be modeled in 3D, this presents the opportunity to study the relative 
effectiveness of shunts made of laminated core steel, which can be stacked flat or on edge. 
We also compare the 3D losses to losses obtained by analytic methods and test results for 
transformers of various ratings and types.

Transformer structural elements such as clamps and tank, where much of the stray loss 
occurs, are generally made of magnetic steel, which has a small skin depth relative to the 
thickness of the material. In order to capture the eddy currents, a large number of finite 
elements would be required. In 2D this is not a problem, but in 3D when modeling a large 

* This section is based largely on [Ahu06].

16
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item such as a clamp or tank, the number of elements and solution times would be prohibi-
tively large. Therefore, a method called the impedance boundary method has been devel-
oped to address this problem [Hol92], [Lam66]. This method only requires that the surface 
of the material be covered with finite elements. These are special elements, called surface 
impedance elements. The properties of the material such as its relative permeability and 
conductivity are used in specifying these elements. Then after running the 3D problem, the 
solution is processed to obtain the loss in Watts, which is given by the formula

 
Loss *dSr o

Surface

t t= ×òwm m
s8

H H
 

(16.1)

where
ω is the angular frequency = 2πf, where f is the frequency in Hz
σ is the conductivity in (Ω m)−1

μr is the relative permeability
μo is the permeability of free space, which is 4π × 10−7 H/m in SI units
Ht is the tangential component of the magnetic field vector at the surface in amps/m and 

* denotes complex conjugate

Note that if the currents in the windings are rms currents, the loss in the last equation must 
be multiplied by 2. We used Ansoft’s software, Maxwell 3D, to do the finite element calcu-
lations and obtain the losses [Ansoft].

Of course, if materials having a relatively large skin depth such as aluminum, stainless 
steel, or copper are present, they are modeled with interior elements and the losses are 
calculated via the eddy currents generated inside them.

In order to get good accuracy and reproducibility, a reasonably large number of elements 
must be used, especially concentrated near the surfaces of interest. We found that typically 
~100,000 3D elements were needed for most problems.

16.2.1  Shunts on the Clamps

In order to lower the stray losses in the clamps with a flat top, it has been the practice to 
place shunts on the top surface. These shunts extend continuously along the entire clamp, 
straddling all three phases. The idea is that the flux from the 3 balanced phases will cancel 
within the shunt. Thus, much of the leakage flux will be trapped within the shunt and 
therefore be unavailable to induce losses in the conducting structural material.

An autotransformer with an FA or top rating of 105 MVA was modeled. The clamps were 
L-shaped and therefore had a large horizontal surface area, which was fairly close to the 
windings and their leakage flux. End clamps with a similar shape were also modeled. For 
the end clamps, the shunts cover only one phase so that the leakage flux must return to the 
core. A loss analysis with and without clamp shunts was performed. The 3-phase model, 
excluding the tank, is shown in Figure 16.1.

By giving the shunts the material properties of air or vacuum, the losses can be obtained 
in the clamps without the shunts. These are shown on the high-voltage (HV) side bottom 
clamp in Figure 16.2.

The shunts were 38 mm thick and made of high-permeability core laminations. The 
shunt material is assumed to be linear and therefore does not saturate. If an isolated spot 
in the material saturates, then it can be assumed that the flux density will redistribute itself 
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FIGURE 16.1
Transformer geometry showing the 3 phases and the clamps. End clamps were modeled only on the bottom 
clamp structure for simplicity. There are 2 windings per leg, shown in dark green and red. The clamp shunts are 
shown in coral and the clamps in light blue green. The core, partially shown, is in blue.
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FIGURE 16.2
Surface loss densities on the HV side bottom clamp without shunts. Note that the highest values are at the two 
end phases. There is more flux cancellation at the center phase than at the outer phases. The units are W/m2.
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within the material. However, if an entire cross section of the material saturates, then this 
is an indication that the flux will spill out of the material and create losses in the material 
that the shunts are supposed to protect. The flux densities in the shunts, having their core 
steel material properties, were obtained by looking at the shunt cross sections at various 
positions along the shunt. A contour plot of the flux density at the center leg position is 
shown in Figure 16.3.

The flux density is about 1.9 T at the leg centers, which is below the 2.1 T saturation limit. 
However, it averages about 2.1 T between legs, which is just at saturation. What is interest-
ing is that the flux is fairly uniform along the side shunt. A vector diagram would show 
that it is directed along the shunts’ long direction, indicating that it remains within the 
shunt and does not leak out to any great extent. The surface loss densities on the side 
clamps are about 100 times lower than the loss densities without the shunts.

The flux density in the end clamp shunts is only about 0.2 T mainly because this flux is 
forced to return to the core through an air gap. They are therefore less effective in reducing 
the end clamp losses. This is another indication of how the flux from the 3 phases cancels 
within the side clamp shunts since it is not forced to return to the core.

16.2.2  Shunts on the Tank Wall

Shunts on the tank walls are frequently used to reduce losses and/or to eliminate hot 
spots. We look at the effectiveness of these shunts when the laminations are placed flat on 
the tank wall or stacked on edge. Figure 16.4 shows a 160 MVA, 2-winding power 
t ransformer with shunts on the low-voltage (LV) side tank wall. The tank itself is not shown. 

B (T)
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FIGURE 16.3
Flux densities in the bottom LV side clamp shunt at the center of the center leg. The units are Teslas.
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The 25 mm thick shunts are centered on the 3 phases. In practice, if the shunts were stacked 
flat to the tank wall, they would be subdivided into several vertical sections to reduce the 
losses. Here, for simplicity, this has not been done. The shunts are made of core steel with 
the anisotropic properties shown in Table 16.1.

The surface loss densities in the LV side tank wall without the shunts are shown in 
Figure 16.5.

Notice that the losses are somewhat higher on the end phases than in the middle, due to 
flux cancellation in the middle phase. Notice also that, on the end wall, the losses are 
higher at the winding center than at the winding ends. This was a feature of the calculation 
performed in the last chapter for the analytic tank losses from a single phase.

The tank wall surface loss densities with the shunts present are shown in Figure 16.6. 
This figure would look the same whether the shunts are placed flat or on edge.

FIGURE 16.4
Power transformer model with LV side tank shunts.

TABLE 16.1

Characteristics of Stacked Core Laminations Used in the Finite 
Element Studies

Anisotropic Properties of Stacked Core Laminations

Relative AC Permeability Resistivity (μΩ cm)

Rolling direction 5000 50
Cross direction 2500 50
Stacking direction 25 50 × 104
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FIGURE 16.5
Surface loss densities in the LV side tank wall and end without shunts. The units are W/m2.
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FIGURE 16.6
Surface loss densities on the LV side and tank walls when the shunts are present. There are no shunts on the end 
walls. The units are W/m2.
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Tank wall and shunt losses are shown in Table 16.2 for flat and on-edge shunts and com-
pared with losses without the shunts. Since the shunts are on the LV side, they primarily 
lower the tank losses on this wall. The reduction in the LV side losses is about a factor of 10 
for both shunt stackings. The flux densities in both types of shunt are well below satura-
tion, and the losses in the shunts are negligible. It would appear from this study that there 
is virtually no advantage to using shunts stacked on edge as compared with flat shunts. 
Other considerations, such as convenience, economics, or possibly noise reduction, should 
dictate the choice.

16.2.3  Effects of 3-Phase Currents on Losses

The effects of having 3-phase currents in the windings were examined. Because all three 
phases can be included, one might expect the losses to be influenced by how the fluxes add 
(as phasors) in regions of flux overlap from the different phases. Losses were calculated 
with 3-phase currents in the windings and with single-phase currents in each phase sepa-
rately. The sum of the losses with the separate phases carrying current is then compared 
with the 3-phase current losses. Transformers with several MVA ratings were examined, 
and this comparison is given in Table 16.3. The single end phase loss is multiplied by 2 and 
added to the center phase loss to get the separate phase loss. This is because the end phase 
geometry was identical for the two ends. As can be seen, there is a loss reduction of about 
10% when 3-phase currents are used to compute the losses.

16.2.4  Stray Losses from 3D Analysis versus Analytical and Test Losses

An important reason for considering a 3D analysis is to improve the calculation of the 
losses. The rectangular shapes of tanks and shunts can be modeled in 3D, whereas they 

TABLE 16.2

Losses in the Tank Walls When the LV Side Shunts Are 
Stacked Flat or on Edge to the Tank Wall

Losses with and without 25 mm Shunts (kW)

No Shunts Flat Shunts On-Edge Shunts

Tank—LV side 13.57 1.14 1.14
Tank—HV side 5.97 5.87 5.87
Tank—left end 4.30 4.33 4.32
Tank—right end 4.85 4.30 4.29

TABLE 16.3

Separate Phases versus 3-Phase Losses

Tank + Clamp Losses (kW)

3 Phase 1 End Phase Center Phase 3 Phase/Separate

67 MVA 12.76 5.04 3.53 0.94
64 MVA 9.97 4.16 2.70 0.90
96 MVA 13.76 5.89 3.65 0.89
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present a problem for 2D analyses where a single phase, treated axisymmetrically, is 
generally modeled. The increased model accuracy along with the inclusion of 3-phase 
effects should hopefully improve the accuracy of the loss calculation. Since most of the 
stray losses, aside from eddy current losses in the windings, occur in materials that have 
a small skin depth, it is essential to rely on the impedance boundary method to compute 
these losses.

One of the problems with evaluating the accuracy of the 3D loss calculation is that test 
stray losses are determined very indirectly. Only the total load losses are measured directly. 
From these, the calculated I2R winding losses are subtracted. Then the eddy current losses 
in the windings are estimated from a 2D flux plot together with analytic formulas that 
make use of the radial and axial field components throughout the windings. These are 
subtracted and what remains are the stray losses. Sometimes, the eddy current losses in the 
windings are considered part of the stray losses but not in this context. Since the I2R + 
winding eddy losses comprise the major part of the total load losses, there can be consider-
able error in the result of subtracting two large numbers. Nevertheless, the losses were 
determined for several units using 3D finite element analysis and compared with losses 
extracted from the test data. Losses based on analytic formulas were also determined for a 
similar comparison.

The losses were calculated separately for the clamps and tank. The miscellaneous losses 
include the tie plates and pressfeet (small structural supporting projections). Table 16.4 
shows the comparisons.

As can be seen from the table, the analytic formulas do a better job of predicting the test 
results. This is not unexpected, since these formulas were specifically adjusted or tweaked 
to get good agreement with the measured losses for many units over a long period of time. 
The 3D losses are about 50% below the measured losses. The likely explanation can be 
found in [Kul04] where it is pointed out that the impedance boundary method is based on 
linear magnetic characteristics for the tank or clamp steel. In reality, because of the small 
skin depth, the material saturates magnetically within this depth. This requires a correc-
tion factor, which is estimated to be in the range of 1.3–1.5 times the 3D losses. This would 
produce much better agreement with the test losses in the table given earlier. A method for 
including such a nonlinear correction to the impedance boundary losses is given in the 
next section.

TABLE 16.4

Comparison of Stray Losses Determined by 3D FE and Analytic 
Methods with Losses Extracted from Test Data

MVA/Type Analysis Type Clamps Tank Misc Total Calc Test

60/Auto Analytic 8.22 5.26 1.0 14.48 21.7
3D 4.96 3.98 0.33 9.27

64/Auto Analytic 10.25 4.29 1.54 16.08 22.6
3D 6.44 3.52 1.75 11.71

96/Auto Analytic 13.81 6.29 1.71 21.81 21.6
3D 8.86 4.90 2.04 15.80

60/Power Analytic 5.17 2.72 1.17 9.06 9.30
3D 3.62 0.63 0.57 4.82

225/Auto Analytic 2.05 14.67 1.03 17.75 19.6
3D 1.32 3.29 1.83 6.44
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16.3  Nonlinear Impedance Boundary Correction for the Stray Losses*

The surface impedance boundary condition as implemented in finite element programs is 
based on a loss formula for linear magnetic materials. These materials generally have high 
enough permeability that the losses are confined to a thin region near the surface. The losses 
can then be regarded as only a function of the surface tangential magnetic field (H field). 
Thus, the eddy current losses do not have to be calculated from the eddy current distribu-
tion, which would require a large number of finite elements concentrated near the surface 
of the material. This becomes impractical for large high-permeability structures such as 
transformer tank walls or clamps due to the extremely small skin depths of these materials 
at 50/60/Hz. Using this linear formula, systematic discrepancies have been found between 
the calculation and measured losses as discussed earlier.

Several authors have proposed corrections to take into account the nonlinear magnetics 
present in low-carbon structural steels. An approach similar to that presented here was 
given in [Lab89]. However, an approximate B–H curve was assumed and Maxwell’s equa-
tions were solved by means of a phasor approximation, assuming fictitious material prop-
erties. This led to a fairly complicated procedure to extract the desired losses. Effective 
permeability approaches have also been proposed, leading to approximate results [Kos02]. 
Reference [Gue96] uses a step function to approximate the B–H curve and an effective per-
meability to estimate the nonlinear losses.

In contrast to the method proposed here, many of the previous approaches involve imple-
menting the nonlinear impedance boundary terms directly into the formulation of the finite 
element or boundary element method, usually by means of an effective permeability. 
A method based on the nonlinear solution of Maxwell’s equations, using Agarwal’s approx-
imate B–H curve [Aga59], and extracting an equivalent surface impedance as a function of 
the surface magnetic field, H, was coupled to boundary element or finite element codes 
[Kra97]. This requires an iterative procedure and access to the relevant software.

Extensions have also been made to geometries other than plane surfaces and to materials 
with properties varying not only in the direction normal to the surface but in the tangential 
direction as well [Yuf99], [Yuf10].

The approach developed here uses a commercial finite element program, which imple-
ments the linear surface impedance boundary condition, namely, ANSYS’s Maxwell 3D 
[ANS], although it should work for similar software. A nonlinear correction to the linear 
formula is developed, which depends on the magnetic properties of the metal used in the 
structures of interest. This correction depends on the B–H curve and conductivity of the 
material and is a function of the surface tangential H field as is the formula that computes 
the linear losses. Thus, it is applied in the same manner as the linear loss calculation.

Two low-carbon steels having different properties are studied, and the losses with and 
without the nonlinear correction are compared with test values of the stray losses for a 
variety of transformers.

16.3.1  Linear Loss Calculation for an Infinite Slab

The linear loss formula, given in (16.1), was developed for an infinitely thick slab of mate-
rial, which is also infinite in the two directions parallel to the surface. It is derived here to 
compare with the nonlinear loss calculation that will be derived next. Thus, the fields are 

* This section is based on [Del13], IEEE Trans. Magn., 49(12), December 2013, 5687–5691. © 2013 IEEE.
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assumed to vary only in the direction into the slab. These assumptions also apply to a slab 
of finite thickness, provided that the skin depth is sufficiently smaller than the slab’s thick-
ness. In the coordinate system shown in Figure 16.7, the fields vary only in the z direction, 
which is into the slab. The surface H field vector is in the x–y plane, that is, parallel to the 
surface of the slab.

In this geometry, Maxwell’s equations in SI units simplify to
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(16.2)

where σ is the electrical conductivity. For a linear magnetic material B = μH, with μ = 
μrμ0, where μr is the relative permeability and μ0 = 4π × 10−7 in SI units. With this linear 
assumption, Equation 16.2 can be solved by means of phasors. Thus, all the fields are 
multiplied by e−jωt, where j is the imaginary unit and ω = 2πf and f is the frequency in Hz. 
For an infinite slab with an H field tangential to the surface given by a phasor of magni-
tude H0 and an H field at z = ∞, which is infinitely far into the slab, equal to 0, the solu-
tion to (16.2) is

 H H e kz= -
0  (16.3)

where k2 = jωμrμ0σ.
The current density, J, is given by

 J H= Ñ´  (16.4)

which, in this coordinate system, becomes
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The current density is in the x–y plane but perpendicular to the H field. Using this in the 
loss formula

 
Loss/unit area J dz=

¥

ò1
2

0

2

s
 

(16.6)

y
x

z

FIGURE 16.7
Coordinate system for solving Maxwell’s equations. (From Del Vecchio, R.M. and Ahuja, R., IEEE Trans. Magn., 
49(12), December 2013, 5687–5691. © 2013 IEEE.)
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we get
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16.3.2  Nonlinear Loss Calculation for a Finite Slab

For nonlinear B–H curve materials, Equation 16.2 can be solved numerically, using the 
relation between B and H at each time step. The first step is to obtain the B–H curve for 
the structural steel used in the analysis. Such a curve was obtained from ANSYS’s mate-
rial properties library with the addition of a few intermediate points to facilitate the 
analysis. This curve is shown in Figure 16.8. For comparison, a linear B–H curve for a 
material with a relative permeability of 200 is also shown. This corresponds to the mate-
rial used for the linear impedance boundary analysis. Both materials have a conductivity 
of 4 × 106 (Ω m)−1.

This curve was fit with cubic splines, using a mathematical library, which also allowed 
the derivative of the curve to be obtained. For definiteness, let

 B f H= ( ) (16.8)

where f is the cubic spline fit or any, possibly analytic, fit to the B–H curve.
For this numerical nonlinear analysis, we need to replace the infinitely thick slab by one 

of finite thickness of about 5–10 times the skin depth. This finite sheet is then supplied with 
an equally spaced grid of points along a line in the z direction. About 50–100 points for the 
grid should suffice. Denote their values on these points by B(i), H(i), where i = 1, …, n for 
an n point grid. We also need a Bnew(i) and Hnew(i) for the field values at the next time step. 
We do not need to save the field values on all the time steps.
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FIGURE 16.8
B–H curve for low-carbon steel compared with a linear curve. (From Del Vecchio, R.M. and Ahuja, R., IEEE Trans. 
Magn., 49(12), December 2013, 5687–5691. © 2013 IEEE.)
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Equation 16.2 can be cast in discrete form on this grid by
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where
Δz is the distance between space points
Δt the time step interval

Rewriting (16.9),
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It turns out that in order to achieve a stable converged solution, it is necessary for the 
inequality to hold:
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where μr,diff is the relative differential permeability [Gil65]. Given that a fixed grid size is 
chosen, this fixes Δz. Thus, the time step must be chosen to satisfy inequality (16.11). This 
time step may vary over the duration of the signal, depending on the differential permea-
bility at that time step.

The surface boundary conditions at i = 1 and i = n are

 H H H n1 00( ) = ( ) ( ) =sin ,wt  (16.12)

Initially, all fields are set to zero at t = 0. At t = Δt, H(1) and H(n) are set according to (16.12). 
All the other H(i) are still zero at this point. Then the Bnew(i) are calculated according to 
(16.10). Given the Bnew(i) at all points i, the Hnew(i) can be found at all i = 2, …, n − 1. This is 
done by inverting (16.8).

For the B–H curve f(H) given in (16.8), this inversion is best done by Newton–Raphson 
iteration. This is where it is useful to have the derivative of the B–H curve. As discussed in 
Section 2.7, this iteration procedure involves finding the zero of a function, F(H). Thus, 
given a Bnew, a new function is defined by F(H) = f(H) – Bnew = B(H) − Bnew, so that the zero 
of F(H) yields the Hnew corresponding to Bnew. To begin this process, a starting value of H is 
chosen by a reasonable guess. Then an iteration is set up so that a better approximation is 
given by H + ΔH, where
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Since Bnew is considered a constant in this process, the derivative of F(H) is just the deriva-
tive of f(H) in (16.8). The iteration terminates when ΔH is small enough.

The solution process continues for more cycles of the sine wave. Thus, at a given time 
step t + Δt, H(1) and H(n) are set according to (16.12). The other H values would now, in 
general, be nonzero. Then the Bnew(i) are calculated according to (16.10) and the Hnew(i) for 
the nonboundary H’s are determined by inverting (16.8).
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At the end of a cycle, the eddy current losses are determined. The process terminates when 
the eddy current losses are the same within a given tolerance between two successive cycles.

The eddy current loss density is given by (16.4), which, in this geometry, becomes
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It is necessary to discretize (16.14). For points away from the boundaries, a central differ-
ence approximation may be used:
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For points on the z = 0 surface where i = 1,
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At the other surface where i = n,
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These second-order difference approximations are necessary for accuracy.
The losses over a cycle can then be calculated from
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where T is the cycle time and J has been labeled with the space index i and the time t during 
the cycle. The inner summation in (16.18) is calculated at each time step, and when multi-
plied by Δt, a cumulative summation can be obtained over a cycle.

Normally, over a cycle, the smallest differential permeability occurs at the peak surface 
H field, which, from (16.12), is H0. Thus, the time step can be set once for the whole cycle, 
based on (16.11). For some margin, it should be set lower by about a factor of 2, but the 
 relative differential permeability should never go below 1.

As a check, the linear B–H curve was also fit with cubic splines, and the nonlinear analy-
sis described earlier was applied to this linear case. The losses obtained agreed with the 
analytic formula given in (16.7) within a few tenths of a percent.

16.3.3  Application to Finite Element Loss Calculations

Losses for the low-carbon steel 1010 with the B–H curve given in Figure 16.8 were  calculated 
by the method outlined earlier for a number of peak surface sinusoidal H fields at 60 Hz. 
Convergence usually occurred after four cycles although the convergence time increased with 
increasing H0 field due to the drop in differential permeability caused by the onset of satura-
tion. The nonlinear losses were divided by the losses given by the linear loss analytic formula 
(16.7) with permeability corresponding to the straight line B–H curve in Figure 16.8. The ratio 
of the nonlinear to linear losses versus the peak surface H field is plotted in Figure 16.9.
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The dotted line in Figure 16.9, which gave the best fit, corresponds to the formula
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where H0 is the peak surface H field. This formula was difficult to implement in the finite 
element calculator because of the H field value under a square root. An alternative but 
reasonable fit is given by the solid line in Figure 16.9, which could be implemented by the 
finite element program. This solid line ratio is expressed by
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This ratio then multiplies the linear loss formula given in (16.7) so that the nonlinear loss 
formula is a product of two terms that are both a function of H0. Thus, for comparison 
purposes, both linear and nonlinear losses can be obtained by the finite element program, 
depending on whether the correction factor is included or not.

Figure 16.9 shows that the nonlinear loss correction factor is >1 for smaller surface H 
fields, which means that the nonlinear losses are above the linear losses for smaller H 
fields. This probably because, based on Figure 16.8, the slope of the nonlinear curve (dif-
ferential permeability) is higher than the slope of the linear curve at smaller H values, 
which makes the nonlinear skin depth smaller, leading to higher losses. The correction 
then falls off and drops below 1 as the H field increases. In this case, the nonlinear losses 
are below the linear losses for these larger H field values. This is probably happening 
because the nonlinear curve slope is smaller than the slope of the linear curve at higher H 
values, resulting in a larger skin depth and hence lower losses than the linear skin depth 
for these larger H fields.
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FIGURE 16.9
Ratio of nonlinear to linear losses for low-carbon steel 1010. The calculated points are fit by two methods corre-
sponding to the solid and dotted lines. (From Del Vecchio, R.M. and Ahuja, R., IEEE Trans. Magn., 49(12), 
December 2013, 5687–5691. © 2013 IEEE.)
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16.3.3.1  Comparison with Test Losses

The measurement of stray losses in a transformer is an indirect process. Generally, only the 
total load loss is measured. These include the winding d.c. losses, eddy current losses in 
the windings, and stray losses. The core losses are not included. Therefore, the winding + 
winding eddy losses must be subtracted from the measured losses to get the stray losses. 
Since the stray losses are generally a small percentage of the total losses, they are arrived 
at by subtracting two large numbers. This can result in significant errors. The winding 
losses consist of d.c. losses (I2R losses) + eddy losses. The d.c. losses are calculated from the 
winding resistance, which is measured, and the winding current also measured. The wind-
ing eddy current losses are obtained from an analytic formula, which utilizes the values of 
the leakage field of the energized transformer throughout the windings, together with the 
conductor dimensions. These calculated eddy losses are also subject to some uncertainty. 
Nevertheless, by comparing measured stray losses with calculated stray losses for a num-
ber of transformers, one can get a statistical sense of the level of agreement between the 
measured and calculated values.

Thus, 10 transformers with tested losses were used in this study. Their MVA ratings var-
ied from 60 to 420 and included power and autotransformers. The stray losses included 
losses on all tank walls, on all clamps, and on all tie or flitch plates. In short, the losses on 
all significant structural components were included. Most had clamp shunts and/or tank 
shunts on some tank walls. A typical transformer model is shown in Figure 16.10.

The total losses on the various structural components were obtained in the calculator. 
However, the loss distribution can be displayed graphically on the individual surfaces. An 
example of this impedance boundary surface loss distribution is shown on tank walls in 
Figure 16.11.

FIGURE 16.10
3-phase transformer model showing the clamps, shunts, and windings. The tank walls are semitransparent. 
(From Del Vecchio, R.M. and Ahuja, R., IEEE Trans. Magn., 49(12), December 2013, 5687–5691. © 2013 IEEE.)
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Although the losses on the individual structures can be obtained, only the total stray loss 
from test is normally available for comparison with calculation. This comparison is shown 
in Table 16.5 for 10 tested transformers.

From Table 16.5, the impedance boundary stray losses with the nonlinear correction 
described here give much better overall agreement with the tested stray losses than with the 
impedance boundary losses, which used a linear B–H curve. In fact, the linear loss  calculation 
is consistently below the tested loss. The standard deviation in the tested–calculated losses is 
fairly high for both calculation types. This is possibly due to the uncertainty in extracting the 
winding losses from the tested total losses as discussed previously. The ratio of nonlinear 
losses to linear losses is about 1.6 on average.

16.3.3.2  Conclusion

The impedance boundary correction proposed here can be applied to other types of struc-
tural steel provided its magnetic and electrical characteristics are known. For example, the 
same analysis was done for low-carbon steel 1008, but the agreement with the tested data 
was not as good. On average, the nonlinear corrected losses are about a factor of 1.6 times 
the linear impedance boundary losses. This factor is about the same as the loss discrepancy 
reported by various sources in the literature. Moreover, the correction depends on the 
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FIGURE 16.11
Impedance boundary surface losses on two tank walls. The key is in W/m2. In this unit, only end tank shunts are 
used. (From Del Vecchio, R.M. and Ahuja, R., IEEE Trans. Magn., 49(12), December 2013, 5687–5691. © 2013 IEEE.)
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surface H field distribution, as does the linear loss formula. It is not simply a single number 
that multiplies the total surface loss. It multiplies the linear loss formula point by point 
over the surface where the losses are being evaluated.

The correction described here is not only dependent on the B–H curve of the steel used 
but also on the linear permeability of the material used to implement the linear impedance 
boundary condition in the finite element program. It also assumes that they have the same 
electrical conductivity.

TABLE 16.5

Comparison of Tested Stray Losses with Impedance Boundary Losses 
with and without the Nonlinear Correction

 3 Phase (MVA)
Test 

Losses
Calculated 
Nonlinear

Calculated 
Linear Nonlinear Test Linear Test

60 4.25 3.92 2.24 −0.33 −2.01
102 12.7 15.4 9.22   2.7 −3.48
120 5.41 5.21 2.96 −0.02 −2.45
142 31.0 24.9 13.1 −6.1 −17.9
180 22.5 26.6 16.3  4.1 −6.2
240 12.9 15.7 9.1  2.8 −3.8
290 83.4 57.9 36.2 −25.5 −47.2
300 52.0 56.7 34.9 4.7 −17.1
336 21.6 23.5 13.8 1.9 −7.8
420 74.0 93.5 61.7 19.5 −12.3

Ave 0.357 −12.02
Std dev 10.60   12.98

Source: Del Vecchio, R.M. and Ahuja, R., IEEE Trans. Magn., 49(12), December 2013, 
5687–5691. © 2013 IEEE.

Losses are in kW.
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Thermal Design

17.1  Introduction

A thermal model of an oil-cooled power transformer is presented here, along with details 
of the computer implementation and experimental verification. Any such model, particu-
larly of such a complex system, is necessarily approximate. Thus, the model assumes that 
the oil flows in definite paths and ignores local circulation or eddy patterns that may arise. 
The most detailed model assumes that the oil flow through the disk coils is guided by 
means of oil flow washers. However, we also discuss oil flow through vertical ducts in less 
detail. Recent studies have shown that irregular eddy flow patterns may exist in nondi-
rected oil flow cooling in vertical ducts [Pie92]. Such patterns may also occur in the bulk 
tank oil. We assume these are small compared with the major or average convective cool-
ing flow in such coils or in the tank. We further assume that the convective flow in the tank 
results in a linear temperature profile from the bottom of the radiators to the top of the coils 
in the tank oil external to the coils. The model likewise ignores localized heating that may 
occur, for example, due to high current-carrying leads near the tank wall. It accounts for 
these types of stray losses in only an average way. However, a localized distribution of 
eddy current losses in the coils is allowed for, along with the normal I2R losses.

The radiators we model consist of a collection of radiator plates spaced equally along 
inlet and outlet pipes. The plates contain several vertical ducts in parallel. The ducts have 
oblong-shaped, nearly rectangular cross-sections. Fans, vertically mounted, may or may 
not be present (or turned on). In addition to radiator cooling, cooling also occurs from the 
tank walls by natural convection to the surrounding air and by radiation. Although the oil 
may be pumped through the radiators, most of our designs are without pumps so that the 
oil flow in the radiators and coils is assumed to be laminar. Even with pumps, the flow is 
often laminar except through the pipes entering and exiting the tank to the radiators. 
Laminar flow determines the expressions used for the heat transfer and friction coefficients 
along the oil flow paths.

Our model of a disk winding is similar to that of Oliver [Oli80]. However, since we con-
sider the whole transformer, we need to reconcile the heat generated by the individual 
coils and stray losses with the radiator and tank heat dissipation or cooling in an overall 
iteration scheme in order to arrive at a steady-state condition. When we consider transient 
heating, steady state is only reached gradually.

Previous thermal models of whole transformers have focused on developing analytic for-
mulas with adjustable parameters to predict overall temperature rises of the oil and coils 
[IEE81], [Blu51], [Eas65], [Tay58], [Aub92], and [Pie92a]. While these produce acceptable 
results on average or for a standard design, they are less reliable when confronting a new or 
untried design. The approach taken here is to develop a model to describe the basic physical 

17
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processes occurring in the unit so that reliance on parameter fitting is minimized. Such an 
approach can accommodate future improvements in terms of a more detailed description of 
the basic processes or the addition of new features as a result of a design change or different 
types of oil.

17.2  Thermal Model of a Disk Coil with Directed Oil Flow*

The disk coil is assumed to be subdivided into directed oil flow cooling paths as shown in 
Figure 17.1. A smaller section is shown in Figure 17.2, which shows the disks, nodes, and 
paths numbering scheme. The geometry is really cylindrical with the inner radius Rin. Only 
one section (region between two oil flow washers) is shown, but there can be as many sec-
tions as desired. Each section can contain different numbers of disks, and the number of 
turns per disk, insulation thickness, etc., can vary from section to section. The duct sizes 
can vary within a section as well as from section to section.

The unknowns, which must be solved for include the nodal oil temperatures T, the nodal 
pressures P, the path oil velocities v, the path oil temperature rises ΔT, and the disk tem-
peratures TC. These are labeled with their corresponding node, path, or disk number. Note 
that the surface heat transfer coefficients from the coil surfaces are associated with the oil 
path with which the surfaces are in contact. We are not allowing for a temperature profile 
along a single disk but are assuming that each disk is at a uniform temperature. This is an 
approximation, which could be refined if more detail is required.

17.2.1  Governing Equations and Solution Process

Along a given path, the oil velocities are uniform since the cross-sectional area is assumed 
to remain constant. Ignoring gravitational effects, which do not influence the oil flow, the 
pressure drop along a given path is only required to overcome friction. Considering a 
generic path and labeling the pressures at the beginning and end of the paths P1 and P2, 
respectively, we can write, using standard notation [Dai73],

 
P P f

L
D

v1 2
21

2
- = r

 
(17.1)

where
ρ is the fluid density
f is the friction coefficient
L is the path length
D is the hydraulic diameter
v is the fluid velocity

We note that the hydraulic diameter is given by

 D cross-sectional area/wetted perimeter= ´4  

* This section draws on our published papers [Del99], 1999 IEEE Transmission and Distribution Conference, Now 
Orleans, LA, April 11–16, 1999, pp. 914–919. © 1999 IEEE and [Del14], IEEE Trans. Power Deliv., 29(5), October 
2014, 2279–2286. © 2014 IEEE.
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SI units are used throughout this chapter. For laminar flow in circular ducts, f = 64/ReD, 
where ReD is the Reynolds number, given by

 
ReD

vD
=
r
m  

(17.2)

where μ is the fluid viscosity. For laminar flow in noncircular ducts, the number 64 in the 
expression for f changes. In particular, for rectangular ducts with sides a and b with a < b, 
we can write
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D
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( )
Re  

(17.3)

FIGURE 17.1
Oil flow paths for a disk coil with directed oil flow. (From Del Vecchio, R.M. and Feghali, P., 1999 IEEE Transmission 
and Distribution Conference, Now Orleans, LA, April 11–16, 1999, pp. 914–919. © 1999 IEEE.)
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where K(a/b) is given approximately by

 K a/b e a b( ) = + -( )-56 91 40 31 0 03023 5. . .. /

 (17.4)

This expression is based on a fit to a table given in Reference [Ols80].
Substituting (17.2) and (17.3) into (17.1), we obtain

 
P P

KL
D

v1 2 2
1
2

- = m
 

(17.5)

where K = K(a/b) is implied. This equation is linear in the pressures and velocities. 
However, the oil viscosity is temperature dependent and this will necessitate an iterative 
solution. Based on a table of transformer oil viscosities versus temperature given in [Kre80], 
we achieved a good fit to the table with the expression

 
m =

+( )
6900

50 3T  
(17.6)

with T in °C and μ in N s/m2.
For non-laminar flow (ReD > 2000), the expression for f is more complicated and (17.5) 

would no longer be linear in v. We are ignoring the extra friction arising from flow branch-
ing and direction changing at the nodes. There is considerable uncertainty in the literature 
as to what these additional frictional effects are for laminar flow. Instead, we have chosen 
to allow the friction coefficient in (17.3) to be multiplied by a correction factor, if warranted 
by test results. This correction factor has been found to be close to 1.
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FIGURE 17.2
This shows the numbering scheme used for the disks, the flow paths, and the nodes. Only three disks are shown 
but sections can include many more disks. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 29(5), October 2014, 
2279–2286. © 2014 IEEE.)
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The additional equations needed to solve for the pressures and velocity unknowns come 
from conservation of mass at the nodes. A mass of fluid of velocity v flowing through a 
duct of cross-sectional area A per unit time, dM/dt, is given by

 
dM
dt

Av= r
 

(17.7)

Since the fluid is nearly incompressible, we can consider conservation of volume instead, 
where Q = Av is the volume flow per unit time.

The overall pressure drop through the coil is produced by the difference in buoyancy 
between the hot oil inside the coil’s cooling ducts and the cooler tank oil outside the coil. Thus,

 D r rP gHcoil ave out ave in= -( ), ,  (17.8)

where
ρave,in is the average oil density inside the coil
ρave,out is the average density outside the coil
g is the acceleration of gravity
H is the coil height

Letting β be the volume coefficient of thermal expansion, we have

 

1
r

r bd
dT

= -
 

(17.9)

and thus, since β = 6.8 × 10−4/K for transformer oil, we have, to a good approximation over 
a reasonably large temperature range, Δρ = βρΔT so that (17.8) can be rewritten as

 D brP gH T Tcoil ave in ave out= -( ), ,  (17.10)

Because we are only considering pressures that produce oil flows, the pressure at the top 
of the coil when steady state is achieved should be zero. This means that ΔPcoil = the pres-
sure at the input node = P0.

The oil velocity at the entrance of the input path of the coil, v0, is determined by the over-
all energy balance: The energy per unit time acquired by the oil must equal the energy per 
unit time lost by the coil in steady state. The latter loss is just the total resistive loss of the 
coil. Thus,

 
rcv A T I R0 in coil

i

disks

iD =
=
å

1

2
#

 
(17.11)

where
c is the specific heat of the oil
ΔTcoil is the increase in the temperature of the oil after passing through the coil
Ri is the temperature-dependent resistance of disk i, including eddy current effects
Ain is the input path area
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For the single-disk resistance, we use

 
R T ecf

A
i o i i

i

turn
= +( ) +( )g a1 1D �

 
(17.12)

where
γo is the resistivity at some standard temperature To

ΔTi is the temperature rise of the disk above the standard temperature
α is the temperature coefficient of resistivity
ecfi is the fraction of the normal losses due to eddy currents for disk i
ℓi is the length of the cable or wire in disk i
Aturn is the cross-sectional current-carrying area of the cable or wire

ecfi can vary from disk to disk to account for the effects of nonuniform stray flux along 
the coil.

From (17.12), we see that the coil resistances are temperature dependent. Other quanti-
ties such as the oil viscosity and density are also temperature dependent. These tempera-
tures are set initially to some starting temperature and will be redetermined by solving the 
various conservation equations. This will necessitate an iterative solution process where 
the recalculated temperatures are used to update the resistances, viscosities, etc., before 
resolving the conservation equations. This process will continue until some convergence 
criterion is met.

Pressures and temperatures are defined on the nodes in Figure 17.2. Oil velocities and 
temperature changes (usually rises) are defined on the paths. The pressure and tempera-
ture at node 1 of the section at the bottom of the winding are taken as given initial condi-
tions. The velocity along path 1, v0, is also assumed given initially. Node 1 at the bottom of 
the next section occurs at the end of path 12 in Figure 17.2. The temperature and pressure 
at this node and the velocity along path 12 will be determined after solving the equations 
for the bottom section. It is only necessary to reverse the inner and outer vertical ducts in 
the next section to apply the same network methodology to the next section.

The temperature at the bottom of the winding, T0, is the oil temperature at the bottom 
of the tank in which the windings are situated. This is determined by the overall heat 
balance in the transformer between the windings and radiators or cooling system and 
will be discussed later. The initial oil velocity along path 1 at the bottom of the section is 
determined by an overall heat balance in the winding, since the oil flow and oil tempera-
ture rise through the winding must be sufficient to remove the heat generated by I2R and 
eddy losses.

At each iteration, (17.11) is used to determine a new v0 after updating the winding losses, 
ρ and c, for the new temperature distributions in the oil and winding. Also, (17.10) is used 
to determine a new P0, assuming the top oil pressure is 0. Since this is usually not the case, 
we have adopted an iteration strategy as follows: v0 and P0 from the previous iteration are 
saved as v0,save and p0,save. We then take v0,new for the next iteration to be
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(17.13)

where F is a fraction between 0 and 1 that can vary throughout the iterations. F is a relax-
ation factor used to make the successive iterations less abrupt and thus facilitate 
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convergence. F = 1 would remove the second term and not allow the top pressure to 
approach 0, while F = 0 would not take into account the new velocity calculation. P0,new is 
taken as P0 as determined by (17.12). Iterations proceed until v0 and v0,save are sufficiently 
close as well as P0 and P0,save and until Ptop is close to 0. Convergence is also required for the 
nodal and path variables.

17.2.2  Oil Pressures and Velocities

We must have mass conservation at the nodes, that is, the mass flow of oil into a node must 
equal the mass flow out of the node. From the mass flow equation (17.7), assuming ρ is 
nearly constant, we can assume that volume flow Av is conserved at the nodes. Thus, at 
node 6 in Figure 17.2, we have

 A v A v A v7 7 8 8 10 10= +  (17.14)

Other nodes such as 3 or 8 would have only two terms in the volume conservation 
equation.

This is where graph theory can be of use in keeping track of all the indices for the 
nodes and paths involved in solving a set of equations like (17.14) or (17.5) for the entire 
winding section [Deo74]. An important matrix for a directed graph is the directed inci-
dence matrix. This is a matrix whose rows are the graph nodes and whose columns are 
the graph paths or edges. For a given node or row, an edge directed into the node gets a 
matrix entry of −1, while an edge directed out of the node gets a matrix entry of 1. 
Thus, the directed incidence matrix for the graph in Figure 17.2, ADI (matrix quantities 
will be italicized), is
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(17.15)

The matrix column and row numbers are given as the leftmost column and the top row of 
the matrix in boldfaced type for convenience, but these are not part of the matrix itself. 
Note that the standard incidence matrix, AI, has a 1 for every edge incident on a given node 
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so that the −1’s in (17.15) are replaced by 1’s for AI. For further reference, the incidence 
matrix is given by

 

AI Node\Edge=

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 00 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 1 1

4

5

6

7 00 0 0
0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 1

8

9

æ

è

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷÷
÷
÷
÷
 

The incidence or directed incidence matrix for this graph has 9 rows or nodes and 12 col-
umns or edges. In general, if the section has n disks, there will be 2n + 3 nodes and 3n + 3 
edges to the graph. For sections having more disks, the middle section of the matrix in 
(17.15) will be expanded, keeping the same repetitive pattern.

In order to implement an equation like (17.14) on all the nodes, define an oil velocity vec-
tor along the oil paths (graph edges)
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(17.16)

Vectors will be denoted by boldface type. Also define a duct cross-sectional area diagonal 
matrix, Aduct, which contains the areas of the ducts along the different paths. Many of these 
will be the same, for instance the duct areas along the vertical paths. The horizontal duct 
areas could be different depending on the key spacer thickness, but even here, most of 
them will be the same. Aduct will be an edge × edge diagonal matrix
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(17.17)

Using (17.15) through (17.17), the mass conservation equations can be implemented on the 
entire graph according to
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Thus, (17.18) expresses equations like (17.14). When all terms are placed on the left side of 
the equality sign, the right-hand side equals 0 except for the entrance node at the bottom 
of the section. At this bottom node, the input mass (volume) flow occurs as an initial condi-
tion on the right-hand side of (17.18). At the other nodes, mass or volume balance is built 
into the incidence matrix, so no entries are needed on the right-hand side of (17.18).

To implement (17.5) on all the paths, we need the transpose of the directed incidence 
matrix. For the 3-disk graph, this is
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(17.19)

Let F = a diagonal edge × edge matrix with elements
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(17.20)

Define a nodal pressure vector
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(17.21)

Using (17.19) through (17.21), (17.5) can be expressed for the entire graph by

 DP P V= =A FDI
T

 (17.22)
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Since F is a diagonal matrix, it is inverted by taking the reciprocal of all the diagonal 
 elements. Solving (17.22) for V,

 V P= -F A1
DI
T

 (17.23)

Applying (17.18) to (17.23), we obtain
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(17.24)

The matrix multiplying P is a square node × node matrix and is invertible so that (17.24) 
can be solved for P. V can then be obtained from (17.23). We could not solve (17.18) directly 
for V, since the matrix in that equation is not invertible.

In spite of (17.22) not applying strictly to the last edge, v12 will still be determined by the 
last mass conservation equation. Solving (17.24) for P does not take into account the bot-
tom pressure P0. This can be done by using (17.22) to determine ΔP, DP P= ADI

T . The pres-
sures P at all except the bottom input nodes are determined indirectly. Set P1 = P0, the input 
pressure, then we can find P2 = P1 – ΔP1. Then P3 = P2 – ΔP2, P4 = P2 – ΔP4, P5 = P4 – ΔP5, etc., 
until P9 = P8 – ΔP11. Thus, the top nodal pressure is determined by the input pressure P0 and 
the pressure drops along select paths leading to the top node. These paths essentially con-
stitute a spanning tree for the graph. The pressure drop on the top path 12 is not used in 
this process.

17.2.3  Disk Temperatures

We assume that each disk has a uniform temperature. Label it TC. The heat generated by the 
I2R loss in each disk is removed by heat transfer to the surrounding oil in equilibrium. 
The I2R loss is assumed to contain the eddy current loss as well. Let h be the overall heat 
transfer coefficient to the surrounding oil. This includes conductive heat transfer through 
any paper covering as well as surface heat transfer to the surrounding oil.

The energy lost per unit time through a surface of a conductor is given by

 hA T TC C b-( ) (17.25)

where
h is the surface heat transfer coefficient
AC is the surface area
TC is the conductor temperature
Tb is the average (bulk) oil temperature in the adjacent duct

h can be expressed as follows:
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(17.26)
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where
hconv is the convection heat transfer coefficient
τinsul is the insulation or paper thickness
kinsul is the thermal conductivity of the insulation

While kinsul is nearly constant over the temperature range of interest, hconv varies with tem-
perature and oil velocity. For laminar flow in ducts, we use [Kre80]
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where
k is the thermal conductivity of the oil
D is the hydraulic diameter
L is the duct length
ReD is the Reynolds number (17.2)
Pr is the Prandtl number (Pr = μc/k)
μ is the viscosity of the bulk oil
μs is the oil viscosity at the conductor surface

Equation 17.27 applies when ReDPrD/L > 10. A correction must be applied for smaller 
values. The major temperature variation comes from the viscosity (17.6) and the velocity 
dependence comes from the Reynold’s number. The other parameters are nearly constant 
over the temperatures of interest. For transformer oil, we use [Kre80] ρ = 867 kg/m3, c = 
1880 J/kg ρ °C, and k = 0.11 W/m °C.

Let S be the area of the disk surface through which the heat is being removed. Each 
disk has four such surfaces labeled 1, 2, 3, and 4. Let TB be the bulk (average) oil tem-
perature in the oil duct adjacent to the surface S. Then the thermal equation for each 
disk is given by
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(17.28)

To implement (17.28), a circuit matrix can be used. Each disk defines a circuit so that 
Figure 17.2 has three circuits. The edges included in a circuit are the paths surrounding the 
disk. Thus, the circuit for disk D2 in Figure 17.2 has the paths 5, 6, 7, and 8. The circuit 
matrix has as many rows as circuits and as many columns as paths in the graph. All paths 
are not necessarily part of a circuit and some paths can belong to more than one circuit. For 
each circuit (row), a 1 is placed in a column if the edge is included in the circuit, a 0 other-
wise. For the graph in Figure 17.2, the circuit matrix is
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(17.29)
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This shows that paths 5 and 8 are included in two circuits. This is important because in the 
ducts corresponding to those paths, heat transfer occurs from two adjacent disks. In paths 
2 and 11, which are next to the oil flow washers as well as from all the side duct paths, heat 
transfer occurs from only one disk surface to the duct oil because the path from only one 
circuit occurs in those ducts.

We need to define an edge × edge diagonal matrix, H, which contains the products hS 
corresponding to the different paths. Thus,
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(17.30)

Heat conduction will not occur along paths 1 and 12, so these matrix elements will be set 
to 0. Along the other paths the individual heat transfer coefficients must be calculated. 
These will depend on the oil temperature and velocity in the duct and are calculated itera-
tively. These velocities have been calculated in Section 17.2.2 and should be available for 
the disk temperature calculation and later use. The surfaces S will depend on the disk 
dimensions and will be the same for identical disks.

Let E be an edge × circ matrix with all 1’s as entries. Using E, along with C and H, we can 
obtain a new circ × circ matrix, which for the 3-disk section is
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with entries
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Let TC be a vector of disk temperatures. The dimension of this vector = the number of 
 circuits. Thus, an element of this vector, TCi, is defined on circuit i since they are in 1–1 cor-
respondence with the number of circuits. Letting G operate on TC, we obtain
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(17.32)

This reproduces the first term after the second equality sign in (17.28) for all the disks.
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For the second term, we need to obtain the bulk or average oil temperatures in the ducts. 
We note that the temperature of the oil entering a duct is one of the nodal temperatures, 
Tnode, and the temperature rise of the oil in the duct is ΔTduct. Thus, the average duct oil 
temperature is given by Tduct,ave = Tnode + ½ΔTduct.

We see from the transpose of the directed incidence matrix in (17.19) that of the two 
nodes associated with an edge, the first one corresponds to the entrance node for the oil 
flow into the edge (duct). Its matrix entry is 1. The exit node has a matrix entry of −1. To 
eliminate the −1’s from this matrix, we can add the transpose of the directed incidence 
matrix to the transpose of the incidence matrix (where all the −1’s are replaced by 1’s so 
that these entries will end up being 0 when the sum is taken) and take ½ the sum. Label this 
new matrix A+

T. Thus,

 
A A A+ = +( )T

DI
T

I
T1

2  
(17.33)

Let TN be a vector of nodal temperatures. Then we see that A+
T

NT  is an edge vector whose 
entries are the nodal temperatures at the nodes corresponding to the oil flow entry into the 
edge (duct). It is only necessary to add ½ of the vector corresponding to the temperature 
rise along the duct, call it ΔT, to this so that the average duct temperature vector, TB, is 
given by

 T T TB
T

N= ++A ½D  (17.34)

The nodal vector, TN, and the edge vector, ΔT, will be determined in the next section. The 
matrix CH applied to TB gives us the second set of terms after the second equality sign in 
(17.28). Thus, letting I2R be a vector of I2R losses for the disks, (17.28) can be expressed in 
matrix form as

 I R T T T2 = - -+G CHA CHC
T

N ½ D  (17.35)

The I2Rs for the disks are input quantities. Although the current I may be common for all 
the disks, the resistance R is temperature dependent and includes any eddy losses due to 
the particular magnetic field distribution in the transformer and can vary from disk to disk.

17.2.4  Nodal Temperatures and Duct Temperature Rises

The rise in oil temperature in a given duct is due to heat transfer from the disk or disks 
contiguous with the duct. The heat transferred to a mass of oil flowing through a duct per 
unit time is given by

 
c T

dM
dt

c Av TD = r D
 

(17.36)

where (17.7) has been used. The heat transferred per unit time from a disk surface, S, in 
contact with the flowing oil is hS(TC – TB). The symbols for the disk temperature, TC, and 
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average duct oil temperature, TB, have been defined previously. Implementing this heat 
balance equation for horizontal duct 5 in Figure 17.2, for example, we get

 
c A v T h S T T T TC B C Br 5 5 5 5 5 1 5 2 5D = -( ) + -( )éë ùû  

(17.37)

On the vertical ducts and the top and bottom ducts next to the oil flow washers, only one 
term would appear on the right-hand side of (17.37).

To implement the left-hand side of (17.37) in matrix form, we need to create a diagonal 
matrix containing the products of duct areas × duct oil velocities such as A5v5. Call this 
edge × edge matrix U so that
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On the right-hand side of (17.37), we need to associate one or two disks with a given duct. 
This can be accomplished by means of the transpose of the circuit matrix
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(17.39)

When this operates on the vector of disk temperatures, which are associated with the 
 circuits, we see that ducts (edges) 2, 3, and 4 will pick out the disk temperature TC1, whereas 
duct 5 will pick out both TC1 and TC2. So this matrix, when operating on TC, will automati-
cally contain the appropriate disk or disks required by (17.37) for the given duct. We only 
need to multiply it by the matrix H, as given in (17.30), to get the expressions containing TC 
on the right-hand side of (17.37). This same matrix H can multiply TB to get one of the bulk 
oil terms in (17.37). To get two TB terms for the horizontal ducts, excepting the top and 
 bottom ones, we need to introduce another matrix, which contains all 1’s on the diagonal 
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except for the appropriate horizontal ducts where the diagonal elements equal 2. Call this 
matrix Q. For the 3-disk example in Figure 17.2, this matrix is
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(17.40)

Using these matrices, we can cast (17.36) and (17.37) in a form that applies to all the ducts 
in the section
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As shown in (17.41), the nodal temperatures and duct temperature rises are interrelated. 
We need more information to determine them uniquely. This requirement is an energy bal-
ance at the nodes. The energy per unit time of a mass of fluid flowing through a duct of 
cross-sectional A is given by ρcAv(T – Tref). This is taken relative to some reference tempera-
ture Tref and assumes that the specific heat, c, remains relatively constant from the reference 
temperature up to some temperature T. Tref will cancel out in the energy flow balance equa-
tions at the nodes because of mass balance at the nodes and so will be dropped. The ρc term 
will also cancel out in the equations, since it is assumed to be constant.

Thus, the energy flow balances at the two types of nodes (left and right), say nodes 6 and 
7 in Figure 17.2, are

 

A v T T A v T A v T
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D
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(17.42)

To implement this in matrix form, we note that the Av’s for all the ducts are contained in 
the matrix U given in (17.38). We also note that the matrix A+

T defined in (17.33) picks out 
the entrance node for a given duct or edge. Thus, A+

T
NT  is an edge vector containing the 

nodal temperatures of the nodes at the entrance to the duct or edge. Therefore, (17.42), 
excluding the ΔT terms, can be expressed in matrix form as A UADI

T
N+T . To pick out the ΔT 

terms, we need a node × edge matrix operating on an edge vector, such as ΔT and picks out 
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only the edge or edges entering the node. Such a matrix can be obtained from the directed 
and standard incidence matrix according to

 
A A A- = -( )1

2
DI I

 
(17.43)

This is the counterpart to A+ whose transpose is defined in (17.33). Thus, the ΔT terms in 
(17.42) can be picked out by A−UΔT.

Although operating on an edge vector, the result is a nodal vector, which can be added to the 
vector term containing the nodal temperatures. Because (17.42) is an energy balance equation, 
we must allow for an entrance energy term at node 1 so that the resulting matrix equation is
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The nodal temperature, duct temperature rise, and disk temperature equations can all be 
combined into a single matrix equation so that they can all be solved simultaneously. By 
defining an overall vector containing ΔT, TN, and TC, we can write
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(17.45)

Most of the matrix elements are temperature and velocity dependent, so (17.45), along 
with (17.23) and (17.24), which determine P and V, must be solved iteratively.

17.2.5  Comparison with Test Data

Many comparisons were made between the graph theory approach and the previous one, 
as discussed in [Del99] and [Del10]. The previous approach used separate indexing 
schemes to label the disks, paths, and nodes in a section. Then appropriate physical 
hydraulic or thermal equations are written for particular disks, paths, and nodes. In this 
scheme, the disk equations depend on whether the disk is at the bottom, top, or middle of 
the section, since the equations are different for these cases. Likewise the path equations 
depend on whether the path is horizontal or vertical and the nodal equations depend on 
whether the node is on the left or right. This complicates the computer coding compared 
to the graph theory approach. However, both approaches gave closely similar results, since 
they used the same physical input.

Only a sampling of these comparisons will be given here. For simplicity, we chose cases 
with only HV and LV directed oil flow disk windings and no tap windings, since these are 
not usually directed oil flow windings. The new disk winding calculation was embedded 
in a program, which considered the full transformer, including the radiators. Table 17.1 
shows the comparison between the previous method and the graph theory method for the 
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disk winding cooling and with heat run test data. The heat run test data acquisition method 
complies with the IEEE standards, C57.12.00 and C57.12.90, and uses state-of-the-art 
 equipment for loss and temperature measurements [IEE10], [IEEE10a]. Based on repetitive 
tests, the winding temperatures are accurate to ±2°C and the oil temperatures to ±1°C. The 
 calculated temperatures generally agree with the test temperatures to within ±5°C.

Figure 17.3 shows the oil velocity in the horizontal ducts along an LV winding calculated 
with the new graph theory program. Brief spacing separates the different winding sections 
between oil flow washers. The key spacer thickness is uniform at 3 mm along the winding 
except for two short sections where it is 12 mm. These short sections are where the velocity 
dips in the graph. This velocity profile is nearly identical to that produced by the previous 
calculation method.

In the graph theory approach, the details of the network are handled by standard graph 
theory matrices or combinations of these matrices. Naturally, the specific details of the 
winding such as duct sizes, paper thicknesses, the number of key spacers, and the number 
of disks per section must be inputted. Also, physical parameters such as the friction factors 
and heat transfer coefficients must be inputted or calculated for the specific disk geometry. 
These winding-specific or physical parameters appear in diagonal matrices. These matri-
ces are reasonably easy to organize at the beginning of the calculation. This should be 
compared with the older method where these parameters are inserted in individual 
equations.

The velocities, pressures, and temperatures obtained by the present procedure and with 
those obtained by previous methods are in good agreement, but this approach offers orga-
nizational advantages and greater simplicity in coding.

TABLE 17.1

Comparison of the Graph Theory Calculation of Key Transformer Temperatures 
with the Previous Method and with Test Data

Previous Graph Test

25 MVA ONAF
Top oil 56.2 56.1 54.9
Bot oil 29.5 29.4 28.7
LV Ave 57.4 57.1 58.8
HV Ave 54.1 53.7 54.4
Hot spot 77.6 79.5 74.4

100 MVA ONAF
Top oil 49.6 49.5 47.4
Bot oil 12.1 12.2 11.6
LV Ave 46.0 45.3 47.9
HV Ave 51.6 50.7 52.8
Hot spot 73.2 71.7 71.9

300 MVA Auto ONAF
Top oil 45.6 45.4 42.4
Bot oil 15.6 15.8 13.8
LV Ave 43.1 42.5 43.0
HV Ave 40.9 40.6 40.1
Hot spot 61.4 61.7 60.5

Source: Del Vecchio, R.M., IEEE Trans. Power Deliv., 29(5), October 2014, 2279–2286. © 2014 IEEE.
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17.3  Thermal Model for Coils without Directed Oil Flow

Our treatment of nondirected oil flow coils is fairly simplistic. As shown in Figure 17.4, 
there are inner and outer vertical oil flow channels with cross-sectional areas A1 and A2 and 
hydraulic diameters D1 and D2. The oil velocities in the two channels can differ. They are 
labeled v1 and v2 in the figure. The oil temperature is assumed to vary linearly from To at 
the coil bottom to To + ΔT1 and To + ΔT2 at the top of the inner and outer channel,  respectively. 
The conductor temperatures are also assumed to vary linearly with an average value of Tc.

20
18
16
14
12
10

8
6
4
2
0

1 51 101
Duct #

Oil velocities in horizontal ducts vs duct #

Ve
lo

ci
ty

 (m
m

/s
)

151

FIGURE 17.3
Oil velocities in the horizontal ducts along an LV winding. (From Del Vecchio, R.M., IEEE Trans. Power Deliv., 
29(5), October 2014, 2279–2286. © 2014 IEEE.)
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FIGURE 17.4
Thermal model of a nondirected oil flow coil.
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The thermal pressure drops in the two channels are given by (17.8), which becomes, in 
terms of the variables defined earlier,

 

D D

D
D

P gH T
T

T

P gH T
T

T

o ave out

o ave out

1
1

2
2

2

2

= + -æ
è
ç

ö
ø
÷

= + -æ
è
ç

ö

br

br

,

,
øø
÷
 

(17.46)

These pressure drops need only overcome the fluid friction in the two channels, which, for 
laminar flow, is given by (17.5). In terms of the present parameters, this becomes

 
D DP

K H
D

v P
K H
D

v1
1 1

1
2 1 2

2 2

2
2 2

1
2

1
2

= =m m
,

 
(17.47)

Equating (17.46) and (17.47), we obtain

 

m
br
m
br

1 1

1
2 1 1

2 2

2
2 2 2

2

2

K
gD

v T T T

K
gD

v T T T

o ave out

o ave o

- = -( )

- = -

D

D

,

, uut( )
 

(17.48)

The overall energy balance equation, analogous to (17.11), is

 r rcv A T cv A T I R1 1 1 2 2 2
2D D+ =  (17.49)

where R is the total resistance of the coil and is a function of ΔT by a formula analogous to 
(17.12). Further thermal equations come from the energy balance between the surface heat 
loss by the coil to the separate oil flow paths. Thus, we have approximately
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(17.50)

where
h1 and h2 are the surface heat transfer coefficients as given by (17.26)
Ac,1 and Ac,2 are the conductor surface areas across which heat flows into the two oil 

channels

We take these areas to be half the total surface area of the conductor. This assumes the oil 
meanders into the horizontal spaces between the conductors on its way up the coil. We use 
(17.27) for hconv with a smaller effective value for L than the coil height.

Equations 17.48 through 17.50 are five equations in the five unknowns v1, v2, ΔT1, ΔT2, 
and Tc. The quantities To and Tave,out will be determined from an overall energy balance for 
the transformer and are considered as known here. These equations are nonlinear because 
the μ’s and h’s depend on temperature and velocity and also because products of unknowns 
such as vΔT occur. We use a Newton–Raphson iteration scheme to solve these equations. 
The pressure drops can be obtained from (17.47).
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17.4  Radiator Thermal Model

The radiators modeled here are fairly typical in that they consist of a series of vertical 
plates containing narrow oil channels. The plates are uniformly spaced and attached to 
inlet and outlet pipes at the top and bottom. These pipes are attached to the transformer 
tank and must be below the top oil level. Fans may be present. They blow air horizontally 
through one or more radiators stacked side by side. The oil flow paths for a radiator are 
similar to those of a disk winding section turned on its side as shown in Figure 17.5. For 
this analysis, a node and path numbering scheme is used. In some of the paths, however, 
the positive flow direction is reversed. The analysis is very similar to that given previously 
for disk coils with directed oil flow, which did not use graph theory, and will only be 
sketched here.

The pressure differences along a path are balanced by the frictional resistance in the 
steady state so that, for laminar flow, Equation 17.5 holds along each path, where the 
velocity and pressure unknowns will be labeled by the appropriate path and node num-
bers. For n plates along a radiator, there are 2n nodes and 3n − 1 oil paths as shown in 
Figure 17.5. Thus, we need 2n more equations. These are given as before by mass conti-
nuity at the nodes, similar to Equation 17.7. Some differences will occur because the posi-
tive flow direction is changed for some of the paths. Similar to what was done for the 
coils, we determine the overall pressure difference across the radiator from buoyancy 
considerations so that an equation such as (17.10) holds. However, Tave,out will differ from 
that used for the coils, since the tank oil adjacent to the radiators will be hotter than that 
adjacent to the coils because the average radiator vertical position is usually above that 
of the coils. An overall energy balance is needed to obtain the input oil velocity so that an 
equation similar to (17.11) holds with the right-hand side replaced by the total heat lost 
by the radiators.
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FIGURE 17.5
Node and path numbering scheme for a radiator containing n plates.
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In the radiator cooling process, the oil temperature drops as it passes downward through 
a radiator plate, giving up its heat to the air through the radiator surface. Figure 17.6a 
shows a simplified drawing of a plate with some of the parameters labeled.

We consider a thin horizontal strip of radiator surface of area 2w dx = 2wℓ(dx/ℓ) = 2As(dx/ℓ), 
where As is the area of one side of the plate and the factor of 2 accounts for both sides. ℓ is the 
plate height and w is its width. The heat lost through this surface is 2hAs(T − Tair)(dx/ℓ), where 
h is the heat transfer coefficient, T is the oil temperature at position x, and Tair is the ambient 
air temperature. The heat lost by the oil in flowing past the distance dx is −ρcvAR dT, where v 
is the oil velocity and AR the cross-sectional area through which the oil flows through the 
plate. Equating these expressions and rearranging, we get
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Assuming that h is constant here (it will be evaluated at the average temperature), we can 
integrate to obtain
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where
ΔT is the temperature drop across the plate
Ttop is the top oil temperature

We get an equation like this for each plate so that for plate i, v should be labeled v3i−1, Ttop 
as T2i−1, h as hi, and ΔT as ΔTi. This gives n equations. The new unknowns are the nΔT’s 
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FIGURE 17.6
Parameters used in radiator cooling calculation: (a) one plate and (b) stacked plates separated by distance s.
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and 2n nodal temperatures. However, the top nodal temperatures are all equal to the oil 
input temperature To, since we are neglecting any cooling along the input and output 
pipes. At the bottom nodes, we obtain for node 2i

 A v T T A v T A v TR i o i i i i i3 1 2 3 2 2 2 3 3 2- + --( ) + =D  (17.53)

A slight modification of this is needed for node 2n. Thus, we obtain sufficient equations to 
solve for all the unknowns. Iteration is required between the pressure–velocity equations 
and T − ΔT equations, since they are interdependent. Iteration is also required because of 
the nonlinearities.

The expression for the surface heat transfer coefficient, h, depends on whether or not 
fans are used. For natural convection (no fans), we use an expression, which applies to a 
row of vertical plates separated by a distance s [Roh85]:
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Ra is the Rayleigh number given by the product of the Grashof and Prandtl numbers:
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where the compressibility β, specific heat c, density ρ, thermal conductivity k, and viscosity 
μ all apply to air at the temperature (Ts + Tair)/2 where Ts is the average surface temperature 
of the plate. Also, ΔT = Ts − Tair. The quantities c, ρ, k, and μ for air vary with temperature 
[Kre80]. This must be taken into account in the said formulas since Ts can differ from plate 
to plate. However, we find in practice that a similar expression given later for tank cooling, 
(17.58) with ℓ replacing L, works better for our radiators, so it is used.

When fans are blowing, we use the heat transfer coefficient for the turbulent flow of a 
fluid through a long narrow channel of width s:
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where the hydraulic diameter D = 2s. The Reynolds number is given by (17.2) with ρ and μ 
for air, D = 2s, and v is an average velocity determined by the characteristics of the fans and 
the number of radiators stacked together. The Prandtl number for air is nearly constant 
throughout the temperature range of interest and is Pr = 0.71.

A simple way of parameterizing the radiator air velocity with fans present, which works 
well in practice, is
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where
n is the number of stacked radiators cooled by a given fan bank
vn is the air velocity flowing past the radiator surfaces
p is an exponent to be determined by test results
v1 is the fan velocity produced when only one radiator is present
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We find in our designs that p = 0.58 works well. In addition, v1 was taken to be the nominal 
fan velocity as specified by the manufacturer. (This can be determined from the flow 
 capacity and the fan’s area.) We assumed that the radiator surface cooled by fans was 
 proportional to the fraction of the fan’s area covering the radiator side (Figure 17.6b). The 
remaining surface was assumed cooled by convective cooling.

17.5  Tank Cooling

Cooling from the tank occurs by means of natural convection and radiation. Of course, the 
radiators also cool to some extent by radiation; however, this is small compared with con-
vective cooling. This is because the full radiator surface does not participate in radiative 
cooling. Because of the nearness of the plates to each other, much of a plate’s radiant energy 
is reabsorbed by a neighboring plate. The effective cooling area for radiation is really an 
outer surface envelope and as such is best lumped with the tank cooling. Thus, the effec-
tive tank area for radiative cooling is an outer envelope, including the radiators. (A string 
pulled tautly around the tank plus radiators would lie on the cooling surface.) However, 
for convective cooling, the normal tank surface area is involved.

For natural convection in air from the tank walls of height L, we use the heat transfer 
coefficient [Roh85]:
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(17.58)

where Ra is the Rayleigh number, which, in this context, is given by
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where the temperature dependencies are evaluated at (Ts + Tair)/2 and ΔT = Ts − Tair as before. 
The Rayleigh number in this formula should be restricted to the range 1 < RaL < 1012. 
This is satisfied for the temperatures and tank dimensions of interest. Ts is the average 
tank wall temperature and Tair the ambient air temperature. Thus, the heat lost from the tank 
walls per unit time due to convection, Wconv,tank, is given by

 W h A T Tconv tank conv tank conv tank s air, , ,= -( ) (17.60)

where Aconv,tank is the area of the tank’s lateral walls.
The top surface contributes to the heat loss according to a formula similar to (17.60) but 

with a heat transfer coefficient given by [Kre80]
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and with the tank top area in place of the side area. In (17.61), B is the tank width, which must 
also be used in the Rayleigh number (17.59) instead of L. In this formula, the Rayleigh number 
should be restricted to the range 8 × 106 < RaB < 1011, which is also satisfied for typical tank 
widths in power transformers. On the bottom, we assume the ground acts as an insulator.

Radiant heat loss per unit time from the tank, Wrad,tank, is given by the Stephan–
Boltzmann law

 W EA T Trad tank rad tank K s K air, , , ,= -( )s 4 4

 (17.62)

where
σ = 5.67 × 10−8 W/m2 K4 is the Stephan–Boltzmann constant
E is the surface emissivity (E ≅ 0.95 for gray paint)
Arad,tank is the effective tank area for radiation
TK,s is the average tank surface temperature in K
TK,air is the ambient air temperature in K

Equation 17.62 can be written to resemble (17.60) with a convection coefficient given by

 h E T T T Trad tank K s K air K s K air, , , , ,= +( ) +( )s 2 2

 (17.63)

This is temperature dependent, but so is hconv,tank.
The total power loss by the tank is given by the sum of (17.60), together with the corre-

sponding expression for the top heat loss, and (17.62). This is then added to the radiator 
loss to get the total power loss from the transformer. The radiator loss is the sum from all 
the radiators. Although we modeled only one radiator, assuming they are all identical, the 
total radiator loss is just the number of radiators times the loss from one. Otherwise, we 
must take into account differences among the radiators. In equilibrium, the total power 
loss must match the total power dissipation of the coils + core + the stray losses in the tank 
walls, brackets, leads, etc.

17.6  Oil Mixing in the Tank

Perhaps the most complex part of the oil flow in transformers occurs in the tank. The lack 
of constraining channels or baffles means that the oil is free to take irregular paths such as 
along localized circulations or eddies. Nevertheless, there is undoubtedly some overall 
order in the temperature distribution and flow pattern. As occurs with any attempt to 
model a complicated system, we make some idealized assumptions here in an effort to 
describe the average behavior of the tank oil.

As shown in Figure 17.7, we assume that the cold oil at the bottom of the tank has a uni-
form temperature, Tbot, between the bottom radiator discharge pipe and the tank bottom 
and that the top oil is at a uniform temperature, Ttop, from the top of the coils to the top oil 
level. We further assume that the temperature variation between Tbot and Ttop is linear. This 
allows us to calculate the average oil temperature along a column of oil adjacent to and of 
equal height to the coils and likewise for the radiators, thus determining Tave,out,coils and 
Tave,out,rads. These two temperatures will differ because the average radiator vertical position 
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is above that of the coils. These average temperatures are used in determining the thermal 
pressure drop across the coils and radiators as discussed previously.

In Figure 17.7, we have labeled the volumetric oil flows Q with subscripts c for coils, r for 
radiators, s for stray loss oil flows, and n for net. Thus,

 Q Q Q Qn r c s= - -  (17.64)

Qs accounts for the oil flow necessary to cool the core, brackets, tank walls, etc. Since there 
is no constraint, mechanical or otherwise, to force the radiator and coil + stray loss flows to 
be identical, Qn can differ from zero. The flow Qc refers to the sum of the flows from all the 
coils and Qr the sum from all the radiators.

We have also indicated temperatures associated with some of the flows. The oil flowing 
into the bottom of the coils is at temperature Tbot and the oil flowing into the top of 
the  radiators is at temperature Ttop. The temperature of the oil flowing out of the top of the 
coils, Tc,top, is a flow-weighted temperature of the oil from all of the coils. Thus,
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where i labels the individual coil flows and top temperatures of the oil emerging from the 
coils. Since we are assuming that all radiators are identical, Tr,bot is the bottom temperature 
of the oil exiting a radiator. If the radiators were not all alike, we would use a flow-weighted 
average for this temperature also.

We assume, for simplicity, that the volumetric flow Qs, associated with the stray power 
loss Ws, results in a temperature change of ΔT = Ttop − Tbot for the oil participating in this 
flow. Thus, Qs is given by
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FIGURE 17.7
Assumed oil temperature distribution inside a tank. The oil flows, Q, as well as the flow-weighted temperatures 
are also indicated.
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This is inherently an upward flow and, like the coil flow, is fed by the radiators. We do not 
attribute any downward oil flow to the tank cooling but assume that this merely affects the 
average oil temperature in the tank.

We assume that any net flow, Qn, if positive, results in the transport of cold radiator 
oil at temperature Tr,bot to the top of the tank and, if negative, results in the transport of 
hot coil oil at temperature Tc,top to the bottom of the tank. These assumptions imply that 
for Qn > 0,
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while for Qn < 0,
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Another way of handling the net flow Qn is to assume that it raises the level of the bottom 
oil layer at temperature Tbot if positive and that it allows the top oil layer at temperature 
Ttop to drop downward if negative. This will continue until Qn = 0 at equilibrium.

After each calculation of the coil and radiator flows and temperatures, the quantities 
Ttop, Tbot, Tave,out,coils, Tave,out,rads, and Qs can be determined. Also, the losses in the coils and 
from the radiators can be obtained. From these, updated pressure drops across the coils 
and radiators as well as updated values of the oil velocities flowing into the coils and 
radiators can be calculated. The iterations continue until the temperatures reach their 
steady-state values and the losses generated equal the losses dissipated to the atmosphere 
to within some acceptable tolerance. This requires several levels of iteration. The coil and 
radiator iterations assume that the tank oil temperature distribution is known and these 
in turn influence the tank oil temperatures. A relaxation technique is required to keep the 
iteration process from becoming unstable. This simply means that the starting parameter 
values for the new iteration are some weighted average of the previous and newly 
 calculated values.

17.7  Time Dependence

The basic assumption we make in dealing with time-dependent conditions is that at each 
instant of time the oil flow is in equilibrium with the heat (power) transferred by the 
 conductors to the oil and with the power loss from the radiators at that instant. The  velocities 
and oil temperatures will change with time but in such a way that equilibrium is  maintained 
at each time step. This is referred to as a quasi-static approximation. The  conductor heating, 
or cooling, on the other hand, is transient. We assume, however, that the temperature of a 
disk, which is part of a directed oil flow coil, is uniform throughout the disk so that only the 
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time dependence of the average disk temperature is treated. A similar assumption is made 
for nondirected oil flow coils.

The heat generated in a conductor per unit time is I2R, where R is its resistance (including 
eddy current effects) at the instantaneous temperature Tc and I its current. Here, “conduc-
tor” refers to a single disk for a directed oil flow coil and to the entire coil for a nondirected 
oil flow coil. The transient thermal equation for this conductor is
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The left-hand side is the heat stored in the conductor of volume V per unit time. This 
equals the heat generated inside the conductor per unit time minus the heat lost through 
its surface per unit time. The sum is over all surfaces of the conductor. The other symbols 
have their usual meaning with the subscript cond indicating that they refer to the conduc-
tor properties. The usual temperature and velocity dependencies occur in some of the 
parameters in (17.69). We solve these equations via a Runge–Kutta technique. These equa-
tions replace the steady-state disk coil equations for the TC.

The previous equation accounts for heat (energy) storage in the current-carrying conduc-
tors as time progresses. Thermal energy is also stored in the rest of the transformer. We 
assume, for simplicity, that the remainder of the transformer is at a temperature given by 
the average oil temperature. This includes the core, the tank, the radiators, the brackets or 
braces, coils not carrying current, the insulation, the main tank oil, etc. Thus, the conserva-
tion of energy (power) requires that
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where ci is the specific heat and mi the mass of the parts of the transformer, apart from 
the current-carrying coils, which store heat. Equation 17.70 states that the heat absorbed 
by the various parts of a transformer per unit time, except the current-carrying coils, at 
a particular instant equals the power flowing out of the coils in the form of heated oil 
plus the stray power losses minus the power dissipated by the radiators and tank to the 
atmosphere. Here, the stray losses include core losses, tank losses, and any losses 
 occurring outside the coils. Equation 17.70 is solved using a trapezoidal time-stepping 
method.

Thus, transient cooling can be handled by making relatively minor modifications to 
the steady-state treatment, using the assumptions given previously. So far, the computer 
program we have developed treats the case where the mega volt amperes in SI units 
(MVA) of the transformer is suddenly changed from one level to another. A steady-state 
calculation is performed at the first MVA level. Then the transient calculation begins 
with currents and stray losses appropriate to the second MVA level. Also the fans may be 
switched on or off for the transient calculation. As expected, the solution approaches the 
steady-state values appropriate to the second MVA level after a sufficiently long time. 
With a little extra programming, one could input any desired transformer transient load-
ing schedule and calculate the transient behavior.
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17.8  Pumped Flow

The type of pumped flow considered here is one in which the radiator oil is pumped and 
some type of baffle arrangement is used to channel some or all of the pumped oil through the 
coils. Thus, the oil velocity into the entrance radiator pipes due to the pumps, vo, is given by
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(17.71)

where
Qpump is the volume of oil per unit time, which the pump can handle under the given 

conditions
Arad is the area of the radiator entrance pipe
Nrad is the number of radiators

In addition to the pressure drop across the radiators due to the pump, the thermal pressure 
drop is also present and this adds a contribution, although small, to the velocity in (17.71).

We assume that a fraction f of the pumped oil through the radiators bypasses the coils 
and does not participate in cooling. This could be due to inefficient baffling or it could be 
by design. We also assume that part of the oil flow from the radiators is used to cool the 
stray losses. This flow, Qs, is given by
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(17.72)

where
Ws is the stray power loss
Wt is the total loss
f is the fraction of the flow bypassing the coils

In addition to the thermal pressure drop across the coils, a pressure drop due to the pump 
is present. At equilibrium, this is determined by the requirement that

 Q f Q Qc pump s= -( ) -1  (17.73)

Thus after each iteration, the flow from all the coils is determined and the pressure drop 
across the coils is adjusted until (17.73) is satisfied at steady state.

For pumped flow, it is necessary to check for non-laminar flow conditions and to adjust 
the heat transfer and friction coefficients accordingly.

17.9  Comparison with Test Results

Computer codes, based on the analysis given in this chapter, were written to perform steady-
state, transient, and pumped oil flow calculations. Although we did not measure detailed 
temperature profiles along a coil, the codes calculate temperatures of all coil disks and of the 
oil in all the ducts as well as duct oil velocities. Figures 17.8 through 17.10 show these profiles 
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for one such coil having directed oil flow washers. The oil ducts referred to in the figures are 
the horizontal ducts and the conductor temperature is the average disk temperature. There 
is thinning in this coil, that is, increased duct size at two locations near disk  numbers 35 and 
105, and this can be seen in the profiles. The kinks in the profiles are an indication of the loca-
tion of the oil flow washers.

As mentioned previously, some leeway was allowed for in the friction factors for the 
coils and radiators by including an overall multiplying factor. This accounts, in an average 
way, for nonideal conditions in real devices and must be determined experimentally. 
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FIGURE 17.9
Calculated average oil temperatures in the horizontal ducts along a disk coil with directed oil flow washers. The 
temperature is assumed to vary linearly in the ducts. (From Del Vecchio, R.M. and Feghali, P., 1999 IEEE 
Transmission and Distribution Conference, Now Orleans, LA, April 11–16, 1999, pp. 914–919. © 1999 IEEE.)
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By  comparing test data with calculations, we determined that the best agreement is 
achieved with a multiplying factor of 1.0 for the coils and 2.0 for the radiators. Thus, the 
coil friction is close to the theoretical value, whereas that for the radiators is twice as high.

Temperature data normally recorded in our standard heat runs are (1) mean oil tem-
perature rise, (2) top oil temperature rise, (3) temperature drop across the radiators, and 
(4) average temperature rise of the windings. These are usually measured under both OA 
(OA is a common transformer designation for natural air cooling without fans) and FA 
conditions. The rises are with respect to the ambient air temperature. A statistical analysis 
of such data, taken on a number of transformers with MVA’s ranging from 12 to 320, was 
performed to determine how well the calculations and test results agreed. This is shown in 
Table 17.2 where the mean and standard deviations refer to the differences between the 
calculated and measured quantity. Thus, a mean of 0 and a standard deviation of 0 would 
indicate a perfect fit. Nonzero results for these statistical measures reflect both the limita-
tions of the model and some uncertainty in the measured quantities. Table 17.2 shows 
generally good agreement between the calculated and measured results. Essentially, only 
one parameter was adjusted in order to improve the agreement, namely, the overall friction 
factor multiplier for the radiators.
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Calculated velocities of the oil in the horizontal ducts along a disk coil with directed oil flow washers. (From Del 
Vecchio, R.M. and Feghali, P., 1999 IEEE Transmission and Distribution Conference, Now Orleans, LA, April 11–16, 
1999, pp. 914–919. © 1999 IEEE.)

TABLE 17.2

Comparison of Calculated and Measured Temperatures

OA FA

Mean Std. Dev. Mean Std. Dev.

Mean oil rise 0.86 2.58 0.19 5.11
Top oil rise 1.56 2.36 2.11 4.82
Drop across radiators −2.23 4.51 −0.83 3.44
Average winding rise −0.56 3.19 −0.14 2.38
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Figures 17.11 and 17.12 show representative output from the transient program in graph-
ical form. In this example, the transformer is operating at steady state at time 0 at the first 
MVA value (93 MVA) and suddenly, the loading corresponding to the second MVA (117 
MVA) is applied. The time evolution of the oil temperature is shown in Figure 17.11, while 
that of one of the coils is shown in Figure 17.12. The program calculates time constants 
from this information. Figure 17.13 shows a direct comparison of the calculated and mea-
sured hot spot temperature of a coil in which a fiber optics temperature probe was imbed-
ded. Although absolute temperatures are off by a few degrees, the shapes of the curves are 
very similar, indicating that the time constants are nearly the same.
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17.10  Determining m and n Exponents

In order to estimate the temperature rises, which occur under overload conditions, 
 approximate empirical methods have been developed, which make use of the m and n 
exponents. Although a detailed thermal model such as the one presented previously should 
make these approximations unnecessary, these exponents are widely used to obtain quick 
 estimates of the overload temperatures for transformers in service. Although they are 
 frequently measured in heat run tests, they can also be obtained from either the  steady-state 
or transient calculations of the type presented earlier.

The n exponent is used to estimate the top oil temperature rise above the ambient air 
temperature, ΔTtop, under overload conditions, based on the value of this quantity under 
rated conditions. For this estimation, the transformer total losses under rated conditions 
must be known, as well as the losses at the overload condition. The latter losses can be 
estimated from knowing how the losses change with increased loading and will be dis-
cussed later. The formula used to obtain the overload top oil temperature rise above the 
ambient temperature is
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Thus if 2 refers to the overload condition and 1 to the rated condition, the top oil tempera-
ture rise above ambient air temperature under overload conditions, ΔTtop,2, can be obtained 
from a knowledge of the other quantities in (17.74).

In order to estimate the losses under overload conditions, we must separate the losses 
into I2R resistive losses in the coils and stray losses, which include the core, tank, clamp, 
and additional eddy current losses that occur in the coils due to the stray flux. The I2R loss 
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Comparison of calculated and measured temperature versus time of the coil’s hot spot. The coil is operating at 
steady state at time 0 when a sudden additional loading is applied. The hot spot is measured by means of a fiber 
optics probe. The top curve is calculated and the bottom is the fiber optic curve.
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can be calculated fairly accurately. By subtracting it from the total measured loss, a good 
estimate can be obtained for the stray loss. Alternatively, core loss, eddy current loss, tank 
loss, and clamp loss can be obtained from design formulas or other calculation methods. 
All of these losses depend on the square of the load current in either winding. (The stray 
losses depend on the square of the stray flux, which is proportional to the square of the 
current, assuming the materials are operating in their linear range.) Since the load current 
is proportional to the MVA of the unit, these losses are proportional to the MVA squared. 
The I2R losses are proportional to the resistivity of the winding conductor, which is tem-
perature dependent, while the stray losses are inversely proportional to the resistivity of 
the material in which they occur. Thus, the total loss at the higher loading can be obtained 
from the rated loss by

 
Total loss

MVA
MVA

I R loss Stray loss
coil

2
2

1

2
2

1
2

1
= æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ +r

r
11

1

2

r
r
æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ústray  

(17.75)

where ρ is the resistivity in this context. The resistivity ratios are temperature dependent so 
that some iteration may be required with (17.74) to arrive at a self-consistent solution. The 
stray resistivity ratio is meant to be a weighted average over the materials involved in the 
stray loss. However, since the temperature dependence of the coil, tank, and clamp materi-
als is nearly the same, this ratio will be nearly the same as that of the coils.

We should note that the n coefficient is generally measured or calculated under condi-
tions where the cooling is the same for the rated and overload conditions. Thus if fans are 
turned on for the rated loading, they are also assumed to be on for the overload condition. 
Similarly, if pumps are turned on at the 1 rating, they must also be on for the 2 rating for 
the forenamed formulas to work. Although n can be determined from measurements or 
calculations performed at two ratings, it is often desirable to determine it from three differ-
ent loadings and do a best fit to (17.74) based on these. The three ratings generally chosen 
are 70%, 100%, and 125%. The 70%, 100% or 100%, 125% combinations are chosen when 
only two ratings are used. Measurements and calculations show that n based on the 70%, 
100% combination can be fairly different from n based on the 100%, 125% combination. 
This suggests that n is not strictly a constant for a given transformer, and it should be deter-
mined for loadings in the range where it is expected to be used. A typical value of n for 
large power transformers is 0.9.

The m exponent is defined for each winding and relates the winding gradient to the 
winding current. The winding gradient at a particular steady-state loading is the tempera-
ture difference between the mean winding temperature and the mean oil temperature in 
the tank, that is,

 Gradient Mean winding temperature Mean tank oil temperature= -  (17.76)

Letting 1 and 2 designate rated and overload conditions, the m coefficient for a particular 
winding relates the gradients to the winding currents by
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Since the currents are proportional to the MVAs, the MVA ratio could be substituted in 
formula (17.77) for the current ratio. The m exponents can be determined from two or 
three MVA loadings and, like the n exponent, depend to some extent on the MVA range 
covered. They also can vary considerably for different windings. A typical value for large 
power transformers is about 0.8. The factor of 2 in the exponent in (17.77) reflects the fact 
that the losses in the winding are proportional to the current squared and, ideally, so 
would the temperature rises, so that m takes into account deviations from this 
expectation.

The winding gradient is often used to estimate the winding’s maximum temperature. 
A common procedure is to add some multiple of the gradient to the top oil temperature to 
arrive at the maximum temperature for that winding, for example,

 M winding temp Top oil temp Winding gradientax .= + ´1 1  (17.78)

The factor of 1.1 can differ among manufacturers or transformer types and should be deter-
mined experimentally. Formulas such as (17.78) become unnecessary when detailed tem-
perature calculations are available or maximum temperatures are measured directly by 
fiber optics or possibly other types of temperature probes inserted into the winding at its 
most probable location. Detailed temperature calculations such as (17.78) can provide 
some guidance as to where these probes should be inserted.

17.11  Loss of Life Calculation

Although transformers can fail for a number of reasons, such as from the application of 
excessive electrical or mechanical stress, even a highly protected unit will eventually fail 
due to the aging of its insulation. While the presence of moisture and oxygen affects the 
rate of insulation aging, these are usually limited to acceptable levels by appropriate main-
tenance practices so that the main factor affecting insulation aging is temperature. The 
 insulation’s maximum temperature, called the hot spot temperature, is thus the critical 
temperature governing aging. This is usually the highest of the maximum temperatures of 
the different windings, although it could also be located on the leads, which connect the 
windings to the bushings or to each other.

Numerous experimental studies have shown that the rate of insulation aging as mea-
sured by various parameters such as tensile strength or degree of polymerization (DP) 
follows an Arrhenius relationship:

 K Ae B T= - /  (17.79)

Here
K is a reaction rate constant (fractional change in quantity per unit time)
A and B are parameters
T is the absolute temperature

For standard cellulose-based paper insulation, B = 15,000 K. This value for B is an average 
from different studies using different properties to determine aging [McN91]. If X is the 
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property used to measure aging, for example, tensile strength or degree of polymerization, 
DP, then we have
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(17.80)

The time required for the property X to drop to some fraction f of its initial value at time 0 
if held at a constant temperature T, tT, is thus determined by
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Taking logarithms, we obtain
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where (17.79) has been used.
There are several standard or normal insulation lifetimes, which have found some accep-

tance. For these, the insulation hot spot is assumed to age at a constant temperature of 
110°C. The insulation is also assumed to be well dried and oxygen-free. Under these condi-
tions, the time required for the insulation to retain 50% of its initial tensile strength is 7.42 
years (65,000 hours), to retain 25% of its initial tensile strength is 15.41 years (135,000 
hours), and to retain a DP level of 200 is 17.12 years (150,000 hours). Any of these criteria 
could be taken as a measure of a normal lifetime, depending on the experience or the 
degree of conservatism of the user. However, if the transformer is operated at a lower tem-
perature continuously, the actual lifetime can be considerably longer than this. For exam-
ple, if the hot spot is kept at 95°C continuously, the transformer insulation will take 
36.6 years to be left with 50% of its initial tensile strength. Conversely, if operated at higher 
temperatures, the actual lifetime will be shortened.

Depending on the loading, the hot spot temperature will vary over the course of a single 
day so that this must be taken into account in determining the lifetime. A revealing way of 
doing this is to compare the time required to produce a fractional loss of some material 
property such as tensile strength at a given temperature with the time required to produce 
the same loss of the property at the reference temperature of 110°C. Thus, the time required 
to produce the fractional loss f in the material property at temperature T is given by (17.82) 
and the time to produce the same fractional loss at the reference temperature, designated 
To, is given by the same formula with To replacing T. This latter time will be designated tTo. 
Hence, we have for the given fractional loss,
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We have defined the aging acceleration factor, AAF, in (17.83). Thus, it requires AAF(T) times 
as much time at the reference temperature than at temperature T to produce the same fractional 
loss of life as determined by property X. Since the T’s are in K, we have, converting to °C,
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AAF is > or <1 depending on whether T(°C) is > or <To(°C). This is plotted in Figure 17.14 
for To = 110°C. Thus, from the figure, a unit operating at 95°C would have an AAF ≅ 0.2 
so that the same unit operating at 110°C would require 20% of the time to age as much.

A method of using the daily variations of hot spot temperature to compute aging is to 
subdivide the day into (not necessarily equal) time intervals over which the hot spot tem-
perature is reasonably constant. Let AAFi be the aging acceleration factor for time interval 
Δti measured in hours. Then for a full day,
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where N is the total number of time intervals for that day.
The actual loss of life will depend on the definition of lifetime. If the 50% retained tensile 

strength criterion is used, then in 1 day at 110°C insulation hot spot temperature, the trans-
former loses the fraction 24/65,000 = 3.69 × 10−4 of its life. For the 25% retained tensile 
strength criterion, the fractional loss of life for 1 day = 1.78 × 10−4.

A cautionary note must be sounded before too literal a use is made of this procedure. Gas 
bubbles can start to form in the oil next to the insulation when the insulation temperature 
reaches about 140°C. These bubbles can lead to dielectric breakdown that could end the 
transformer’s life, rendering the calculations inapplicable.

There is bound to be some uncertainty involved in determining the hot spot temperature 
unless fiber optics or other probes are used and properly positioned. Short of this, it should 
be estimated as best as possible, based on top oil temperature, winding gradients, etc. Also, 
a winding temperature indicator, if properly calibrated, can be used.

Since the AAF is independent of the choice made for the normal transformer lifetime, the 
fractional loss of life can be easily recalculated if a different choice of normal lifetime is 
made based on additional experience or knowledge.
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FIGURE 17.14
Aging acceleration factor (AAF) relative to 110°C vs. temperature.
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17.12  Cable and Lead Temperature Calculation

Although the conductors in the coils are usually cooled sufficiently to meet the required 
hot spot limits, it is also necessary to insure that the lead and cable temperatures remain 
below these limits as well. Even though these are generally not in critical regions of electric 
stress to cause a breakdown, if gassing occurs, the gassing itself can trigger alarms, which 
could put the transformer out of service. It is thus necessary for the design engineer to 
insure that the leads and cables are sized to meet the temperature requirements.

In general, no more insulation (paper) should be used on the leads and cables than is 
necessary for voltage standoff. Otherwise, excess paper wrapping could lead to  elevated 
cable temperatures. Given this minimum paper thickness, the current-carrying area of the 
lead or cable should then be chosen so that the temperature limits are met when rated cur-
rent is flowing. A method for calculating the lead or cable temperature rise is given here. 
It allows for the possibility that the lead is brazed to a cable and that some heat conduction 
can occur to the attached cable, acting as a heat sink. It also considers the case of a lead 
inside of a duct or tube in addition to a lead in the bulk transformer oil.

We treat a cylindrical geometry. In the event the lead is not cylindrical, an effective diam-
eter should be calculated so that a cylindrical approximation may be used. The cylinder is 
assumed to be long so that end effects may be neglected. The geometric parameters are 
shown in Figure 17.15.

The convective surface heat transfer coefficient of the oil is denoted by h. The thermal 
conductivities of the conductor and paper are denoted kc and kp, respectively, and the 
power generated per unit volume inside the conductor is denoted by qv. This is given by 
the Joule loss density, ρJ2, where ρ is the resistivity and J the rms current density. In addi-
tion, to account for extra losses due to stray flux, we should multiply this by (1 + f), where 
f is the stray flux loss contribution expressed as a fraction of the Joule losses.

There are two cases to consider for the convective heat transfer coefficient of the oil. 
They are the case of a horizontal cylinder in free tank oil and the case of a horizontal cyl-
inder inside of a channel. (The heat transfer coefficient for a vertical cylinder is higher, so 
the resulting temperature rises will be lower than for a horizontal cylinder.) These are 
given by [Kre80].

r1

r2

kc

kp

hqv

Paper Oil

FIGURE 17.15
Cylindrical geometry of a paper-wrapped conductor surrounded by oil.
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Natural convection from a horizontal cylinder of diameter D in bulk fluid is given by
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Mixed natural convection and laminar flow in horizontal ducts are given by
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where the symbols have the following meaning:

Nusselt number Nu
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v is the fluid velocity
D is the hydraulic diameter for flow inside ducts = 4 × flow area/wetted perimeter = 

outer cylinder diameter for external flow
L is the duct or cylinder length
g is the acceleration of gravity = 9.8 m/s2

h is the surface convective heat transfer coefficient
k is the thermal conductivity of transformer oil = 0.11 W/m °C
c is the specific heat of transformer oil = 1880 J/kg °C
μ is the oil viscosity = 6900.0/(T + 50)3 N s/m2 , T = temp in °C
ρm is the oil mass density = 867 exp[−0.00068 (T − 40)] kg/m3 , T = temp in °C
β is the volume expansion coefficient of oil = 0.00068/°C
Subscripts s and b label the oil at the outside surface of the paper and the bulk oil

In steady state, the thermal equations governing this situation are as follows.
Inside conductor,
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Inside the paper,
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The boundary conditions are

At r = 0,
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where c labels the temperature inside the conductor and p inside the paper. The solution is 
given by
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The highest paper temperature occurs at r = r1 and is given, in terms of temperature rise 
above the bulk oil, by
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The quantity qvr1/2 is the surface heat flux, qs, since
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where L is the cylinder length that cancels. Thus, (17.92) can be expressed as

 q h T r Ts eff c b= ( ) -éë ùû1  (17.94)
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is an effective heat transfer coefficient, which takes into account conduction through the paper. 
In the case of a thin paper layer of thickness τ where τ ≪ r1 and r2 = r1 + τ, (17.95) reduces to
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This last expression also applies to a planar geometry. Note that the surface heat flux in 
(17.93) is based on the surface area of a cylinder of radius r1, which is the radius of the 
metallic part of the cable.

We also need the temperature rise of the surface oil in order to compute the Grashof 
number. This is given by
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so that, taking the ratio of (17.97) to (17.92), we get
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so that the temperature rise of the surface paper can be found once the maximum paper 
temperature rise is calculated.

In case another cable is brazed to the conductor, which may act as a heat sink, we must 
consider heat conduction along the conductor to the other cable. The situation is depicted 
in Figure 17.16.

Letting W = the total power dissipated inside the conductor of length L, we have

 

W h A T T h A T T
h A T T

eff side c b cond cond c cable
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= -( ) + hh A T T h A T Tcond cond c b cond cond cable b-( ) - -( ) (17.99)

where
Tc is the conductor surface temperature
Tb is the bulk fluid temperature
Tcable is the brazed-on cable temperature
Aside = pL is the conductor’s side area through which heat flows to the cooling fluid 

p is the perimeter of the conductor’s cooling surface
Acond is the conductor’s current-carrying area
hcond = kcu/L is the heat transfer coefficient for heat to flow from the conductor to the 

brazed-on cable. For copper, kcu = 400 W/m °C.

L

ConductorAcond hcondTc

Tcable

Brazed-on cable
heff Tb

Present for leads only

FIGURE 17.16
Geometry and thermal parameters for a cable or lead with another brazed to it.
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In order to use the said expression to obtain the lead temperature rise, the temperature rise 
of the cable must be calculated first. Since the cable is normally very long, its temperature 
rise can be obtained by neglecting its brazed connection.

Although we have indicated the numerical value of most of the material parameters in 
the preceding section, the missing ones are given as follows:

Thermal conductivity of paper, kp = 0.16 W/m °C
Resistivity of copper, ρ = 1.72 × 10−8 {1 + 0.004 [T (°C) – 20]}

For cooling in a horizontal duct, (17.87) is used and this involves the velocity via the 
Reynold’s number. We use v = oil velocity in duct = 2.54 mm/s. (This is a conservative 
value. If a better value can be obtained, e.g., from an oil flow calculated in a cooling pro-
gram, then it should be used.)

In addition, it should be noted that many of these material parameters are temperature 
dependent so that it is necessary to specify a bulk oil temperature and to iterate the calcula-
tions. The appropriate temperature to use for evaluating the oil parameters is (Ts + Tb)/2, 
that is, the average of the surface and bulk oil temperatures. For the conductor, its tempera-
ture is nearly uniform, so its maximum temperature can be used. The Grashof number 
depends on the temperature difference Ts − Tb, so it must be recalculated during the itera-
tion process along with the other material parameters.

These formulas have been applied to some standard cable sizes to obtain the maximum 
continuous currents permissible for a hot spot temperature rise of about 25°C. We assumed 
an oil temperature rise of 55°C above an ambient air temperature of 30°C, resulting in a 
bulk oil temperature of 85°C. Thus, a rise of 25°C would result in a hot spot temperature of 
110°C. The results are shown in Table 17.3. Note that the conductor area may not fill 100% 
of the geometrical area of the cable if the conductor is stranded.

TABLE 17.3

Maximum Continuous rms Currents for Standard Cable Sizes Producing a Temperature Rise 
above the Surrounding Oil of 25°C

Cable Size Cond Area Cond Diameter
Max Continuous Current (rms amps)

(AWG/MCM) (mm2) (mm) (2.4 mm paper) (6.35 mm paper) (12.7 mm paper)

6 13.30 4.72 125 100 85
4 21.15 5.97 170 135 114
2 33.63 7.52 230 180 152
1/0 53.48 9.50 320 245 205
2/0 67.42 10.67 375 285 235
3/0 85.03 13.54 465 345 285
4/0 107.23 15.22 545 405 330
300 152.00 18.14 700 515 415
350 177.35 19.63 780 570 460
400 202.71 20.96 860 625 505
500 253.35 23.44 1010 730 585
600 304.06 25.96 1155 830 660



522 Transformer Design Principles

17.13  Tank Wall Temperature Calculation

Heating in the tank wall is due to eddy currents induced by the stray leakage flux from 
the main coils and flux from any nearby leads or busses. Generally, a chief cause for 
 concern is the presence of high current-carrying leads near the tank wall. We have indi-
cated how these losses may be calculated in Chapter 15. Here, we are going to assume 
that these losses are known and that they are uniformly distributed throughout the tank 
wall  thickness. We will also assume that the tank wall surface dimensions involved are 
large compared with the tank wall thickness so that only one spatial dimension through 
the wall thickness is important. Figure 17.17 shows the geometric and other relevant 
parameters.

Here, L is the wall thickness, qv the losses generated in the tank wall per unit volume, k 
the thermal conductivity of the tank wall material, h1 the heat transfer coefficient from the 
inner tank wall to the oil, h2 the heat transfer coefficient from the outer tank wall to the air, 
and T(x) the temperature distribution in the tank wall.

The steady-state thermal equation for this situation is given by
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The different signs in the two boundary conditions are necessary to properly account for 
the direction of heat flow. The solution can be expressed as
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TankOil Air

Toil T(x) Tair

0 L
x

qv

k
h1 h2

FIGURE 17.17
Tank wall geometry and thermal parameters.
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This expression can be simplified by noticing that thermal transfer within the tank wall is 
much larger than that at the surface. This means that k is much larger than h1L or h2L so 
that, ignoring terms ≤1 relative to k/h1L or k/h2L and the (x/L)2 term, which is also small, 
(17.102) becomes
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This is independent of x so that the tank wall temperature is essentially uniform through-
out, and we have written Ttank for it. The last term on the right is the weighted average of 
the oil and air temperatures, weighted by their respective heat transfer coefficients. The 
first term on the right accounts for the heat generated in the tank wall. We can use the heat 
transfer coefficients given in Section 17.5 on tank cooling. Another expression, which could 
be used for heat transfer due to natural convection from one side of a vertical plate of 
height H immersed in a fluid (air or oil), is given by [Kre80]
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where the Grashof and Prandtl numbers have been defined in Section 17.12. This expres-
sion holds for 109 < GrHPr < 1013. To this, one would have to add the radiation term to the 
air heat transfer coefficient.

As a numeric example, let

h1 = hoil = 70 W/(m2 °C), h2 = hair + hrad = 13 W/(m2 °C)

k = ksteel = 40 W/m °C, L = 9.525 × 10−3 m

qv = 2 × 105 W/m3, qvL2/2k = 0.23

From these, we obtain k/h1L = 60 and k/h2L = 323. Both of these are much larger than 1. 
From the values given earlier, we see that the (x/L)2 term is small and the approximate 
formula (17.103) may be used. For Toil = 85°C, Tair = 30°C, we obtain Ttank = 99°C.

17.14  Tie plate Temperature Calculation

Tie plate losses were calculated in Chapter 15. These losses must be obtained by some 
method, such as that described there, in order to calculate the tie plate’s surface tempera-
ture. In order to make this temperature calculation tractable analytically, we make some 
idealized assumptions that appear to be reasonable. We assume the plate is infinite in two 
dimensions and that the losses fall off exponentially from the surface facing the coils into 
the plate. The exponential drop-off is determined by the skin depth and has the form e−x/τ 
where x is the distance from the free surface and τ is the skin depth. The surface facing the 
coils is assumed convectively cooled by the oil with a heat transfer coefficient h. The 
boundary condition on the other surface facing the core will depend on the construction 
details, which may differ among manufacturers. We will assume that there is a cooling gap 
here but that the heat transfer coefficient may be different from that at the other surface. 
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To allow for an insulated core-facing surface, this heat transfer coefficient may simply be 
set to zero. This geometry and the cooling assumptions are identical to that assumed for 
the tank wall temperature calculation. However, here we are allowing for an exponential 
drop-off of the loss density, which is probably more realistic in the case of magnetic steel 
tie plates. Thus, we are using the geometric and thermal parameters of Figure 17.17, except 
that air now refers to oil cooling on the surface at a distance x = L, where L is the tie plate 
thickness. Tie plates have a finite width and we are ignoring the enhanced loss density at 
the corners, which is evident in the finite element study for mag steel of Chapter 15. 
However, there is also extra cooling at the corner from the side surface, which could miti-
gate the effect of this extra loss density. One could address this problem by means of a 
thermal finite element program. However, the analytic solution presented in (17.105) 
should apply to temperatures away from the corner, and these may possibly be higher or 
comparable to the corner temperature.

This is a 1-dimensional steady-state heat transfer problem. The differential equation to 
solve is the same as (17.100) in the previous section. However, here we have qv = qvoe−x/τ, 
where qvo is the loss density at the surface (x = 0) and τ is the skin depth, rather than the 
constant assumption for qv used for tank cooling. Thus, the side facing the coils is at x = 0. 
The boundary conditions are the same as (17.101) with the air subscript replaced by oil. 
The solution is
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We have expressed the solution in this form so that the case of an insulated back side, 
(h2 = 0), could be easily obtained. From (17.105), the surface temperature rise at the x = 0 
surface is
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As a numerical example, let us consider the surface temperature rise above that of the sur-
rounding oil for mag steel and stainless steel tie plates using the following parameters:

h1 = 70 W/(m2 °C)
h2 = 20 W/(m2 °C)
L = 9.525 × 10−3 m
k = 40 W/m °C (mag steel)
k = 15 W/m °C (stainless steel)
τ = 2.297 × 10−3 m (mag steel)
τ = 5.627 × 10−2 m (stainless steel)
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We would like to compare these two materials when the total losses in them are the same. 
This means that the losses per unit surface area should be the same since we are assuming 
the geometry is unlimited in the plane of the surface. Letting qA be the loss per unit area 
obtained by integrating qv over the thickness of the tie plate, L, we can obtain qvo in terms 
of this. Thus,
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Using (17.106) and (17.107) and the numerical data given previously, we obtain the surface 
temperature rise above the ambient oil for the two types of tie plates in terms of qA:

T(x = 0) − Toil = 0.0111qA (mag steel)
T(x = 0) − Toil = 0.0111qA (stainless steel)

with qA in W/m2 and temperatures in °C. Thus, we see that for the same total loss, which 
is simply qA times the lateral dimensions of the tie plate, magnetic iron tie plates have the 
same surface temperature rise as stainless steel tie plates. We also find that the surface tem-
perature rise at the back surface (x = L) is nearly the same as the front surface temperature 
rise for the two materials. Even though the losses are distributed quite differently in the 
two materials with the mag steel having a higher concentration of losses near the surface, 
the higher thermal conductivity of the mag steel rapidly equalizes the temperature within 
the material so that extreme temperature differences cannot develop.

If the back surface were insulated (h2 = 0), all the losses would have to leave the front 
surface in the steady state. In this case, also the surface temperatures of the mag steel and 
stainless steel tie plates would be nearly identical for the same total loss. As h2 increases up 
to h1, the front surface temperatures gradually differ for the two cases but not significantly.

17.15  Core Steel Temperature Calculation

Because core steel is made up of thin, stacked insulated laminations, it has an anisotropic 
thermal conductivity. The thermal conductivity in the plane of the laminations is much 
higher than the thermal conductivity perpendicular to this plane or in the stacking direc-
tion. The steady-state heat conduction equation for this situation is, in rectangular 
coordinates,
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where the thermal conductivities k, which can differ in the x and y directions, are labeled 
accordingly. The loss per unit volume, qv, is assumed to be a constant here. Again, there are 
finite element programs that can solve this equation for complex geometries, such as a 
stepped core. We will derive a simple but approximate analytical solution here for a rect-
angular geometry as shown in Figure 17.18.
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This could apply to one step of a core, say the central step, with cooling ducts on the 
large flat sides or to all or part of a core between two cooling ducts by suitably calculating 
effective dimensions by approximating a rectangle from the steps involved.

We look for a solution of (17.108) of the form

 T x,y A Bx Cx Dy Ey( ) = + + + +2 2
 (17.109)

satisfying the boundary conditions at the center:
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This is required by symmetry. At the outer surfaces, we only approximately satisfy the 
boundary conditions for convective cooling:
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This means that we are satisfying the convective boundary condition exactly only at the 
surface points on the two axes. However, this is where we will evaluate the surface tem-
perature. With these assumptions, the solution is
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FIGURE 17.18
Rectangular geometry for anisotropic thermal calculation.
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Note that a and b are 1/2 the rectangle dimensions. We can estimate the thermal conduc-
tivity in the direction perpendicular to the lamination plane (the y-direction here) from 
knowing the coating thickness or stacking factor and the thermal properties of the coating. 
For stacked silicon steel, we use

kx = 30 W/m °C and ky = 4 W/m °C
h = 70 W/m2 °C for convective oil cooling

Assuming an effective stack or rectangle size of 0.762 m × 0.254 m and using qv = 104 W/m3 
(1.3 W/kg), we find for the maximum internal temperature rise above the surrounding oil

 T x , y T Coil= =( ) - = °0 0 25 8. . 

The surface temperature rise in the x or long dimension is

 T x a, y T Coil= =( ) - = °0 17 8.  

The surface temperature rise at the surface at y = b in the short direction perpendicular to 
the stack is

 T x , y b T Coil= =( ) - = °0 12 2.  

Note that the surface in the direction of lower thermal conductivity is actually cooler than 
the surface toward which heat is more easily conducted. This is because, the central tem-
perature being the same, there is a smaller thermal gradient in the high-conductivity direc-
tion relative to the lower one.

The temperatures calculated with these formulas were compared with temperatures 
obtained with a 2D finite element thermal code, keeping the uniform loss density and ther-
mal parameters the same for the two methods. The actual core step pattern and core ducts 
were used for the 2D model. The maximum internal core temperature and maximum sur-
face temperature were compared for each step. They were the same within a few degrees 
for the two methods.
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Load Tap Changers

18.1  Introduction

The flicker of the house lights while having dinner is a sign of a load tap changer (LTC) tap 
change. When most people get home from work, they start using electricity for cooking 
and lighting. This increases the electrical load on the distribution network, which causes 
the voltage to sag below its nominal value. The latter signals the LTC to change taps to 
adjust the voltage back to its nominal value with some tolerance.

There are many applications of transformers in modern electric power systems: from 
generator step-up to system interconnection to distribution to arc furnace to HVDC con-
verters to mention just a few. The role of a transformer is to convert the electrical energy 
from one voltage level to another. As power systems become larger and more complex, 
power transformers play a major role in how efficient and stable the system is. For each 
transformer installed in a network, there is an ideal (optimal) voltage ratio for an optimal 
operation of the system. Unfortunately, this optimal voltage ratio varies depending on the 
operating conditions of the total network. Early in the history of electric power systems, it 
became evident that for power systems to operate satisfactorily, transformer voltage ratios 
needed to be adjustable without interrupting the flow of energy. This is the role of an LTC.

18.2  General Description of LTC

An LTC is a device that connects different taps of tapped windings of transformers without 
interrupting the load. It must be capable of switching from one tap position to another with-
out at any time interrupting the flow of the current to the load and without at any time creat-
ing a short circuit between any two taps of the transformer winding. Tap changing transformers 
are used to control the voltage or the phase angle or both in a regulated circuit.

An LTC is made of four elements:

 1. A selector switch, which allows the selection of the active tap
 2. A changeover switch, referred to as a reversing switch when it reverses the polar-

ity of the tapped winding, used to double the number of positions available
 3. A transition mechanism, including an arcing or diverter switch, which effects the 

transition from one tap to the other
 4. A driving mechanism, which includes a motor and gear box and controls to drive 

the system

18
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There are two generic types of tap changers:

 1. In-tank: The cover-mounted, in-tank tap changer, known as the Jansen type, sits in 
the main transformer oil together with the core-and-coil assembly. Its selector and 
changeover switches are at the bottom of the tap changer in the main oil. The arc-
ing (diverter) switch is located in a separate compartment at the top, usually 
within a sealed cylinder made of fiberglass or other similar material. All arcing is 
confined to this compartment. They exist in single-phase or three-phase neutral 
end Wye (Y)-connected versions. For three-phase fully insulated applications, 
three single-phase tap changers must be used. This type of tap changer is used for 
higher voltages or current levels.

 2. Separate compartment: The side-mounted, separate compartment types have their 
own box and are assembled separately from the transformer. They are bolted to 
the side of the tank and connected to the transformer tapped windings through a 
connecting board. Their selector, changeover, and arcing switches are located in 
an oil compartment completely isolated from the main transformer oil. Some of 
them have two compartments, one for the arcing switch and one for the selector 
and changeover switches. Others have everything in one compartment only. They 
are available in three-phase assembly, either Wye connected for application at the 
neutral end of a three-phase transformer or fully insulated for applications at 
the line end.

18.3  Types of Regulation

The main types of regulation are illustrated in Figure 18.1 and are discussed in the 
following.

Linear: In linear switching, tapped turns are added in series with the main winding 
and their voltage adds to the voltage of the main winding. No changeover switch 
is needed for this type. The tapped winding is totally bypassed in the minimum 
voltage position. The rated position can be any one of the tap positions.

(a) (b) (c) (d)

S

 SR
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n

n
n

n S

C
n/2

FIGURE 18.1
LTC main regulation types. S, selector switch; C, changeover switch; R, reversing switch. (a) Linear, (b) reversing, 
(c) coarse–fine, and (d) bias winding.
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Plus–minus (reversing): In a reversing type of regulation, the whole tapped winding 
can be connected in additive or reversed polarity with respect to the main wind-
ing. The tapped turns can add or subtract their voltage with respect to the main 
winding. The tapped winding is totally bypassed in the neutral (midrange) volt-
age position. The rated position is normally the mid one. The total number of posi-
tions available is twice the number of sections in the tapped winding plus one.

Coarse–fine: The coarse–fine regulation can be defined as a two-stage linear regulation 
where the first or coarse stage contains a large number of turns, which can be 
totally bypassed, by the changeover selector. These turns are shown as a single 
loop in the top coil of the figure. Fine regulation is achieved with the selector 
switch. Normally, the coarse section contains as many turns as the tapped winding 
plus one section. In that way, the total number of positions available is twice the 
number of sections in the tapped winding plus one.

Bias winding: The bias winding type of regulation is similar to the coarse–fine except 
that the number of turns in the bias winding is half the turns of one section of the 
tapped winding. It is used to provide half steps between the main tap steps. Thus, 
the total number of positions available is twice the number of sections in the 
tapped winding plus one. The bias winding technique can be combined with the 
reversing scheme to provide twice the number of positions (four times the number 
of sections in the tapped winding plus one) at the expense of adding one more 
switch and increasing the complexity of the switching and driving mechanism.

Although not indicated in the figure, the tap selector switch is often a circular type of 
switch to allow a smooth transition between the tap voltages when the changeover or 
reversing switch operates.

18.4  Principle of Operation

An LTC must be capable of switching from one tap position to another without interrupt-
ing the flow of current to the load at any time. It must therefore follow a “make-before-
break” switching sequence. On the other hand, it cannot at any time create a short circuit 
between any two taps of the transformer winding. This means that during this make-
before-break interval, there must be something to prevent the shorting of the turns. Two 
ways are primarily used to accomplish this.

18.4.1  Resistive Switching

Figure 18.2 shows an example of a six-step switching sequence. This particular type of tap 
changer has two selector switches and an arcing switch with four contacts.

 1. Step 1 of this figure shows the steady state of the TC just before the switching 
operation. The load current is flowing through the contact #1 and the selector #1. 
Let us call that position tap #2.

 2. At step 2, the nonconducting selector has moved 2 steps down, from position 1 to 
position 3. The current is still flowing in contact #1 and the selector #1.
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 3. At step 3, the contact #1 opens and the current flows through resistor #1 and 
selector #1.

 4. At step 4, the contact #3 closes and the current splits between the 2 resistors and 
the 2 selectors. There is also a circulating current flowing into the loop limited by 
the 2 resistors and the reactance of the loop.

 5. At step 5, the contact #2 opens, breaking the current in the resistor and selector #1. 
It is at that moment that arcing occurs. The arc remains on until the current crosses 
the zero line. At worst, it can last one half cycle, which, at 60 Hz, is 8 ms. The aver-
age arcing time is around 5–6 ms.

 6. At step 6, the contact #4 closes and the load current bypasses the resistor #2 
and goes directly to the selector #2. The TC has reached the steady state for tap 
position #3.

This type of transition requires that the resistors be capable of withstanding the full load 
current plus the circulating current during the transition (from step 3 to step 5). In order to 
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FIGURE 18.2
Sequence of operations involved in tap changers using resistive switching. The selector switches are the topmost 
switches. The arcing switches are closed when a diagonal (shorting) line is present and open otherwise.
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reduce the energy absorption requirement for the resistors, the time of the complete transi-
tion has to be minimized. These tap changers have normally very fast transitions.

18.4.2  Reactive Switching with Preventative Autotransformer

Another widely used way of handling the transition from one tap to another is to use reac-
tors instead of resistors. These reactors do not have to dissipate as much energy as the 
resistors. They mainly use reactive energy, which does not produce any heat. Therefore, 
they can be designed to withstand the full load plus the circulating current for long periods 
of time, even continuously. Two reactors per phase are needed. They are normally wound 
on a common gapped core, making them mutually coupled. When they are connected in 
series, they act as an autotransformer. When they are connected in parallel, they act as a 
single reactor. Transformer designers take advantage of this feature. They use the reactors 
not only to prevent the load current from being interrupted or to prevent sections of a 
tapped winding from being shorted but also to act as a transformer and provide intermedi-
ate voltage steps in between two consecutive tap sections of the main transformer. The 
total number of positions available with this scheme is twice the number of sections in the 
tapped winding plus one. Here is how it works.

The method of operation is diagrammed in Figure 18.3. The tap changer has two  selectors, 
two reactors (actually one reactor with two windings), two bypass switches (#1 and #2), 
and an arcing switch (#3).

 1. In step 1 of this figure, the tap changer is in the steady-state mode on tap position 
#2. The load current flows in the 2 selectors, the 2 reactors, and the bypass switches. 
Although the arcing switch is closed, no current flows through it.

 2. In step 2, the bypass switch opens. The current flows through the switch #1 and 
then splits up between the 2 reactors and the 2 selectors.

 3. In step 3, the arcing switch opens. All current flows through the reactor 1 and the 
selector 1. Arcing occurs at that step because the current in the reactor is 
interrupted.

 4. In step 4, the right selector moves one step to the right, while it carries no current.
 5. In step 5, the arcing switch closes, causing current to flow again in the reactor #2 

and in selector #2. Note that the two selectors are on different taps. This causes a 
circulating current to flow into the loop.

 6. In step 6, the bypass switch #2 closes and a steady-state condition is reached, which 
is in this case tap position #1. Because the 2 ends of the reactors are on 2 different 
taps, they are in series between the 2 taps. The voltage at their midpoint is halfway 
between the 2 taps. This state is called the “bridging position,” where the reactors 
bridge between the 2 taps.

When combined with a reversing switch, this scheme provides four times as many voltage 
positions as tapped sections in the winding plus one. The price to pay is that the reactor has 
to be designed to withstand continuously the full load current plus the circulating current; 
the tapped winding has also to withstand the full load plus the circulating current; and the 
reactor introduces losses and draws more magnetizing current from the source, especially 
on bridging positions. It might also add audible noise to the transformer.
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18.5  Connection Schemes

18.5.1  Power Transformers

Normally, the primary winding of transformers is fed at a constant voltage, and the role of 
the tap changer is to add or subtract turns in order to vary the voltage ratio of the trans-
former to maintain its output at a constant voltage despite fluctuations in the load current. 
In principle, this can be accomplished by changing the number of active turns either in the 
primary or secondary winding. There are subtle differences in the two ways of connecting 
the tap changer, which transformer and system designers have to be aware of.

18.5.1.1  Fixed Volts/Turn

The most natural way to add a tapped winding to a transformer is to connect it in series 
with the regulated side. As shown in Figure 18.4, the primary winding of the transformer 
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FIGURE 18.3
Sequence of operations involved in tap changers using reactive switching.
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(H1–H2) is fed at a constant voltage and it has a fixed number of turns. So, the volts/turn 
of the transformer is constant. The voltage across X1–X2 varies with the number of turns. 
If all the taps have equal number of turns, then the voltage increase is equal for each step. 
If the X winding is Wye connected, then the tapped winding and the tap changer can be 
placed at the low potential neutral end and do not require a high insulation level. The price 
to pay is that the tap changer has to be capable of carrying the current of the X winding. 
For high-current windings, the cost of such a tap changer could become prohibitive. 
Another disadvantage is that low-voltage (LV) windings often have few turns. The design 
of the tapped winding might become impractical if not impossible considering that frac-
tional turns cannot be used.

18.5.1.2  Variable Volts/Turn

One way to solve the problem of high-current LV windings is to put the tapped winding in 
the high-voltage (HV) side. The LV side can still be regulated in this way. This is particu-
larly applicable if the HV is Wye connected since the tap changer could be placed at the 
neutral end and would not require a high insulation level while not carrying a high cur-
rent. This scheme is illustrated in Figure 18.5.

Although the solution might look very attractive, it has its disadvantages:

 1. If we consider that the voltage across H1–H2 is constant, varying the number of 
turns in that winding implies that the volts/turn and thus the flux in the core vary 
since the core flux is proportional to the volts/turn. It means that the core has to be 
designed for the minimum turn position since this position requires the core to 
carry its maximum flux. The core would be bigger than its fixed volt/turn counter-
part and would really be used efficiently only at that minimum turn position. 
At any other position, it operates at lower flux densities.
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FIGURE 18.4
Fixed volts/turn tap changing scheme.
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FIGURE 18.5
Variable volts/turn tap changing scheme.
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 2. If the flux varies in the core, the no-load losses, the exciting current, the imped-
ance, and the sound level of the transformer will also vary. If a transformer is 
designed to meet certain guaranteed losses and sound level at rated position, 
which is generally the mid position, it is likely that at the minimum turn position, 
it will exceed these guaranteed values significantly.

 3. In a variable flux transformer, the voltage variation per step is not constant even if 
the number of turns per step is constant. This is because the volts/turn changes 
with step position.

 4. If there is a third winding in the transformer used to feed a different circuit, its 
voltage will vary as the tap changer moves, which might not be desirable.

18.5.2  Autotransformers

Autotransformers with tap changers present special challenges for the transformer 
designer. There are three ways of connecting a tap changer in an autotransformer without 
using an auxiliary transformer. These are illustrated in the following figures.

The connection shown in Figure 18.6 is used when the HV of the transformer is to be 
varied while keeping the LV constant. In this case, we are assuming that the LV side is sup-
plied by a fixed voltage source. The voltage at the HV terminal varies linearly with the 
number of turns added or subtracted to the series winding. The flux in the core is constant. 
In this connection, the tap changer and the tapped winding must be rated for the voltage 
level of the LV line terminal plus the voltage across the tapped section. The tapped wind-
ing is directly exposed to any voltage surge coming through the LV line, so extra precau-
tions have to be taken at the design stage.

Figure 18.7 shows the connection used when the HV side of the transformer is to be kept 
constant while the LV varies. In this case, the HV side is fed from a constant voltage source. 
The voltage at the LV terminal varies linearly with the number of turns added or sub-
tracted in series with the LV line. As in the previous case, the flux in the core is constant; 
the tap changer and the tapped winding must be designed for the voltage level of the LV 
line terminal plus the voltage across the tapped section. The taps are directly exposed to 
any voltage surge coming through the LV line, so extra precautions have to be taken at the 
design stage. Finally, the tap changer must be designed to carry the full load current of the 
LV terminal.

H1

X1

HoXo

FIGURE 18.6
Taps in the series winding of an autotransformer.
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In the previous two cases, if a three-phase transformer is designed, the tap changer must 
have full insulation between the phases. If the voltage on the LV is above 138 kV, then three 
single-phase, Jansen-type tap changers must be used.

The connection shown in Figure 18.8 can be used when the LV is to be varied while the 
HV is to be kept constant. The advantages of this connection are as follows:

 1. The level of insulation for the tapped winding and the tap changer is low.
 2. A Wye-connected three-phase tap changer can be used for a three-phase 

transformer.
 3. The current in the common winding is lower than the current in the LV line termi-

nal, so a smaller tap changer can be selected.

As usual, there is a price to pay to obtain these benefits. If we assume that the voltage 
between H1 and HoXo is constant, varying the number of turns implies varying the volts/
turn and therefore the flux in the core. It is a variable flux design. As explained earlier, in a 
variable flux transformer, the losses, the exciting current, the impedance, and the sound 
level vary with the tap position, and a bigger core must be selected for proper operation at 
the minimum turn position. If there is a tertiary winding, its voltage will vary as the tap 
changer changes position.

H1
X1

HoXo

FIGURE 18.8
Taps in the common winding of an autotransformer at the neutral end.

H1
X1

HoXo

FIGURE 18.7
Taps in the LV line from the autoconnection.
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In an autotransformer connection, the turns in the common branch are part of both the 
HV and LV circuits. This means that if we add turns in the common branch, we add turns 
to both the HV and LV circuits. Because of this, the number of turns required to achieve a 
specified regulating range is higher than for the other two cases.

Let us derive the tap winding requirements for regulating the LV or common winding 
voltage by the positive and negative fractional voltages of fp and fm. Let NS, NC, and NT 
be the turns in the series, common, and tap winding, respectively. These turns are for 
the individual windings. Let VH and VX be the high and low terminal to ground volt-
ages, assuming a Y connection. For a delta connection, these would refer to the phase 
voltages. Although VH is assumed to be fixed, VX will change with tap position and will 
be labeled VXp, VXo, and VXm for the positive, neutral, and negative tap positions, 
respectively.

Using VPTp, VPTo, and VPTm to indicate the volts per turn for the positive, neutral, and 
negative tap settings, we have
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The LV voltages for the different tap positions are

 

V N N VPT
V N VPT
V N N VPT

Xp C T p

Xo C o

Xm C T m

= +( )
= ( )
= -( )  

(18.2)

The fractional voltage changes corresponding to the positive and negative tap settings are

 

f
V V

V
V
V

N N
N

VPT
VPT

N N
N

p
Xp Xo

Xo

Xp

Xo

C T

C

p

o

C T

C

=
-

= - = +æ

è
ç

ö

ø
÷ -

= +æ

è
ç

ö

1 1

øø
÷

+
+ +

æ

è
ç

ö

ø
÷ - =

+

+
+

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-

=

N N
N N N

N
N
N

N N

f
V

S C

S C T

S

C

S

C T

m

1
1

1
1

XXo Xm

Xo

Xm

Xo

C T

C

m

o

C T

C

V
V

V
V

N N
N

VPT
VPT

N N
N

- = - = - -æ

è
ç

ö

ø
÷

= - -æ

è
ç

ö

ø

1 1

1 ÷÷
+

+ -
æ

è
ç

ö

ø
÷ = -

+

+
-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

N N
N N N

N
N
N

N N

S C

S C T

S

C

S

C T

1
1

1
 

(18.3)



539Load Tap Changers

Solving (18.3) for NT, we find that there are two different values corresponding to fp and fm, 
which we will label NTp and NTm. They are
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Here, we might want to take the largest NT value to get the full regulation in one direction 
at the expense of providing more than the required regulation in the other direction. If we 
take an average of the 2, calling it NTave, we get

 

N N N
N
N

f f

f
N
N f

N
Tave C S

S

C

p m

p

S

C m

S

= +( )æ
è
ç

ö

ø
÷

+

æ

è
ç

ö

ø
÷ -

é

ë
ê

ù

û
ú

1
2

1 1

1
1

1
NNC

æ

è
ç

ö

ø
÷ +

é

ë
ê

ù

û
ú

ì

í

ï
ï

î

ï
ï

ü

ý

ï
ï

þ

ï
ï1

 

(18.5)

In case we have fp = fm = f, this simplifies to
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As an example, let us suppose that we want a ±10% voltage regulation on the LV winding. 
Suppose that we have 100 turns in the series winding and 100 turns in the common wind-
ing. If the taps were X-line taps, it would require NT = 10 turns. For neutral taps, using 
(18.4), we find that NTp = 22.2 turns and NTm = 18.2 turns. We might want to use 22 turns in 
the tap winding to get the full positive regulation and providing more than the required 
negative regulation. Taking an average and using (18.6) since fp = fm, we get NTave = 20.2 
turns. This means we need about twice as many turns for the neutral taps compared with 
the X-line taps to achieve the ±10% voltage variation on the X terminal.

Another consideration is the core flux or, for a given size core, the flux density. This is 
proportional to the volts per turn. Since the negative tap setting has the highest volts 
per turn, the maximum core flux should not exceed this value. Usually, the maximum 
core flux is specified for rated conditions. This value would then have to be reduced to 
allow for the higher flux density at the negative tap setting. The reduction factor, FR, is 
given by
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If we use the average value for NT and we assume that fp = fm = f, then we get for FR
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For the numerical example given earlier, we get FR = 0.9. Thus, the transformer would need 
to be designed for a flux density 10% below the rated value.

Another consideration is the MVA of the tap winding. For the ±10% X-line taps, since the 
full LV load current flows in these, the MVA rating is 10% of the terminal MVA. The neutral 
taps have 20% of the common winding turns. The current in them is the terminal current 
times the coratio. The neutral coratio is 0.5, and the positive and negative tap coratios 
are 0.455 and 0.556, respectively. Using the negative tap coratio, the neutral tap rating is 
0.2 × 0.556 = 0.111 or 11% of the terminal MVA, so it is a bit higher than for the X-line taps.

18.5.3  Use of Auxiliary Transformer

When a transformer with a relatively high current LV winding is specified and regulation 
is desired on the LV side, it may be economical to use an auxiliary transformer to achieve 
regulation. This gives the designer a greater flexibility in the design of the tapped winding 
and the savings on the main transformer often outweigh the cost of the auxiliary trans-
former. There are two popular ways of using auxiliary transformers.

The series voltage regulator: In this connection, the tapped winding is located on the 
auxiliary transformer that is inserted in series with the LV line terminal, adding or 
subtracting its voltage from the LV winding of the main transformer. The main 
transformer has only two windings and can be optimized independently from the 
series voltage regulator. This is shown in Figure 18.9.

The series (booster) transformer: In this connection, shown in Figure 18.10, the tapped 
winding is a separate winding on the main transformer. The advantages of this 
connection are that there is much more flexibility in the design of the tapped wind-
ing. The number of turns per step can be selected so that the tap changer carries a 
smaller current. The main saving in this case is on the tap changer itself and in the 
greater flexibility in the optimization of the main transformer.

Auxiliary transformers can also be used with autotransformers pretty much in the same 
way. There are also plenty of possible connections for using auxiliary transformers. The 
choice is only limited by the imagination of the designer.

18.5.4  Phase Shifting Transformers

A phase shifting transformer is ideally a transformer with a 1:1 voltage ratio which has the 
ability to change the phase angle of its output voltage relative to its input. This feature is 
used by electric power companies to help transfer power more efficiently within the 
 electrical grid. In these transformers, the voltage from the tapped windings is added in 
quadrature with the input line terminals, producing an effective phase shift in the output. 
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There are quite a few possible connections to achieve this, and some of these are discussed 
in Chapter 7. Let us just mention here that in a-phase shifting transformer, the tap changer 
is a key element and the size and rating of the tapped windings are much higher than for 
conventional transformers.

18.5.5  Reduced versus Full-Rated Taps

Because the current in the tap winding and the tap changer is larger than the rated current 
at the negative tap setting, it is sometimes desirable to limit it to the rated current at the 
negative tap setting. Effectively, this amounts to reducing the MVA of the transformer at 
the negative tap setting. In this case, the taps are referred to as having a reduced rating. 
Otherwise, the taps are referred to as having a full rating.

18.6  General Maintenance

The reason for the maintenance on a tap changer is to insure its reliability. Any device with 
moving parts, some of which are used to interrupt currents and voltages, requires mainte-
nance. It would be useless to repeat here what can be found in the manufacturers’ instruc-
tion books. We will only mention general principles. The factors affecting the reliability of 
tap changers include the following:

• Oil quality
• Contact pressure
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FIGURE 18.10
Tap changing scheme using a series (booster) transformer.
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FIGURE 18.9
Tap changing scheme using a series voltage regulator.
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• Contact resistance and temperature
• Timing of movements
• Load currents
• Number of operations

The maintenance of the controls and the drive mechanism are normally not a problem. 
The gears and other moving parts might wear and require replacement, but in general, 
they are designed to last very long and do not need frequent inspection. The main areas 
of concern are the switches and the connecting board if present. The contacts have to be 
inspected and verified periodically. The frequency of these inspections depends mainly 
on the number of operations, the current flowing through the contacts, and the cleanli-
ness of the oil.

The inspection and replacement of contacts require that the transformer be taken out 
of service. Since it is always costly to take a transformer out of service, it is desirable to 
extend the period between inspections as much as possible. Besides recommendations 
that can be found in most instruction books for tap changers, here are some of the tactics 
used by utilities to reduce their maintenance costs and the failure rate of their tap 
changers.

The process of changing tap position includes arcing, which generates gases and carbon 
particles. The movement of contacts also promotes erosion of the metal and generates 
small metal particles. In the long run, these particles can affect the dielectric properties of 
the oil. Moreover, the carbon particles tend to aggregate on contacts and increase the con-
tact resistance. They also accumulate on connecting boards and may lead to tracking on the 
surface of the board. For these reasons, the reliability of a tap changer and its overall per-
formance can be improved by a simple filtering device, which would keep the oil clean. 
This is especially important if the arcing switch is located in the same compartment as the 
selector and changeover switches. Some utilities have introduced oil filters for LTCs, and 
they have found that with these filters, they can extend their time between inspections. 
However, in some tap changers, the arcing occurs in a separate vacuum chamber so that oil 
contamination is reduced or eliminated.

In a tap changer, contacts that operate frequently remain clean. The ones that do not 
move for long periods of time tend to oxidize or collect carbon or both. With time, their 
contact resistance increases, which produces more heat and the situation deteriorates. This 
is typical of changeover selectors. Some of those operate only twice a year. Many cases of 
damage to these switches have been reported. Several utilities now force their tap changers 
to ride over the mid position at least once a month, and they claim a much better perfor-
mance of their tap changers since they have introduced the procedure.

Instead of taking all transformers out of service for regular and frequent inspections of 
tap changers, some utilities have introduced monitoring procedures for tap changers with-
out de-energizing their transformers. One of those procedures is dissolved gas analysis. 
They regularly take oil samples from tap changer compartments and monitor the gases. 
After a while, they know the pattern of all their tap changers. Whenever one changes pat-
tern, they go and inspect it. They report that this procedure has helped them reduce the 
frequency of their internal inspections while alerting them to dangerous problems before 
they lead to a catastrophic failure.

Another trick is to have inspection windows in the tap changer box. When used in con-
junction with an oil filter, they can look at their contacts without opening the box and take 
the transformer out of service if required.
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Another possible procedure is to monitor the temperature on the tap changer compart-
ment regularly with infrared measuring devices. It is very inexpensive and easy to do. 
They claim that if anything goes wrong in a tap changer, it typically increases the tempera-
ture of the contacts to a point that you can detect it by checking the temperature on the 
outside of the wall of the box. Their rule is that if the temperature on the surface of the tap 
changer compartment is higher than the tank of the transformer by more than 7°–10°, 
something is going wrong inside the transformer. They would then inspect the tap changer. 
Quite a few problems have been detected this way.
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Constrained Nonlinear Optimization 
with Application to Transformer Design

19.1  Introduction

A transformer must perform certain functions such as transforming power from one volt-
age level to another without overheating or without damaging itself when certain abnor-
mal events occur, such as lightning strikes or short circuits. Moreover, it must have a 
reasonable lifetime (>20 years) if operated under rated conditions. Satisfying these basic 
requirements still leaves a wide latitude in possible designs. A transformer manufacturer 
will therefore find it in its best economic interest to choose, within the limitations imposed 
by the constraints, that combination of design parameters, which results in the lowest-cost 
unit. To the extent that the costs and constraints can be expressed analytically in terms of 
the design variables, the mathematical theory of optimization with constraints can be 
applied to this problem.

Optimization is a fairly large branch of mathematics with major specialized subdivisions 
such as linear programming, unconstrained optimization, and linear or nonlinear equality- 
or inequality-constrained optimization. Transformer design optimization falls into the 
most general category of such methods, namely, nonlinear equality- and inequality- 
constrained optimization. In this area, there are no algorithms or iteration schemes, which 
guarantee that a global optimum (in our case a minimum) will be found. Most of the algo-
rithms proposed in the literature will converge to a local optimum with varying degrees of 
efficiency, although even this is not guaranteed if one starts the iterations too far from a 
local optimum. Some insight is therefore usually required to find a suitable starting point 
for the iterations. Often, past experience can serve as a guide.

There is, however, a branch of optimization theory called geometric programming, 
which does guarantee convergence to a global minimum, provided the function to be mini-
mized, called the objective or cost function, and the constraints are expressible in a certain 
way [Duf67]. These restricted functional forms, called posynomials, will be discussed later. 
This method is very powerful if the problem functions conform to this type. Approximating 
techniques have been developed to cast other types of functions into posynomial form. 
Later versions of this technique removed many of its restrictions but at the expense of no 
longer guaranteeing that it will converge to a global minimum [Wil67]. One of the earliest 
applications of geometric programming was to transformer design.

Whatever choice of optimization method is made, there is also the question of how much 
detail to include in the problem description. Although the goal is to find the lowest cost, 
one might wish that the solution would provide sufficient information so that an actual 
design could be produced with little additional work. In general, the more detail one can 

19
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generate from the optimization process, the less work that will be required later on. 
However, it would be unrealistic to expect that the optimum cost design for a transformer, 
for example, would automatically satisfy all the mechanical, thermal, and electrical con-
straints that require sophisticated design codes to evaluate. Rather, these constraints can be 
included in an approximate (conservative) manner in the optimization process. When the 
design codes are subsequently employed, hopefully only minor adjustments would need 
to be made in the design parameters to produce a workable unit.

We will briefly describe geometric programming, presenting enough of the formalism to 
appreciate some of its strengths and weaknesses. Then, we will present a more general 
approach, which is developed in greater detail, since it is applied subsequently to the 
transformer cost minimization problem considered in this chapter.

19.2  Geometric Programming

Geometric programming requires that the function be minimized, the objective or cost 
function and all the constraints be expressed as posynomials. Using the notation of 
Reference [Duf67], these are functions of the form

 g u u un= + + +1 2 �  (19.1)

with

 u c t t ti i
a a

m
ai i im= ¼1 2

1 2
 (19.2)

where the ci are positive constants and the variables t1, t2, …, tm are positive. The exponents 
aij can be of either sign or zero. They can also be integer or non-integer.

The method makes use of the geometric inequality:
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where the Ui are nonnegative and the δi are positive weights that satisfy

 d d d1 2 1+ + + =� n  (19.4)

called the normality condition. Equality is obtained (19.3) if and only if all Ui are equal. 
Letting ui = δiUi, Equation 19.3 can be rewritten as
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Substituting (19.2) for the ui in (19.5), we obtain
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If we can choose the weights δi in such a way that
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then the right-hand side of (19.6) will be independent of the variables tj. Equation 19.7 is 
called the orthogonality condition. With the Dj’s so chosen, the right-hand side of (19.6) is 
referred to as the dual function, v(δ), and is given by
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(19.8)

where the vector δ = (δ1, δ2, …, δn). Using vector notation for the variables tj, t = (t1, t2, …, tn), 
Equation 19.5 can be rewritten as

 g vt( ) ³ ( )dd  (19.9)

subject to (19.7).
As (19.9) shows, the objective function g(t) is bounded below by the dual function v(δ). 

Thus, the global minimum of g(t) cannot be less than v(δ). Similarly, the global maximum 
of v(δ) cannot be greater than g(t). We now show that the minimum of g(t) and the maxi-
mum of v(δ) are equal. Let t = t′ at the minimum. At this point, the derivative of g(t) with 
respect to each variable must vanish:
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Since ¢ >t j 0 by assumption, Equation 19.10 can be multiplied by ¢t j,
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using (19.1) and (19.2). Dividing by g(t′) and letting
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we see that (19.11) becomes
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Thus, the di
¢  satisfies the orthogonality condition (19.7). Moreover, the di

¢  sum to 1 and, thus, 
satisfy the normality condition (19.4). Therefore, we can write

 g g g g g
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But using (19.12), (19.14) becomes
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(19.15)

The right-hand side of (19.15) is v(δ′). Thus at the minimum,

 g v¢( ) = ( )t dd¢  (19.16)

This equation, along with (19.9), shows that the minimum of g(t) and the maximum of v(δ) 
are equal and are in fact a global minimum and a global maximum.

Note that at the minimum, according to (19.12),

 u g vi i i¢ ¢( ) = ( ) = ( )¢ ¢t t d ddd¢  (19.17)

This is also a requirement for the geometric inequality to become an equality. In the 
 geometric programming approach, one looks for a maximum of the dual function v(δ) 
subject to the normality and orthogonality conditions. Having found this v(δ′) and the 
 corresponding di

¢ , Equation 19.17 can be used to find the design variables t j
¢ at the minimum 

of g. Equation 19.17 also shows that, at the minimum, the weights di
¢  give the relative 

importance (cost) of each term in the objective (cost) function.
In geometric programming with constraints, all the constraints must be expressed in 

the form

 g k pk t( ) £ = ¼1 1, , ,  (19.18)

where the gk are posynomials. Write

 g u u uk k k kn= + + +1 2 �  (19.19)

as before with the uki having the same form as (19.2). Note that kn is not necessarily 
equal to n and can be a different number for each constraint. In dealing with inequality 
constraints, the weights are allowed to be unnormalized. Letting λk denote their sum, 
we have

 l d d dk k k kn= + + +1 2 �  (19.20)
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However, in applying the geometric inequality (19.5), we must use normalized weights 
given by δki/λk, so that we get
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The last equation follows because the exponent of λk sums to 1.
Since the gk are ≤1, raising both sides of this inequality to a power does not change it, 

since 1 to any power is still 1 and any positive number ≤1 raised to a power is still ≤1. 
Thus, raising gk to the power λk in (19.21), we obtain
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(19.22)

There is an inequality like (19.22) for each constraint. We can include the objective function, 
g, along with the constraints by giving it the subscript 0, so that we get

 g g u u u n= = + + +0 01 02 0�  (19.23)

For the objective function 0n = n. Therefore, we can treat it along with the constraints by 
letting k = 0, 1, …, p and where λ0 = 1. We assume that both the objective function and the 
constraints have m positive variables ti, i = 1, …, m. If a variable tj is missing in any term, 
its exponent can be set to 0 in that term. Hence,
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where g0(t) = g(t) is the objective function. We now multiply all of the inequalities together, 
that is, the extreme left and right sides of (19.22) for each constraint, to get
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Multiplying both sides of (19.25) by g(t) = g0(t) and using inequalities (19.5) and (19.23), we 
can subsume g0 in with the inequalities to get
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with the auxiliary conditions,
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which eliminates the tj dependencies so that the right-hand side of (19.27) becomes a dual 
function, v(δ), expanded to include the constraints:
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In addition, we have the normality condition for k = 0,
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All the weights δki are required to be nonnegative,

 dki i n k p³ = ¼ = ¼0 1 0, , , , , ,  (19.29)

The problem of minimizing the objective function subject to its constraints becomes one of 
maximizing the dual function v(δ) subject to the dual constraints (19.27) through (19.29). 
These dual constraints, aside from the nonnegativity condition, are linear constraints in 
contrast to the, in general, nonlinear constraints of the original formulation. There are as 
many unknowns δki as terms in the objective plus constraint functions, namely, T = n + 1n + 
2n + ⋯ + pn, where T is the total number of terms in the objective + constraint functions. 
There are also pλk unknowns for a total of T + p unknowns. However, (19.27) and (19.28) 
must be satisfied and there are m + 1 of these equations, where m is the number of design 
variables. Also there are p equations like (19.20) to determine the λk. The degree of difficulty 
is defined as T + p − m − 1 − p = T − m − 1. When this equals 0, this means that there are as 
many unknowns as equations and the solution is found by solving the set of linear equa-
tions (19.27) and (19.28) simultaneously. When this is greater than 0, techniques for maxi-
mizing a, in general, nonlinear function subject to linear constraints must be employed. 
Under very general conditions, it can be shown that the minimum of the objective function 
subject to its constraints equals the maximum of the dual function subject to the dual con-
straints [Duf67]. Furthermore, at the maximizing point δ′, the following equations hold:

 

u
v i n

k i n
i

i

ki

k

=
( ) = ¼

> = ¼

ì

í
ï

î
ï

¢

¢

d

d
l

0 1

1 1

dd , ,

, , ,
 

(19.30)

which permit the determination of the design variables ¢t j at the minimizing point of the 
objective function via (19.2).

As a simple example, consider minimizing

 g t t t tt( ) = +- -10 201 2
1

2 3
2
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subject to

 g t t t1 1 1
2

32 0 5 1t( ) = + £-.  

There are four terms in total so that there are four δi and three variables, so m = 3. Therefore, 
T – m – 1 = 0. The dual function is
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This problem has a degree of difficulty = 0, so the solution is determined by solving the 
enumerated linear equations to obtain
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The maximum of the dual function is therefore
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The design variables can be found from
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These can be solved by taking logarithms or in this case by substitution. The solution is

 ¢ = ¢ = ¢ =t t t1 2 30 3 0 028 0 072. , . , .  

This solution can be checked by substituting these values into the objective function g(t′), 
which should produce the same value as given by v(δ′) earlier.
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When the degree of difficulty is not zero, the method becomes one of maximizing a non-
linear function subject to linear constraints for which various solution strategies are avail-
able. For problems formulated in the language of geometric programming, these strategies 
lead to the global maximum of the dual function (global minimum of the objective func-
tion). This desirable outcome is not, however, without a price. In the case of transformer 
design optimization, the number of terms in a realistic cost function, not to mention the 
constraints, is quite large, whereas the number of design variables can be kept reasonably 
small. This means that the degree of difficulty is large. In addition, it can be quite awkward 
to express some of the constraints in posynomial form. A further difficulty is that the con-
straints must be expressed as inequalities, whereas in some cases an equality constraint 
may be desired.

19.3  Nonlinear Constrained Optimization

The general nonlinear optimization problem with constraints can be formulated in the 
 following way:
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(19.31)

where f and the ci are nonlinear functions in general. We will assume throughout that they 
are at least twice differentiable. Although we have expressed this optimization in terms of 
a minimum, maximizing a function f is equivalent to minimizing −f. Also, any equality or 
inequality constraint involving analytic functions can be expressed in the said manner. For 
example, a constraint of the type ci(x) ≤ 0 can be rewritten as −ci(x) ≥ 0. Thus, this formula-
tion is quite general.

19.3.1  Characterization of the Minimum

We will be concerned with finding a relative minimum of f(x) subject to the constraints. 
This may or may not be a global minimum for the particular problem considered. We first 
consider how to characterize such a minimum, that is, how do we know we have reached 
a relative minimum while satisfying all the constraints. Let x* denote the design-variable 
vector at a minimum. In this section, minimum always means relative minimum. If an 
inequality constraint is not active at the minimum, that is, ci(x*) > 0, then it will remain 
positive in some neighborhood about the minimum. (An inequality constraint is active if 
ci(x) = 0, and it is said to be violated if ci(x) < 0.) Thus, for an inactive constraint, one could 
move some small distance away from the minimum without violating this constraint. In 
effect, near the minimum, a non-active constraint places no restrictions on the design vari-
ables. It can therefore be ignored. Only those inequality constraints that are active play a 
role in characterizing the minimum. We therefore include them in the list of equality 
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constraints in our formulation (19.31). Strategies to add or drop inequalities from the list of 
equality constraints will be discussed later.

Much of the methodology presented in this section is based on Reference [Gil81]. We 
adopt their notation, which is briefly reviewed here. First, a distinction is made between 
column and row vectors. A column vector is denoted by
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where the vi are its components. If there are n components, it can also be referred to as an 
n-vector. Its transpose is a row vector, that is,

 vT
nv v v= ¼( )1 2  

where T denotes transpose. The dot or scalar product between two vectors v and w is 
given by

 v wT
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It is essentially the matrix product between a row and column vector in that order. If the 
order were reversed, we would have
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that is, the matrix product between a column and row vector in that order. A matrix M is 
called an m × n matrix if it has m rows and n columns. The i, jth matrix element is denoted 
Mij and these are organized into an array:
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A matrix vector product between an m × n matrix and an n-vector, denoted Mv, is an 
m-vector whose components are
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If we multiply the said m-vector on the left by a row m-vector wT, we get the scalar product 
between w and the said vector
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Further notation will be introduced as it is encountered.
Taylor’s theorem for the expansion of a continuous function of a single variable, f(x), 

about a point x + Δx, where Δx is assumed to be small, to second order in Δx is
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For a function of n variables, f(x), x becomes an n-vector x = (x1, x2, …, xn) and Δx becomes 
εp where ε is assumed to be a small positive constant and p is a vector indicating the direc-
tion in which x is changing. Thus, Taylor’s theorem in n-dimensions becomes
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(19.32)

where g is the gradient vector and is given by
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G is the Hessian matrix, which is given by
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The Hessian matrix is symmetric because of the equality of mixed partial derivatives. 
Vector dot products or matrix products are implied in (19.32). Higher-order terms in the 
expansion (19.32) are assumed to be small for the values of ε considered.

We use Taylor’s theorem to expand the function to be minimized, f along with the equal-
ity constraints, ci, about the relative minimum x*:
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where ai is the gradient vector for ci and Gi, its Hessian matrix. Note that, similar to (19.33), 
we have
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Here, ci(x*) = 0 for the equality constraints. We would like to continue to satisfy the  constraints 
as we move away from the minimum, since they are assumed to apply for any choice of 
design parameters. This means that the first-order term, that is, the term in ε should  vanish, 
which implies

 a x pi
T *( ) = 0 (19.36)

There is an equation like this for each equality constraint. Let A denote a matrix whose 
ith row is ai

T. Then (19.36) can be expressed compactly for all equality constraints as

 Ap = 0 (19.37)

A has t rows and n columns. It also depends on x or x*, but we omit this for clarity. We assume 
that t ≤ n and that A has a full-row rank, that is, that the constraint gradient vectors ai are lin-
early independent. If this is not true, then one or more of the constraints is redundant (to first 
order) and can be dropped from the list. For easier visualization, assume n = 6 and t = 4 then
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From (19.37), we see that p must be orthogonal to the row space of A. Thus, p lies in the 
orthogonal complement of this row space. (Any vector space is decomposable into disjoint 
subspaces, which are orthogonal complements of each other.) Let Z denote a matrix whose 
column vectors form a basis of this orthogonal subspace of dimension n – t. Thus, Z has 
n rows and n − t columns. This orthogonality can be expressed by

 AZ = 0 (19.38)

Since p lies in this orthogonal subspace, it can be expressed as a linear combination of its 
basis vectors, that is, a linear combination of the column vectors of Z. Thus,

 p p= Z Z (19.39)

where pZ is a vector of dimension n − t.
Probably the best way to obtain Z is via a triangularization of A using Hausholder trans-

formation matrices. These are orthogonal matrices of the form
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(19.40)

where
w is a vector of magnitude |w|
I is the unit diagonal matrix
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By suitably choosing w, which depends on the matrix to be triangularized, the columns of 
any matrix can be successively put in upper triangular form [Gol89]. In our case, we apply 
this procedure to AT to obtain
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(19.41)

where
Q is an n × n orthogonal matrix, since it is the product of orthogonal matrices
R is an upper triangular matrix of dimension t × t
0 is a zero matrix of dimension (n − t) × t

For easier visualization, using n = 6 and t = 4 as before, we have
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Taking the transpose of (19.41), we get

 AQ LT = ( )0  (19.42)

where
L = RT is a lower triangular matrix
0 is the t × (n − t) zero matrix

Again for easier visualization, we have
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Thus, we can take Z to be the last n − t columns of QT since these are orthogonal to the rows 
of A. Since Q is an orthogonal matrix, its column vectors form an orthonormal basis for the 
whole space. Thus, the first t columns form an orthonormal basis for the row space of A, 
and the last n − t columns form an orthonormal basis for its orthogonal complement. We 
group the first t columns into a matrix called Y so that

 Q Y ZT = ( ) (19.43)

With p restricted to the form (19.39), the expression (19.32) becomes first order

 f f* * *T
Zx p x g x p+( ) = ( ) + ( ) +e e Z � (19.44)
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For f(x*) to be a minimum, we must have

 f f* *x p x+( ) ³ ( )e  (19.45)

In order for this to hold, the term in ε in (19.44) must be positive or zero. Since ε is positive, 
if this term is nonzero for some vector pZ, it can be made negative by possibly changing pZ 
to −pZ and thus violate (19.45). Hence, we must require at the minimum

 g xT *( ) =Z 0 (19.46)

This implies by (19.38) that the gradient vector is in the row space of A. Note that, using 
our previous numerical example for visualization purposes, with n = 6 and n – t = 2,
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Therefore,

 g x* *T( ) = A ll  (19.47)

where λ* is a vector of dimension t called the vector of Lagrange multipliers. (Note that the 
column space of AT is the row space of A.) Let us rewrite (19.47) in matrix-vector form 
using n = 6 and t = 4 as before:
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Let us now consider that one of our equality constraints at the minimum was originally an 
inequality constraint. Let this be the cjth constraint. Then a displacement vector p could be 
chosen so that

 c *j x p+( ) ³e 0 (19.48)

without violating the constraint. Noting that cj(x*) = 0 so that from (19.35) (with j replacing i), 
we see that to first order in ε, we get

 a x pj
T *( ) ³ 0 (19.49)
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Assume that p satisfies the other constraints, that is, Equation 19.36 holds for i ≠ j. Then 
rewriting (19.47), we have

 g x a a a a* * * * *
j j t t( ) = + + + + +l l l l1 1 2 2 � �  (19.50)

where we have omitted the dependence of the a’s on x*. For the said choice of p,

 g x p a pT
j j

T* *( ) = l  (19.51)

Substituting into (19.32), we get to first order in ε

 f f ** * j j
Tx p x a p+( ) = ( ) +e el  (19.52)

If f(x*) is a local minimum, then (19.45) shows that the term el j j
T*a p ³ 0. But ε > 0, together 

with (19.49), shows that we must have

 l j
* ³ 0 (19.53)

This says that the Lagrange multipliers associated with the inequality constraints that are 
active at the minimum must be nonnegative. If the jth Lagrange multiplier were negative, 
then the direction p chosen earlier can be used to lower the value of f without violating the 
jth constraint, thus contradicting the assumption what we are at a minimum. In searching 
for a minimum, a negative Lagrange multiplier for an active inequality constraint is an 
indication that the constraint can be dropped (deactivated). This strategy is useful in decid-
ing when to drop a constraint from the active set.

The discussion so far applies equally well to whether we are looking for a minimum or 
maximum of the objective function. The only difference is that the sign of the Lagrange 
multiplier of an active inequality constraint would be negative for a maximum. To dis-
tinguish a minimum from a maximum, we need to go to higher order. In the case of 
nonlinear constraints, we can no longer move along a straight line with direction p when 
considering higher-order effects because the constraints would eventually be violated. 
(With linear constraints, one could move freely along the direction p given by (19.39) 
without violating the active constraints.) For nonlinear constraints, we need to move 
along a curve x(θ) parametrized by θ chosen in such a way that the constraints are not 
violated to second order as we move a small amount Δθ away from the minimum. At the 
minimum, let θ = θ* and x* = x(θ*). Let p be the tangent vector to this curve at the mini-
mum, that is,
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Using Taylor’s theorem in one variable to second order for the active constraints, we have
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All derivatives are evaluated at θ*. Using the chain rule, we obtain
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and, using (19.56),
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(19.57)

where Gi is the Hessian of the ith constraint defined previously. Since ci(x*) = 0 at the mini-
mum, in order for (19.55) to vanish to second order, we must have both (19.56) and (19.57) 
vanish. The vanishing of (19.56) yields the first-order results, such as (19.36) previously 
derived. The vanishing of (19.57) yields the new second-order results. Just as we previ-
ously turned (19.56) into a matrix equation so it applied to all the constraints, Equation 
19.37, we apply the same procedure to (19.57). Organizing the ai

T into rows of the A matrix 
and setting (19.57) to zero, we get
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(19.58)

Now consider the behavior of the objective function f along this curve, which satisfies the 
constraints to second order. Using Taylor’s theorem again in one variable,
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(19.59)

Since by assumption f(x*) is a minimum, and since Δθ can have either sign, we must have 
to first order
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(19.60)

This is the same first-order condition we obtained previously, which led to formulas (19.46) 
and (19.47) that are still valid in the present context. As mentioned, they would be true, 
whether we were at a minimum or maximum. Now since we are at a minimum,

 f * f *x xq q+( )( ) ³ ( )D  
(19.61)
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Since the first-order term in (19.59) is zero, Equation 19.61 implies that the second-order 
term is nonnegative. Using the same mathematics as was used for this term for the con-
straints, Equation 19.57, we find using (19.60)
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(19.62)

Substituting for gT from (19.47) into (19.62), we obtain
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Substituting (19.58) into (19.63), we get
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Using (19.39) for p, Equation 19.64 becomes
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(19.65)

Since (19.65) must be true for any choice of pZ, this requires the matrix within the square 
brackets to be positive semidefinite. Often, minimization with constraints is formulated in 
terms of a Lagrangian function:
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Then (19.47) follows from requiring the Lagrangian to vanish to first order at the minimum 
and Equation 19.65 follows from requiring the projected Hessian of the Lagrangian to be 
positive semidefinite. (The Hessian is projected by means of the Z matrix.) The Lagrangian 
approach does not appear to be as well motivated as the one we have taken.

Conditions (19.65) and (19.47) are necessary for a minimum subject to the constraints. 
They are not, however, sufficient. This is because if (19.65) were 0 for some nonzero vector 
pZ, the point x* could be a saddle point. To eliminate this possibility, the inequality in 
(19.65) must be replaced by a strict inequality, >, so that the matrix is positive definite. This 
is sufficient to guarantee a minimum. We will assume this requirement to be met in the 
minimization problems we deal with.
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19.3.2  Solution Search Strategy

Because the functions we are dealing with are, in general, nonlinear, iterations are required 
in order to arrive at a minimum from some starting set of the design variables. Assuming 
the iterations converge, we can then check that the conditions derived in the previous sec-
tion hold at the converged point to guarantee that it is a minimum. This may or may not be 
a global minimum. However, if suitable starting values are chosen based on experience, 
then for most practical problems, the minimum reached will be, with high probability, a 
global minimum.

One of the best convergence strategies is Newton–Raphson iteration. Provided one is 
near the minimum, this method converges very rapidly. In fact, for a quadratic function, it 
converges in one step. Applying this method to the constraint functions, with p replacing 
Δx in the usual formulation of the Newton–Raphson method, we get

 c ci i
Tx p x a p+( ) » ( ) + = 0 (19.67)

Collecting these into a vector of constraint functions, c(x) = (c1 c2 … ct), and using the 
matrix A whose rows are ai

T as defined previously, Equation 19.67 can be written to include 
all the active constraints as

 A x p c x( ) = - ( ) (19.68)

where the dependence of A on the value of x at the current iterate is indicated. Since p is an 
n-vector in the space of design variables, we can express it in terms of the basis we obtained 
from the QR factorization of A. Thus, using (19.43)

 p p p= +Y ZY Z (19.69)

where
pY is a t-vector in the row space of A
pZ is an (n − t)-vector in its orthogonal complement

Using (19.38), (19.68) becomes

 AYp c xY = - ( ) (19.70)

where the dependence of the matrices on x has been suppressed for clarity. However, from 
(19.42) and (19.43), we see that AY = L. Thus, Equation 19.70 becomes

 Lp c xY = - ( ) (19.71)

Since L is a lower triangular matrix, Equation 19.71 can be solved readily using forward 
substitution. Thus, the QR factorization of A has an additional benefit in facilitating the 
solution of a matrix equation.

We now apply the Newton–Raphson technique to (19.47), which must be satisfied at the 
minimum:
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Rewriting (19.72),
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Define
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This is the Hessian of the Lagrangian function. Then (19.73) can be rewritten as

 W Ax p g x( ) = - ( ) + Tll  (19.75)

Multiply this last expression by ZT to obtain

 Z W ZT Tx p g x( ) = - ( ) (19.76)

In going from (19.75) to (19.76), we have used the fact that the term ZTATλ vanishes by the 
transpose of (19.38). Using (19.69) for p, Equation 19.76 becomes

 Z W Z Z W YT
Z

T
Yx p g x x p( ) = - ( ) + ( )( ) (19.77)

Having obtained pY from (19.71), this last equation can be used to solve for pZ.
The projected Hessian of the Lagrangian function occurs in (19.77). It was previously 

shown that this matrix must be positive definite to insure a minimum. However, during 
the iterations involved in finding a minimum, this matrix may not be positive definite. 
If this occurs, the Newton–Raphson iteration method may have difficulty converging. One 
method of circumventing this problem is to modify this matrix so that it is positive definite 
at each iteration step. The procedure must be such that when the matrix eventually becomes 
positive definite, no modification is made.

One way of producing a positive definite matrix that is not too different from the matrix 
to be altered is called a modified Cholesky factorization [Gil81]. In this method, a Cholesky 
factorization is begun as if the matrix were positive definite. For a positive definite 
matrix, M, a Cholesky factorization would result in the factorization

 M PDP= T (19.78)

where
P is a lower triangular matrix
D a positive diagonal matrix, that is, a diagonal matrix with all positive elements

If, during the course of the factorization of a not necessarily positive definite matrix, an 
element of D is calculated to be zero or negative, the corresponding diagonal element of M 
is increased until the element of D becomes positive. Limitations are also placed on how 
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large the values of P can become during the factorization. These limitations can also be 
achieved by increasing the diagonal values of the original matrix. The result is a Cholesky 
factorization of a modified matrix M′, which is related to the original matrix by

 ¢ = = +M PDP M ET  (19.79)

where E is a positive diagonal matrix. Using this approach, Equation 19.77 is solved for pZ 
at each iteration.

With pY and pZ determined, the complete step given by (19.69) is known. This step may, 
however, be too large. Some of the equality constraints may be violated to too great an 
extent or the objective function may not decrease. The step may also be so large as to vio-
late an inequality constraint that is not active. We would like to keep the direction of p but 
restrict its magnitude based on these considerations. To achieve this, multiply p by ε to get 
a step εp. By letting ε vary from 0 to 1, we can check these other criteria at each ε, stopping 
when they become too invalidated or when ε = 1. One of these criteria would be that we 
not violate any of the inactive inequality constraints. If this occurs at some value of ε ≤ 1, 
then this restricts the step size and the constraint, which is just violated, is added to the list 
of active constraints on the next iteration. Another criteria to use to restrict the step size is 
to define a merit function, which measures to what extent the constraints are satisfied and 
to what extent the objective function is decreasing in value along the step. One choice for 
this function is
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where ρ is a positive constant. The values of ε are increased toward 1 so long as this merit 
function decreases or until one of the inactive constraints is violated. When this function 
starts increasing or an inactive constraint is violated, that value of ε is used to determine 
the step size εp. In this approach, units must be chosen so that the relative magnitudes of f 
and the ci are close. This means that, for values of x, which can be expected to violate the 
constraints during the iterations, the values of f and the ci should be of the same order of 
magnitude. Then ρ can really be used to weigh the importance of satisfying the constraints 
relative to achieving a minimum of the objective function. In our work, we have chosen 
ρ = 20. Thus, we gradually increase ε until either the merit function starts increasing or an 
inactive constraint is violated or ε = 1, whichever comes first.

Having chosen ε, we solve for new values of the Lagrange multipliers; using (19.75), we 
obtain

 A WTl e= ( ) + ( )g x x p (19.81)

which is an equation for the unknown λ, since all other quantities are known. The solution 
of this equation is also facilitated by the results of the QR factorization of A. From (19.41), 
we can write

 
A Q

RT T=
æ

è
ç

ö

ø
÷0  

(19.82)



564 Transformer Design Principles

since QTQ = QQT = I for orthogonal matrices. Here, I is the unit diagonal matrix. Substituting 
into (19.81) and multiplying by Q, we obtain
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But using (19.43), this becomes
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Only the top t equations in (19.84) are needed to determine λ and these are

 R Y Wll = ( ) + ( )( )T g x x pe  (19.85)

Since R = LT is upper triangular, Equation 19.85 can be directly solved by back substitution. 
This value of λ is used in the next iterate. At the start, all the λi are set to 1.

At the next iterate, the values of the design variables become

 x x pnew old= + e  (19.86)

where
old labels the present values
new the new values for the design variables

This process is continued until successive iterations produce negligible changes in the 
design variables and the Lagrange multipliers. At this point, it is necessary to check that 
the conditions, which should hold at a minimum, are satisfied. Thus, the projected Hessian 
of the Lagrangian should be positive definite and the gradient of the objective function 
should satisfy (19.47) to some level of accuracy. The equality constraints should also equal 
0 to some level of accuracy. The Lagrange multipliers of the inequality constraints, which 
are active at the minimum, should be positive. None of the inequality constraints should 
be violated, that is, <0.

During the course of the iterations, the number of equality constraints may change as 
inequality constraints are added or dropped from the list of active constraints. They are 
added when a step size threatens to violate an inactive constraint, and they are dropped 
when a Lagrange multiplier becomes negative. Strictly speaking, the Lagrange multiplier 
of an active inequality constraint only needs to be positive at the minimum. This does not 
have to hold away from the minimum as occurs during the iterations. However, there will 
be some neighborhood about the minimum where they will remain positive if the con-
straint is active at the minimum. We also noted previously that the gradients of the active 
constraints are assumed to be linearly independent. If this is not true, then constraints are 
dropped until a linearly independent set is obtained. This is determined during the QR 
factorization of A since the process requires the rows of A to be linearly independent.

For certain types of problems, it may be necessary for all or some of the variables to be 
positive. This can be treated as a special type of inequality constraint. Thus if variable xj 
must be positive, we add to the list of constraints

 c xk jx( ) = ³ 0 (19.87)
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where k labels the inequality constraint. The gradient vector for this constraint is given by

 ak
T = ¼ ¼( )0 0 1 0 0  (19.88)

where the 1 is in the jth position. Its Hessian matrix is identically zero. Thus, this type of 
restriction can be handled like an ordinary inequality constraint. It has no influence on the 
minimization, unless xj becomes 0 or negative during the course of the iterations.

19.3.3  Practical Considerations

It is useful to choose units so that all the design variables are comparable in magnitude. It 
is also desirable to keep the objective function and the constraints (violated to some degree 
or away from 0 if inequalities) of comparable magnitude. A good choice for this magnitude 
is unity. For example, if the objective function is cost, one could express it in $, kilo$, or 
mega$, whichever produces a value of order of magnitude unity at the minimum. Similarly, 
an equality or inequality constraint of the form

 A B C D+ + + + ³� 0 

could be divided by the absolute value of the maximum term so as to bring it closer to 1. 
This may not be possible in all cases, so some other strategy may be necessary. This proce-
dure will prevent the merit function from favoring one constraint more than another.

Although the method developed here applies to any nonlinear, twice differentiable 
objective or constraint functions, in practice it is found that these functions are often of 
the form
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where the coefficients bi and the exponents aij are arbitrary constants. This differs from 
the posynomials considered earlier where the coefficients bi all had to be positive. 
The kth component of the gradient vector of this function is given by

 

¶ ( )
¶

=
=

-

¹
å ÕF

x
b a x x

k i

m

i ik k
a

j k

n

j
aik ijx

1

1

 
(19.90)

The k, qth entry of its Hessian matrix, where k ≠ q, is given by
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When k = q, the diagonal entry of the Hessian matrix is
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Some care must be exercised in using the forenamed formulas when a variable or an expo-
nent vanishes. Also when a variable is negative and the corresponding exponent is non-
integer, the expression becomes imaginary. In the latter case, which could occur during the 
iterations even if the variables are constrained to be nonnegative, the exponent is simply 
rounded off to the nearest integer. This allows the iterations to proceed. Eventually as the 
minimum is approached, the appropriate variables will become nonnegative so that this 
rounding becomes unnecessary. If a variable is expected to be negative at the minimum, 
then it should occur with an integer exponent in all the functions.

19.4  Application to Transformer Design

In designing a transformer, we normally wish to minimize the cost. Our objective function, 
f(x), is therefore a cost function. It will, in general, have many terms. These will include 
material costs, labor costs, the cost of losses to the customer, and overhead costs. These 
component costs, as well as the constraint functions, must be expressed in terms of a basic 
set of design variables. Although the choice of design variables is somewhat arbitrary, they 
should be chosen in such a way that the cost and constraint functions can be easily 
expressed in terms of them. Here, we consider a 2-winding, 3-phase, core-form power 
transformer. We will simplify the details in order to focus more on the method.

19.4.1  Design Variables

Useful design variables are

 1. B: Core flux density
 2. Js: OA current density in the secondary or LV winding
 3. Rc: Core radius
 4. g: HV–LV gap
 5. Rs: Mean radius of the secondary or LV winding
 6. Rp: Mean radius of the primary or HV winding
 7. hs: Height of the secondary winding
 8. ts: Thickness (radial build) of the secondary winding
 9. tp: Thickness (radial build) of the primary winding
 10. Mc: Weight of the core steel
 11. Mt: Weight of the tank

Note that the last two weights can be expressed in terms of the other design variables. 
However, since some of the material and labor costs and losses are easily expressed in 
terms of them, we find it convenient to include them in the set of basic design variables. 
Their dependence on the other variables will be expressed in terms of equality constraints. 
The units chosen for the enumerated variables are used internally in the computer optimi-
zation program. As far as input and output units are concerned, that is, what the designer 
deals with, the units are a matter of familiarity and can differ from the internal units.



567Constrained Nonlinear Optimization with Application to Transformer Design

Figure 19.1 illustrates some of the design variables geometrically. We have not consid-
ered the height of the primary winding as a design variable, since in the designs dealt with 
here, it is taken to be a multiple of the secondary winding height. We express this as hp = αhs, 
where hp is the height of the primary winding and α is typically ≈0.95. gc, g, and go are 
minimum gaps, which are either inputted by the user or based on the BIL of the windings. 
go depends on the phase-to-phase voltages. H is the window height and T the window 
width. X is the maximum stack width of the yoke ≈2Rc. These are expressible in terms of 
the other variables.

19.4.2  Cost Function

One of the cost components is the cost of the winding conductor. To obtain this, we need 
the conductor weight. In terms of the design variables, the weight of the three secondary 
windings (for three phases) is

 M R h ts s s s s= ( )3 2rh p  (19.93)

where
ρ is the density of the metallic conductor
ηs is the fill factor, that is, the fraction of the coil’s cross-sectional area that is metal

If this is in kg, it must then be multiplied by a $/kg cost to arrive at the cost to include in 
the objective function. This $/kg cost must reflect the cost of the raw conductor plus the 
add-on cost of forming it into an insulated wire or cable plus any overhead or storage 
costs. The fill factor, although set initially, will be determined during the optimization 
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FIGURE 19.1
Geometry of a 2-winding core-form power transformer illustrating some of the design variables.
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process when a cable size, which meets constraints on the coil’s cross-sectional dimen-
sions and the number of turns, is selected. The weight of the primary winding is 
similarly

 M R h tp p p s p= ( )3 2rh a p  (19.94)

where ηp is the primary winding’s fill factor. This also gets multiplied by a $/kg, which will 
differ from that of the secondary winding because it will generally be made of a different 
type of wire or cable.

The weight of the core is simply Mc. This is multiplied by a $/kg for core steel if the core 
weight is in kg before inclusion in the cost function. This $/kg also includes overhead and 
storage costs. The tank cost is similarly Mt times the appropriate $/kg for tank steel if kg is 
the chosen weight unit. Mc and Mt will be expressed in terms of the other variables by 
means of equality constraints.

Other material costs are the cost of the oil; the insulation such as cylinders, key spacers, 
and lead support structure; and the cost of leads, clamping, bushings, tap gear, conservator 
if present, radiators, and auxiliary reactors or series transformers. The details are omitted 
here to simplify the discussion. Some of the said costs, such as the bushing and tap gear 
costs, are not part of the optimization process but are add-on costs based on their size or 
other characteristics and are often obtained from tables.

Load and no-load losses are part of the overall cost of operating a transformer and are 
included in the cost function. A customer buys a transformer not on just its initial manu-
facturing cost but also on the cost of operating it over many years. These latter costs depend 
on how efficient the unit is, that is, how high are its losses. The load losses include the Joule 
heating in the windings (copper losses) and the losses due to the stray flux impinging on 
tank walls, clamps, etc. (stray losses). The losses in the secondary winding under OA con-
ditions can be expressed as

 W ecf J Vs s s s= +( )g 1 2
 (19.95)

where γ is the resistivity of the winding material, which is evaluated at the appropriate 
temperature. ecfs is the eddy current fraction of the I2R losses, which is due to stray flux 
and depends on the type of wire or cable making up the winding. Vs is the metallic volume 
of the winding material, which can be expressed as

 V R h ts s s s s= ( )3 2h p  (19.96)

Js and γ need to be in appropriate units or an overall multiplying factor used to get Ws in 
kW. This must then be multiplied by the cost of load losses in $/kW. Similarly, the losses in 
the primary windings are given by

 W ecf J Vp p p p= +( )g 1 2

 (19.97)

where the conductor volume is

 V R h tp p p s p= ( )3 2h a p  (19.98)
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and where Jp is the current density in the primary winding under OA conditions. Because 
the ampere-turns of the primary and secondary windings are equal under balanced condi-
tions, we can obtain Jp in terms of Js by
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J t
t

p
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p p
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(19.99)

This is then substituted into (19.97). We then multiply Wp by the $/kW cost of load 
losses before adding it to the cost function. The stray losses are also part of the load 
losses and must be added to the cost function, but we omit discussing them here for 
simplicity. If the transformer includes a reactor, step voltage regulator, or series trans-
former, then the cost of losses associated with these components must be added to the 
cost function.

The no-load losses are essentially the core losses. Generally, the core steel manufacturer 
provides a curve or polynomial expression for the core losses in W/unit weight as a func-
tion of the core flux density, that is,

 Core loss W/unit weight a a B a B a Bk
k( ) = + + + +0 1 2

2 �  

Multiplying this by the core weight, Mc, gives a core loss for an ideal core. Actual cores 
have higher losses due to nonuniform flux in the corners and due to building stresses and 
other factors. These must be accounted for in the expression for the no-load loss. Having 
done this, the core loss in kW is then multiplied by the cost of the no-load losses in $/kW 
before adding to the cost function.

Labor costs are an important part of the cost of a transformer since power transformers 
are usually custom-made. The various specialized types of labor must be tied to the appro-
priate design variables. For instance, coil winding labor costs should be expressed in terms 
of the coil weight or coil dimensions, while core stacking labor costs should be expressed 
in terms of the core weight or core dimensions. Labor associated with tank welding or 
painting should be tied to the tank weight or tank dimensions. Correlations need to be 
established between the hours required to perform a certain job function and the appropri-
ate design variables. These correlations will differ from manufacturer to manufacturer and 
are omitted in this discussion. Establishing meaningful correlations requires much effort. 
Such correlations should be revised periodically as conditions warrant. Once established, 
they should be multiplied by a labor cost in $/h, which includes labor overhead, before 
adding to the cost function.

As can be seen, the cost function can get rather lengthy. However, all the terms 
 mentioned previously are expressions of the form given by formula (19.89). Labor hour 
correlations can also be expressed this way. Therefore, gradients and Hessians can be 
obtained by means of the formulas given in Section 19.3.3. Since we wish the overall cost 
to be close to unity in magnitude, the cost is divided by a typical cost for the transformer 
of similar power or MVA for purposes of optimization.

19.4.3  Equality Constraints

Equality constraints are those, which must be satisfied, exactly in the final design. Probably 
the most important such constraint is on the total transferred power or MVA, which is 
specified by the customer. We need to express it in terms of the chosen design variables. 
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In the following, we work in terms of phase quantities. The power transferred per phase, P, 
is given by P = MVA/3. This is also given by

 P V Is s=  (19.100)

where
Vs is the rms secondary phase voltage in kV
Is is the rms secondary phase current in kA

Using Faraday’s law,
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where
B is the peak flux density in Tesla
Ns is the number of secondary turns
AFe is the area of the iron in a cross-section of the core steel in m2

f is the frequency in Hz

Expressing AFe in terms of our design variables, we have

 A RFe c c= h p 2
 (19.102)

where ηc is a fill factor for the core steel, that is, the fraction of actual steel in a circle of 
radius Rc. The current Is is given in terms of the current density by
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Substituting these into the expression for power, we see that Ns cancels out and we find

 P f BR J h tc s c s s s= éë
ù
û

-10 23 2 2p h h  (19.104)

Divide by P to get this to be of order 1 and express it in the form of our standard equality 
constraints, ci(x) = 0,
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This is an expression of the form (19.89). Note that −1 is of this form with all the aij = 0, 
b1 = −1, and m = 1. We have kept the numerical constants explicit in (19.105) in order to 
reduce errors.

Perhaps the next most important equality constraint is on the per unit reactance between 
the primary and secondary windings, which is specified by the customer. A simplified 
expression for this, which works well in practice, is
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where r is the co-ratio (=1 for a non-auto transformer). Rs and Rp are mean radii of the 
windings. Rg is the mean radius of the gap between the primary and secondary windings 
and is given by
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h is the average height of the two windings:
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s is a correction factor for fringing flux:
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(VI)b is the base MVA/phase = P and (V/N)b is the base kV/turn, which is obtained from 
(19.101):
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Substituting into (19.106) and converting to standard form, we obtain
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This is in the form of Equation 19.89 and has been suitably normalized to order of magni-
tude 1. The constants are again kept explicit to reduce errors.

We treated Rp as an independent variable thus far, since it appears in many formulas. 
However, it can really be expressed in terms of other design variables as
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Converting to standard form and suitably normalizing, we get the equality constraint:
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An equality constraint is needed for the core weight. In terms of the window height H, 
window width T, and the maximum sheet width X that make up the core stacks shown in 
Figure 19.1, this is given by
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The last term is a correction factor for the joints. ρFe is the density of the core iron. In terms 
of the basic design variables,

 H h slacks s= +  (19.115)

where slacks is a slack distance in the window, which depends on the voltage or BIL of the 
winding and is a constant for the unit under consideration:
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and X will be taken here as 2Rc, although a more exact formula can be used for greater 
accuracy. Thus we obtain, in standard normalized form,
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There is an equality expressing the tank weight in terms of the other variables. The tank 
dimensions depend not only on the size of the 3-phase core and coils but also on clearances 
based on voltage considerations and on the presence of reactors, tap leads, etc.

19.4.4  Inequality Constraints

We place an inequality constraint on the mean radius of the LV winding, since it must not 
drop below a minimum value given by
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Expressing this in standard form, we have
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The HV–LV gap g must not fall below a minimum value given by voltage or BIL consider-
ations. Calling this minimum gap gmin leads to the inequality

 g g³ min (19.120)

or, in standard form,
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The maximum flux density B is limited by the saturation of iron or by a lower value deter-
mined by overvoltage or sound level considerations. Calling the maximum value Bmax 
leads to the inequality in standard form
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(19.122)

There is also a reasonable limit on the OA current density, Js, which we call Jmax. This is based 
on cooling considerations, which are most severe under FA conditions. But since the FA cur-
rent density is related to the OA current density by the ratio of FA and OA MVA’s, the current 
limitation can be placed on the OA current density. Thus we have, in standard form,
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(19.123)

It may be necessary to limit the tank height for shipping purposes. Referring to Figure 19.1, 
the tank height can be expressed as

 H X slack Ht+ + £2 max (19.124)

where
Hmax is the maximum tank height
slackt is the vertical slack of the core in the tank and will depend on the clamping struc-

ture, the presence of leads, etc.

slackt will be a constant for a given unit. H is given by (19.115) and, taking X ≈ 2Rc, we get

 h R slack slack Hs c s t+ + + £4 max (19.125)

or, in standard form,
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The quantity in parentheses in formula (19.126) is a constant for the unit under 
consideration.

There are other inequalities involving the radial forces on the windings, which are 
l imited by the tensile strength of the conductor used; the cooling capacity of the wind-
ings, which depends on the winding current density and fill factor; and the impulse 
strength, which depends on the cable type, voltage level, etc. These inequalities are fairly 
inexact since detailed design codes are ultimately used to determine winding stresses, 
temperatures, and impulse voltages. Nevertheless, they place some restrictions on the 
initial design so that later on, in the detailed design phase, difficulties are not encoun-
tered. In addition, all the design variables are positive so that a positivity condition on 
these variables must be included among the inequality constraints.

19.4.5  Optimization Strategy

A transformer cost minimization program has been developed based on the formula-
tion described earlier. It uses the 11 basic design variables discussed earlier for the 
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2-winding design. Initial values must be selected for these variables to start the iteration 
process. Because of the equality constraints, of which there are five, we can only select six 
variables independently. For these, we choose an initial value for B, Binit = 0.95Bmax, where 
Bmax is the maximum flux density specified in the input; an initial value for Js, Js,init = 0.8Jmax, 
where Jmax is the inputted maximum OA current density; an initial value for g, ginit = gmin, 
with gmin the inputted minimum high–low gap; an initial value for hs, hs,init, that is, a sec-
ondary coil height; an initial value for ts, ts,init, that is, a secondary coil width; and an initial 
value for tp, tp,init, that is, a primary coil width. These initial winding dimensions can be 
automatically selected based on the MVA of the unit. We also choose, for starting values, ηs 
= ηp = 0.5, ηc = 0.88, and ecfs = ecfp = 0.1. The remainder of the starting values for the design 
variables are determined by satisfying the equality constraints or equations such as 
Faraday’s law, which was used in their derivation, or by other means based on conve-
nience. For greater flexibility, the designer can override the starting values for the six vari-
ables mentioned previously.

The iterations are then started. The cost and constraint functions are evaluated, together 
with their gradients and Hessians. The Lagrange multipliers are initially set to 1 for the 
equality constraints. The Hessian of the Lagrangian is then formed. The matrix A is formed 
and subjected to a QR factorization. During this process, if a row vector of A is found to be 
linearly dependent on the other row vectors, the corresponding constraint is dropped from 
the active set. This process produces the Y, Z, L, and R = LT matrices. The vector pY is then 
obtained via Equation 19.71. Equation 19.77 is then solved for pZ using a modified Cholesky 
factorization method. The new step direction is then determined, p = YpY + ZpZ. The merit 
function (19.80) is then evaluated for steps of size εp where ε increases from 0 to 1 in small 
increments. This process continues until (1) the merit function starts increasing, (2) one of 
the inequality constraints is violated, or (3) ε = 1. If (2) is true, then the violated constraint 
is included among the active constraints on the next iteration. For the value of ε deter-
mined by the said procedure, new Lagrange multipliers are determined by means of 
(19.85). If one of these is negative for an active inequality constraint, that constraint is 
dropped from the active set on the next iteration. A new set of design variables is then 
determined, using (19.86), and the process repeated until convergence is achieved, that is, 
until the changes in the design variables and Lagrange multipliers are negligible. At con-
vergence, the projected Hessian of the Lagrangian must be positive definite, the equality 
constraints must be satisfied to a given level of accuracy, the inequality constraints must 
not be violated, and (19.47) must be satisfied to a given level of accuracy.

At this stage, details concerning the wire or cable types for the two windings are worked 
out based on the optimum dimensions hs, ts, hp = αhs, and tp. From the formula for the 
given power per phase, P,

 P V I V Is s p p= =  (19.127)

where Vs and Vp are known (inputted) secondary and primary voltages, we can determine 
the phase currents Is and Ip for the secondary and primary windings, respectively. From 
these phase currents and the optimized current densities Js and Jp, we obtain secondary 
and primary turn areas As = Is/Js and Ap = Ip/Jp. We use (19.110) to get volts/turn in terms 
of the optimized variables and, using the known secondary and primary voltages, we 
obtain the number of secondary and primary turns Ns and Np. In addition, from the BIL 
levels of the windings, which are inputted, we obtain, via tables, the required paper and 
key spacer thicknesses for the two windings. Staying within these constraints, a wire size 
(magnet wire or cable) is selected by a search procedure from those that are available. 
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In  arriving at a suitable wire type, eddy current loss, thermal gradient, and impulse 
strength limitations are considered. The possibility of needing to use several parallel wires 
or cables is also considered in the search process. If a wire (cable) size or parallel package 
of wires (cables) cannot be found, which would meet all the requirements, the wire area is 
then allowed to change. This would change the current density on subsequent iterations, 
but as long as it remains below Jmax, this is acceptable.

Having arrived at a suitable wire size, from the paper and key spacer thicknesses along 
with other allowances such as for cross-overs and thinning, the fill factors of the two wind-
ings, ηs and ηp, can be determined. Also from the optimized core radius, a better value for 
the core fill factor ηc can be determined. These fill factors are then used in subsequent 
iterations.

With optimized design variables as starting values and the newly determined fill factors, 
iterations are resumed until convergence is achieved. Wire sizes are then determined for 
these new optimized parameters and new fill factors determined and the process is contin-
ued until wire sizes and fill factors no longer change between sets of iterations.

At this point, the core radius may not correspond to one of our standard radii. It is there-
fore set to the nearest standard value and an equality constraint is imposed on the core 
radius, Rc = R0, or in standard form,
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(19.128)

where R0 is a standard radius. The entire iteration process is then restarted with this new 
equality constraint. Since the starting values for the design variables and the fill factors are 
the values arrived at by the optimization process up to this point, the iterations with the 
fixed core radius usually converge very quickly.

On output, the program prints out the total cost of the optimized unit and a detailed 
breakdown of this cost such as the cost of each coil, the core cost, the tank cost, the oil cost, 
the cost of radiators, the cost of load and no-load losses, labor costs itemized by each job 
type, and a summary of the total material, labor, loss, and overhead costs. In addition, the 
physical values associated with these costs, such as kg of material, kW of loss, or labor 
hours, are also printed out. The optimum values of the design variables are printed out as 
well as additional design information such as the tank dimensions, details of the magnet 
wire or cable used for each winding, the number of turns and the turns/disk for each 
winding, the paper and key spacer thicknesses for the windings, the number of radiators 
and their height, and the size of the conservator if needed.

At this point, if the wire selection is not satisfactory for whatever reason, an auxiliary 
separate program is desirable to allow the designer to redo the wire selection for each 
winding. This could alter the winding dimensions and the space factor of the windings. 
These altered values can then be transferred to the optimizer as starting or fixed values for 
the next round of optimization.
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nonlinear analysis, 473–476
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Aging acceleration factor (AAF), 515–516
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Lyle’s method, 240–242
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Amorphous metals, 19
Autotransformer

with buried delta tertiary and fault on LV 
terminal, 201–202
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high voltage, 537–538
leakage reactances

ideal autotransformer, 72–73
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2-winding autotransformer, 76–77, 86–88
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multiterminal 3-phase transformer model, 
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reactive switching, 533–534
reduction factor, 539–540
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Auxiliary transformer, 540–541

B

Balanced and unbalanced load conditions, 
multiterminal model

admittance matrix, 188
admittance representation

current vector, 190–191
delta winding connection, 191–193
matrix inverse, 190
voltage vector, 191

autotransformer with buried delta tertiary 
and fault on LV terminal, 201–202

impedance representation
autoconnection, 198–199
core excitation characteristics, 193
core losses, 194
diagonal and off-diagonal admittances, 194
series-connected windings, 196–197
three windings joined, 199
ungrounded Y connection, 194–196
zigzag connection, 197–198

leakage reactance matrix element, 188
positive and zero sequence reactances, 187
power transformer with fault

on delta tertiary, 202–203
on ungrounded Y secondary, 203–204

reduced reactance matrix, 187–189, 206
reduced vectors, 188
standard delta phase shifting transformer, 

204–205
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terminal loading, 199–200
3-phase Wr matrix, 189
winding currents and voltages, 201, 206

Basic impulse level (BIL)
breakdown, 389
capacitive model, 413
impedance, 409
impulse waveform, 399
time characteristics, 403
transient calculation, 414

Bias winding, 530–531
Bohr model, 23
Busbars

current sheet, 449–450
delta function current, 450–455
loss comparisons, 455–456
plate characteristics, 455
single-busbar geometry, 455
3-phase configuration, 455–456
2D finite element program, 448–449

C

Capacitance
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ground coil, 326, 339–340
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multi-start windings, 361–362
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static rings

first two disks, 348
at one end, 341–342
at two end, 345–348

Stein’s formula
conventional capacitance, 333, 338
disk–disk capacitance, 331–332, 335–336
effective disk capacitance, 332
equipotential contour plot, 337
normalized voltage, 333–334
shunt energy, 332
turn–turn capacitance, 334–335
voltage drop, 331

terminal disk, 342–343
unequal disk–disk capacitances, 338
uniform capacitance model, 364, 389–391
voltage distribution, winding/disk, 325–330
wound-in-shields

analytic method, 349–352
circuit model, 352–356
experimental methods, 357
test results, 358–360

Capacitative energy, 350–351, 362
Castigliano’s theorem, 261, 263–264
Clamps, shunts on, 464–466
Coarse–fine regulation, 530–531
Conformal mapping

analytic mapping, 297–298
boundary conditions, 295–296, 298–299
Cauchy–Riemann equations, 296
differentiable functions, 296–297
disk–disk-to-ground plane geometry, 

382–385
electrostatic field problem, 300–317
equipotentials, 298
real and imaginary parts, 296–297
Schwarz–Christoffel transformation, 299–300

Constrained buckling, 271–272
Continuously transposed cable (CTC), 247–248
Core-form transformer

advantages and disadvantages, 8
core magnetic properties, 8
vs. shell-form transformer, 8
stacked cores, 9–10
stepped core, 9–10
winding types, 11–13
wound core construction, 9

Core losses
building factor, 418–419
classical eddy current, 417

hysteresis loss, 417–418
interlaminar losses, 419–422
laminations, 416
magnetic domain pattern, 416–417
manufacturer/supplier, 418–419
nonclassical eddy current, 417
saturated flux vector, 418
unbalanced currents

boldface type, 436–437
equivalent circuits, 438–439
induced voltages, 438
mutual inductance, 440–441
net fluxes, 436–438
relative permeability, 440–441
self-inductance, 440
sinusoidal conditions, 439–440
winding’s current, 436

Core steel, 19, 525–527
CTC, see Continuously transposed cable

D

Degree of polymerization (DP), 514–515
Dirichlet boundary condition, 296
Domain walls, 416–417
Double line-to-ground fault

on 3-phase systems, 112–113
3-terminal transformer, 128–130
2-terminal transformer, 118

E

Eddy currents, 59
Electric field

advantage, 283
conformal mapping

analytic mapping, 297–298
boundary conditions, 295–296, 298–299
Cauchy–Riemann equations, 296
differentiable functions, 296–297
electrostatic field problem, 300–317
equipotentials, 298
real and imaginary parts, 296–297
Schwarz–Christoffel transformation, 

299–300
cylinder–plane geometry

boundary condition, 290–292
finite element analysis program, 

293–294
parameterization, 289–290
potential distribution, 292–293
zero potential plane, 290–291, 294–295

cylindrical geometry, 286–288
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finite element methods
axisymmetric model, 319–320
balloon boundary, 319
computer memory and solution times, 318
electric stress contour plot, 321–323
LV and HV windings, 320, 322
metallic end caps and center region, 

319–321
symmetry, 318–319
triangular mesh, 318
2D and 3D versions, 318

planar geometry
displacement vector, 284–285
enhancement factor, 285
layered insulation structure, 283–284
linear electrical characteristics, 283–284
oil–pressboard insulation system, 285–286

spherical geometry, 287–289
transformer oil, 369

Electrostatic field problem
complex inverse sine function, 303–304
electric potential and field values, 305–312
enhancement factor, 314, 316–317
exterior angles, 299, 301
finite element solution, 313–315
integrals, 301–302
natural logarithm, 302–303
ordinary real inverse sine function, 304–305
w-plane geometry, 300–301

F

Fault current
circuit equation, 35
current transform, 35
equivalent circuit, 34–35
inverse transform, 35
lowest Fourier coefficients, 38
parametrization, 37
second-to-first harmonic ratio, 38–39
steady-state peak current amplitude, 35–37
vs. time, 37–38
time dependence, 34
voltage, 35

Fault current analysis
asymmetry factor, 134
fault types, 107
phase-shifting transformers

fault types, 154–155
per-unit currents, 155–156
sequence circuits, 155
squashed delta fault currents, 156–157
standard delta fault currents, 157–159

Thevenin impedances, 155
2-core phase-shifting transformer fault 

currents, 159
sequence voltages/currents, 107
on 3-phase systems

double line-to-ground fault, 112–113
general electrical system, 108–109
line-to-line fault, 112
single-phase line-to-ground fault, 111
Thevenin equivalent sequence circuit 

models, 108–109
3-phase line-to-ground fault, 110–111
types of faults, 110

3-terminal transformer
double line-to-ground fault, 128–130
fault sequence currents, 123
line-to-line fault, 126–127
numerical example, 131–134
prefault voltages, 122
sequence circuits, 120–121
sequence impedances, 120–121
sequence voltages, 122
single-phase line-to-ground fault, 124–126
Thevenin impedances, 121–122
3-phase line-to-ground fault, 123–124
zero-sequence circuits, 130–131

transformation equations, 108
2-terminal transformer

double line-to-ground fault, 118
line-to-line fault, 117–118
numerical example, 120
positive and negative system 

impedances, 115
prefault voltage, 114
sequence circuit models, 114
single leakage reactance, 113
single-phase line-to-ground fault, 

116–117, 120
Thevenin impedances, 114–115
3-phase line-to-ground fault, 116
zero-sequence circuits, 119–120
zero-system impedances, 115

zigzag transformer, 167–168
Finite element methods

axisymmetric model, 319–320
balloon boundary, 319
computer memory and solution times, 318
electric stress contour plot, 321–323
LV and HV windings, 320, 322
metallic end caps and center region, 319–321
symmetry, 318–319
triangular mesh, 318
2D and 3D versions, 318
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Flitch plate loss
finite element study, 432, 434
flux pattern, 430
idealized plate/sheet, 435
induction, 430–431
log–log plot, 432, 434
loss density, 431–433
magnetic steel, 431, 435
radial flux, 435–436
stainless steel, 432–433
tension, 429–430
2D axisymmetric geometry, 424–425, 430
unbalanced currents

boldface type, 436–437
equivalent circuits, 438–439
induced voltages, 438
mutual inductance, 440–441
net fluxes, 436–438
relative permeability, 440–441
self-inductance, 440
sinusoidal conditions, 439–440
winding’s current, 436

4-winding transformer, 169
Free unsupported buckling, 268–270, 272
Frequency response analysis (FRA) 

measurement, 272

G

Gas analysis devices, 20
Geometric programming

degree of difficulty, 550–552
design variables, 548
global maximum, 548
global minimum, 547–548
normality condition, 546–547
normalized weights, 549
objective function, 549–550
posynomials, 545–546, 548

Grashof number, 520

H

Hausholder transformation matrices, 555–556
High-voltage (HV) side clamp, 464–465
High-voltage (HV) winding, 397–399
Hoop stress, 253
Hysteresis

B–H diagram, 25
coercivity, 26
losses, 418
normal hysteresis loop, 26–27

permeability, 27
processes, 25–26
remanence, 26

I

Ideal 2-, 3-, and multi-winding transformers, 
leakage reactances

autotransformer, 72–73
multi-winding transformers, ideal 

conditions, 69
3-winding transformer

ideal conditions, 69
per-unit quantities, 71
standard quantities, 71

2-winding transformer
base currents, 70
base impedances, 70
ideal conditions, 69
with load on secondary terminals, 70
per-unit quantities, 70–71

Impedance boundary method, 464
Impulse generator, 402

circuit models, 404–407
ideal waveform

implementation, 412–414
Laplace transform, 411–412
lumped impedance, 406, 408–409
Thevenin equivalent circuit, 409–410

Marx type, 403–404
series–parallel combination, 403–404
standard full wave waveform, 402–403
transformer circuit model, 407–408

Impulse voltage, 339–341
traveling wave theory, 392
uniform capacitance model, 364, 389–391

Inrush current, 32–34
Insulation coordination

BIL, 389
chopped wave test, 388
front-of-wave test, 388
full wave impulse level, 388–389
impulse waveshapes, 367, 387–388
infinite time stress, 387
normal operating voltages, 386
relative strength vs. time, 386–387

Insulation structures
cellulose fibers, 14
creep breakdown, 16
leads with structural supports, 14, 16
major insulation structure, 14–15
minor insulation structure, 14
oil dielectric constant, 14
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paper covering, 14
partially wound winding, 14–15
pressboard insulation, 19
transformer oil, 13
wire types, 19

Interlaminar losses
bulk core flux, 419–420
coatings, 421
effective resistance, 420–421
normal losses, 422
stack of laminations, 421–422

Intrinsic breakdown stress, 365

J

Jansen-type tap changers, 530

K

Kirchhoff’s current law, 28, 395–396
Kirchhoff’s voltage law, 28

L

Lead
cylindrical geometry, 517, 519
Grashof number, 520
heat conduction, 520
laminar flow, 518
material parameters, 521
mixed natural convection, 518
natural convection, 518
planar geometry, 519–520
temperature, 521

Leakage reactance calculations
eddy currents, 59
ideal transformers, 69–73
3-winding transformers

autotransformer with tertiary winding, 
81–85

circuit models, 79
ideal conditions, 69
leakage flux, 77–79
per-unit quantities, 71
per-unit values, 81
single-winding leakage impedances, 

79–81
standard quantities, 71
2-winding autotransformer with X-line 

taps, 86–88
between 2 windings connected in series, 

85–86

2-winding leakage reactances, 59
amp-turn distribution, 65–66
electrical parameters, 66
flux density, 67
fringing correction factor, 68
geometric parameters, 66
leakage inductance, 67
leakage reactance magnitude, 68
magnetic field, 65
Maxwell’s equation, 65
per-unit impedance, 68
per-unit reactance, 68
tertiary winding, 68–69

2-winding transformers
base currents, 70
base impedances, 70
circuit parameters, 73–77
ideal conditions, 69
with load on secondary terminals, 70
per-unit quantities, 70–71

Linear switching, 530
Line-to-line fault

on 3-phase systems, 112
3-terminal transformer, 126–127
2-terminal transformer, 117–118

Load losses
cost minimization program, 575
I2R losses, 422–423
stray losses

core loss, 436–441
eddy current, 426–429
leakage flux pattern, 424
manufacturing error, 426
tank and clamp losses, 424–425, 441–448
tie plate, 429–441

tank and shield losses
current sheet, 449–450
delta function current, 450–455
models, 455–456
2D finite element program, 448–449

Load tap changer (LTC)
elements, 529
in-tank tap changer, 530
maintenance, 541–543
power transformers

autotransformers, 536–540
auxiliary transformer, 540–541
fixed volts/turn, 534–535
phase shifting, 540–541
reduced vs. full-rated taps, 541
variable volts/turn, 535–536

reactive switching, 533–534
regulation, 530–531
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resistive switching, 531–533
separate compartment types, 530

Loss of life
AAF, 515–516
aging, 514–515
degree of polymerization, 514–515
fractional loss, 515
standard/normal insulation, 515

Low-voltage (LV) side tank wall, 466–469
Low-voltage (LV) winding, 397–399
LTC, see Load tap changer
Lumped parameter model

capacitance, 396–397
circuit elements, 393–394
impulse voltage, 397–402
Kirchhoff’s current law, 395–396
mutual inductance, 396
representative portion, 394–395
self-inductances, 396
sensitivity, 401–402

Lyle’s method, 240–242, 354

M

Magnetic circuits
approximation, 27
effective permeability, 30–31
intrinsic hysteresis loop, 31–32
Kirchhoff’s current law, 28
Kirchhoff’s voltage law, 28
magnetic core with air gap, 29–30
Ohm’s law, 28
relative permeability, 30
reluctance, 29–30
resistance, 29

Magnetism
Bohr model, 23
diamagnetic materials, 23
discovery, 22–23
ferromagnetic materials, 23–24
force on loose end lamination, 25
magnetostriction, 24
paramagnetic materials, 23
saturation induction, 23–24
saturation magnetization and absolute 

temperature, 24
Magnetostriction, 21, 24
Maxwell’s equations

Rabins’ method, 214, 221
stray losses, 427
2-winding leakage reactances, 65

Mechanical design
asymmetry, 243–244

axial and radial forces, 280–281
biaxial stress, 280
compressive forces, 280
enhancement factor, 281
fault currents, 243
force calculations, 245–246
force density, 243
gravitational forces, 280
leakage flux, 279
magnetic field (leakage field), 243–244
radial buckling strength

buckling types, 268
constrained buckling, 271–272
experiment, 272–276
free unsupported buckling, 268–270, 272
radial pressure, 267–268

stress analysis
axial bending stress per strand, 249–251
compressive stress, key spacers, 248
continuously transposed cable, 247–248
disk winding, 246–247
helical windings, 246
hoop stress, 260–261
magnet wire, 247–248
pressure ring, 259–260
radial bending stress, 261–267
tie bars, 255–259
tilting strength, 252–255

stress distribution, composite wire–paper 
winding section

average stress calculation, 279–280
displacements, 278
force density, 277–278
ideal ring geometry, 276
Poisson’s ratio, 279
radial and azimuthal strains, 278
radial stresses, 279
Young’s modulus, 279

Modified Bessel functions, 218–219, 224–225
Modified Cholesky factorization method, 574
Modified Struve functions, 224–225
Multiphase transformers

delta connection, 180–182
unit phasors, 178–179
vector and matrix notation, 178–179
zigzag connection, 182–183

Multiterminal 3-phase transformer model
autotransformer, 176–177
balanced and unbalanced load conditions

admittance matrix, 188
admittance representation, 190–193
autotransformer with buried delta tertiary 

and fault on LV terminal, 201–202
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impedance representation, 193–199
leakage reactance matrix element, 188
positive and zero sequence reactances, 187
power transformer with fault on delta 

tertiary, 202–203
power transformer with fault on 

ungrounded Y secondary, 203–204
reduced reactance matrix, 187–189, 206
reduced vectors, 188
standard delta phase shifting transformer, 

204–205
terminal currents and voltages, 

200–201, 206
terminal loading, 199–200
3-phase Wr matrix, 189
winding currents and voltages, 201, 206

generalization, 183–185
multiphase transformers

delta connection, 180–182
unit phasors, 178–179
vector and matrix notation, 178–179
zigzag connection, 182–183

primary winding in series with secondary 
winding, 175–176

regulation effects, 185–186
terminal impedances, 186–187
transformer loading, 174
2-core analysis

combined voltages, current, and 
matrices, 207

parallel connection, 207–208
phase shifting transformer, 209–212
series connection, 208
terminal loading, 209

two secondary windings in series, 174–175
Multi-winding transformer

circuit equations, 171–172
4-winding transformer circuit model, 173
T-equivalent circuit, 172

N

Negative sequence system, 101–106
Neumann boundary condition, 296
Newton–Raphson iteration, 474
Newton–Raphson technique, 561–562
No-load losses

building factor, 418–419
classical eddy current, 417
cost minimization program, 575
hysteresis loss, 417–418
interlaminar losses, 419–422
laminations, 416

magnetic domain pattern, 416–417
manufacturer/supplier, 418–419
nonclassical eddy current, 417
saturated flux vector, 418

Nonlinear constrained optimization
Cholesky factorization, 562–563
column vector, 553, 555–556
displacement vector, 557–558
equality constraints, 563–566
first-order results, 559–560
Hausholder transformation matrices, 

555–556
inequality constraints, 563–566
Lagrange multiplier, 558–559, 563–564
Newton–Raphson technique, 561–562
QR factorization, 561
relative minimum, 552–553
row vector, 553–554
second-order results, 559–560
Taylor’s theorem, 554–555
vector of Lagrange multipliers, 557
visualization, 556–557

O

Ohm’s law, 28, 427
On-line monitoring devices, 20
Optimal core stacking, 39–42
Optimization method

geometric programming
degree of difficulty, 550–552
design variables, 548
global maximum, 548
global minimum, 547–548
normality condition, 546–547
normalized weights, 549
objective function, 549–550
posynomials, 546, 548

nonlinear problem
characterization, 552–560
Cholesky factorization, 562–563
equality constraints, 563–566
inequality constraints, 563–566
Lagrange multipliers, 563–564
Newton–Raphson technique, 561–562
QR factorization, 561

transformer design
cost function, 567–569
cost minimization program, 573–575
equality constraints, 569–572
inequality constraints, 572–573
variables, 566–567
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P

Paschen curve, 364
Peak current amplitude, see Fault current
Phase-shifting transformers, 540–541

basic principles
negative sequence ordering, 138
positive sequence unit phasors, 138–139
single-winding impedances, 137
3-winding transformer phase, 137–138
2-winding impedances, 137
2-winding transformer phase, 136–137

fault current analysis
fault types, 154–155
per-unit currents, 155–156
sequence circuits, 155
squashed delta fault currents, 156–157
standard delta fault currents, 157–159
Thevenin impedances, 155
2-core phase-shifting transformer fault 

currents, 159
out-of-phase sources, 135–136
regulation effects, 153–154
squashed delta-phase-shifting transformer

circuit model, 141
equivalent impedance, 141
power and voltage base, 142
squashed delta configuration, 139–140
2-winding leakage impedance, 139
zero sequence circuit model, 142–144

standard delta-phase-shifting transformer
circuit model, 146
standard delta configuration, 144–145
3-winding-per-phase model, 144
2-winding impedances, 147
winding power per phase, 146
zero sequence circuit model, 147–148

tap changer, 135
2-core phase-shifting transformer

circuit diagram, 148–149
excitor winding ratio, 150
input current, 150
input/terminal impedance base, 151
input voltage and current phasors, 148
per-unit equivalent impedance, 151
2-winding impedances, 151
zero sequence circuit model, 152

Phasors, see also 3-phase connections
average power, 91
complex number, 89–90
electrical power, 90
positive sequence ordering, 92
sinusoidal voltage, 89

3-phase voltage system, 91–92
time dependence, 90

Positive sequence system, 101–106
Power systems

with actual voltages, 3
line/transmission losses, 2
load tap changers, 4–5
power, 2
resistance, 2
switching station, 3–4
3-phase transformer, 4, 6
three-phase voltages vs. time, 4–5
transformer tank, end view, 6–7
voltage drop, 2–3

Power transformers
autotransformers, 536–540
auxiliary transformer, 540–541
fixed volts/turn, 534–535
phase shifting transformer, 540–541
reduced vs. full-rated taps, 541
variable volts/turn, 535–536

R

Rabins’ method, 425, 448
air core inductor

coaxial thin circular wire geometry, 
239–240

layered windings, 238
Lyle’s method, 240–242
mutual inductance, 239, 241
self-inductance, 239, 241

B-field
axial component, 236
flux plot, 2-winding transformer, 234–235
radial component, 235

coil sections self-inductance and mutual 
inductance, 232–234

leakage reactance
collection of windings, 231–232
magnetic energy, 226
between two axially stacked windings, 

229–231
between two windings with different 

radial positions, 226–229
numerical considerations, 238
theory

axial distribution, current density, 214–215
B-field, 218, 220
boundary conditions, 217, 220
current density, 215–216
cylindrical coordinates, 217
homogeneous equation, 220
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homogeneous partial differential 
equation, 217

inhomogeneous equation, 220
iron core, yokes, and coil/coil section 

geometry, 214
Maxwell’s equations, 214, 221
modified Bessel functions, 218–219, 

224–225
modified Struve functions, 224–225
normal B components, 221
tangential B components, 221
unknown constants, 221–223
vector potential, 215, 220, 225–226

winding forces
average tensile stress, 237–238
compressive force, 236
force balance in upward direction, 237
force density vector, 236
for stress analysis, 237

Radial buckling strength
buckling types, 268
constrained buckling, 271–272
experiment

admittance vs. frequency, 273–274
constrained buckling mode stress, 276
FRA measurement, 272
hoop stresses, 275
inner winding, failure mode, 274–275
LV windings, 272–273
voltage–current readout, 272–273

free unsupported buckling, 268–270, 272
radial pressure, 267–268

Radiator thermal model
node and path numbering scheme, 500
parameters, 501
pressure difference, 500
surface heat transfer coefficient, 502
temperature, 501–502
velocity, 502–503

Reactive switching, 533–534
Recurrent surge oscillograph (RSO) tests, 

397–399
Resistive switching, 531–533
Reversing switch, 530–531

S

Scott connection
amp-turn balance, 100–101
terminal currents, 100
3-phase voltage system, 98–99
2-phase to 3-phase transformation, 99–100
2-phase voltage system, 98–99

Self- and mutual inductances
electric circuit methods, energy from, 63–65
flux linkages, 60
magnetic energy, 60
magnetic field methods, energy by, 61–63
stationary circuits, 60

Shell-form transformer
advantages and disadvantages, 8
core construction, 8
vs. core-form transformer, 7–8

Single-phase line-to-ground fault
on 3-phase systems, 111
3-terminal transformer, 124–126
2-terminal transformer, 116–117, 120

Squashed delta-phase-shifting transformer
circuit model, 141
equivalent impedance, 141
power and voltage base, 142
squashed delta configuration, 139–140
2-winding leakage impedance, 139
zero sequence circuit model, 142–144

Stacking methods, 19
Standard delta-phase-shifting transformer

circuit model, 146
standard delta configuration, 144–145
3-winding-per-phase model, 144
2-winding impedances, 147
winding power per phase, 146
zero sequence circuit model, 147–148

Static rings
first two disks, 348
at one end, 341–342
at two end, 345–348

Stein’s method
conventional capacitance, 333, 338
disk–disk capacitance, 331–332, 335–336
effective disk capacitance, 332
equipotential contour plot, 337
normalized voltage, 333–334
shunt energy, 332
turn–turn capacitance, 334–335
voltage drop, 331

Stray losses
analytical and test losses, 469–470
clamps, 464–466
core loss, 436–441
eddy current

axisymmetric field calculation, 424–425, 429
copper/aluminum, 426
external magnetic field, 426–427
high-frequency limit, 429
leakage induction value, 428–429
low-frequency, 428
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Maxwell’s equations, 427
Ohm’s law, 427
specific eddy current loss, 428

elements, 463–464
impedance boundary method, 464
leakage flux pattern, 424
manufacturing error, 426
nonlinear impedance boundary correction

B–H curve, 471
eddy current losses, 477–478
finite element program, 471
linear loss formula, 471–473
low-carbon steel, 473, 475–476
nonlinear analysis, 473–476
tested stray losses, 478–479
winding d.c. losses, 477–478

tank and clamp losses, 424–425, 441–448
tank walls, 466–469
3-phase currents, 469
tie plate, 429–441

Stress analysis
axial bending stress per strand

beam’s deflection curve, 250
bending moment, 250–251
maximum force/unit length, 249
number of strands, 249
span length, 251
uniformly loaded beam with built-in 

ends, 249
compressive stress, key spacers, 248
continuously transposed cable, 247–248
disk winding, 246–247
helical windings, 246
hoop stress, 260–261
magnet wire, 247–248
pressure ring, 259–260
radial bending stress

average hoop stress, 267
bending moment, 263, 265
bending stress, 266
Castigliano’s theorem, 263–264
equivalent Young’s modulus, 264
geometry, 262
maximum stress, 267
normal force, 262–263, 265
normal stress, 266
radial support structure, 263
strain energy, 261, 264
vertical forces, 262

tie bars
angular frequency, 258–259
displacement, 258
elastic bar, 255–256

elastic energy, 255
equation of motion, 256
fault current, 257
forces vs. time, 257
Lagrangian, 256
Laplace transform, 258
lifting force, 259
segment’s kinetic energy, 256
short circuit stress, 255

tilting strength
azimuthal tensile stress, 253
critical axial force, 255
radial surface area, 254
strand tilting, geometry of, 252
tilting pressure, 254
torque, 252–254

Stress distribution, composite wire–paper 
winding section

average stress calculation, 279–280
displacements, 278
force density, 277–278
ideal ring geometry, 276
Poisson’s ratio, 279
radial and azimuthal strains, 278
radial stresses, 279
Young’s modulus, 279

Structural elements
clamping structures, 13, 17–18
radial fault forces, 17
short-circuit fault, 16–17
transformer tank, 17–19

Surface impedance elements, 464
Surface tangential magnetic field (H field), 471
Symmetrical components, 101–106

T

Tank losses
bushings

idealized geometry and parameters, 
457–458

magnetic steel tank wall, 460
3D finite element analysis, 460–462
voltage stresses, 456
z-directed currents, 458–459

and clamp
B-field, 443–444
current density, 447
flux pattern, 444
geometry, 444–445
leakage flux, 424–425, 441
magnetic steel tank walls, 446–448
shunts, 424–425
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sinusoidal flux, 445–446
3D approach, 442
total losses per unit length, 447–448
2D approach, 425, 441–442
2-winding transformer, 442–443

shield losses, busbars
current sheet, 449–450
delta function current, 450–455
loss comparisons, 455–456
plate characteristics, 455
single-busbar geometry, 455
3-phase busbar configuration, 455–456
2D finite element program, 448–449

Tap changers, 3
de-energized tap changers, 4
electronic, 20
LTC, 4–5

elements, 529
in-tank tap changer, 530
maintenance, 541–543
power transformers, 534–541
reactive switching, 533–534
regulation, 530–531
resistive switching, 531–533
separate compartment types, 530

mechanical, 20
Temperature profiles, 508–510
T-equivalent circuit, 169, 172
Tertiary voltage (TV) winding, 397–399
Thermal model

cable and lead temperature
cylindrical geometry, 517, 519
Grashof number, 520
heat conduction, 520
laminar flow, 518
material parameters, 521
mixed natural convection, 518
natural convection, 518
planar geometry, 519–520
temperature, 521

coils without directed oil flow, 498–499
core steel, 525–527
disk coil with directed oil flow

density, 485–486
disk temperature, 484, 486, 490–493
flow paths, 482–484
graph theory approach, 496–498
hydraulic diameter, 482–483
nodal and duct temperature, 493–496
noncircular ducts, 483–484
pressure, 485, 487–490
single-disk resistance, 486
test results, 508–510

velocity, 485, 487–490
viscosities, 484

I2R resistive losses, 512–513
loss of life

AAF, 515–516
aging, 514–515
degree of polymerization, 514–515
fractional loss, 515
standard/normal insulation, 515

m exponent, 513–514
n exponent, 512–513
oil mixing, 504–506
pumped flow, 508
radiator

node and path numbering scheme, 500
parameters, 501
pressure difference, 500
surface heat transfer coefficient, 502
temperature, 501–502
velocity, 502–503

steady-state loading, 511–512
tank cooling, 503–504
tank wall temperature, 522–523
tie plate, 523–525
time-dependent conditions, 506–507
winding gradient, 514

Thevenin equivalent sequence circuit models, 
108–109

Thevenin impedances
phase-shifting transformers, 155
3-terminal transformer, 121–122
2-terminal transformer, 114–115

3D finite element methods, stray losses
analytical and test losses, 469–470
clamps, 464–466
elements, 463–464
impedance boundary method, 464
nonlinear impedance boundary correction, 

471–479
3-phase currents, 469
tank walls, 466–469

3-phase connections
Scott connection

amp-turn balance, 100–101
terminal currents, 100
3-phase voltage system, 98–99
2-phase to 3-phase transformation, 99–100
2-phase voltage system, 98–99

symmetrical components, 101–106
Y and delta 3-phase connections

line and phase currents, 94–96
line-to-line voltages, 93–95
open delta connection, 96–97
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phasor subtraction, 95
schematic representation, 92–93
terminal voltages and currents, 95
total rated power, 95–96
vector subtraction process, 94

zig-zag connection, 97–98
3-phase line-to-ground fault

on 3-phase systems, 110–111
3-terminal transformer, 123–124
2-terminal transformer, 116

3-phase model, 464–465
3-terminal transformer, fault current analysis

double line-to-ground fault, 128–130
fault sequence currents, 123
line-to-line fault, 126–127
numerical example, 131–134
prefault voltages, 122
sequence circuits, 120–121
sequence impedances, 120–121
sequence voltages, 122
single-phase line-to-ground fault, 124–126
Thevenin impedances, 121–122
3-phase line-to-ground fault, 123–124
zero-sequence circuits, 130–131

3-winding transformers, 169
ideal transformers

ideal conditions, 69
per-unit quantities, 71
standard quantities, 71

leakage reactance
autotransformer with tertiary winding, 

81–85
circuit models, 79
ideal conditions, 69
leakage flux, 77–79
per-unit quantities, 71
per-unit values, 81
single-winding leakage impedances, 

79–81
standard quantities, 71
2-winding autotransformer with X-line 

taps, 86–88
between 2 windings connected in series, 

85–86
Tie plate loss

finite element study, 432, 434
flux pattern, 430
idealized plate/sheet, 435
induction, 430–431
log–log plot, 432, 434
loss density, 431–433
magnetic steel, 431, 435
radial flux, 435–436

stainless steel, 432–433
temperature, 523–525
tension, 429–430
2D axisymmetric geometry, 424–425, 430
unbalanced currents

boldface type, 436–437
equivalent circuits, 438–439
induced voltages, 438
mutual inductance, 440–441
net fluxes, 436–438
relative permeability, 440–441
self-inductance, 440
sinusoidal conditions, 439–440
winding’s current, 436

Transformer cooling, 10–11
Transformer core circuit model

current, 45
loaded transformer with core

excitation circuit on secondary side, 53
vector diagram, 53–54

open-circuited inductance, 44
per-unit system, 54–55
power factor, 46
primary and secondary winding, 43
resistance, 43–44
with secondary open circuited, 44
single-phase core, 46
with sinusoidal excitation, 44–45
2-winding transformer circuit model

with core, 46–49
without core, 50–53

voltage regulation, 56–58
Transformer cores

amorphous metals, 22
ferrite cores, 21
ferromagnetic material, 21
Goss/cube-on-edge crystalline texture, 21–22
magnetostriction, 21
permalloys, 21
silicon steel, 21–22

Transformer oil
area effect, 370–371
corona inception field, 372
creep breakdown, 371–372
cylinder–plane geometry, 381–382
cylindrical geometry, 376–378
density, 485–486
disk–disk-to-ground plane geometry, 382–385
E-field, 380–381
electric fields, 369
vs. electrode area, 370
experimental data, 372
gap-distance-dependent, 371



595Index

gas-saturated/degassed oil, 370
isolated cylinder/sphere, 379–380
paper/pressboard, 371
planar geometry, 374–376
spherical geometry, 378–379
theory, 373–374
volume-dependent breakdown, 369–371

Transformer principle, 1–2
Transient voltage distribution

impulse generator, 402
circuit models, 404–407
ideal waveform, 406, 408–414
Marx type, 403–404
series–parallel combination, 403–404
standard full wave waveform, 402–403
transformer circuit model, 407–408

lumped parameter model
capacitance, 396–397
circuit elements, 393–394
impulse voltage, 397–402
Kirchhoff’s current law, 395–396
mutual inductance, 396
representative portion, 394–395
self-inductances, 396
sensitivity, 401–402

2-core parallel connection, 207–208
2-core phase-shifting transformer, 209

circuit diagram, 148–149
excitor winding ratio, 150
input current, 150
input/terminal impedance base, 151
input voltage and current phasors, 148
normal loading, 210–211
per-unit equivalent impedance, 151
single line-to-ground fault, 211–212
2-winding impedances, 151
zero sequence circuit model, 152

2-core series connection, 208
2-terminal transformer, fault current analysis

double line-to-ground fault, 118
line-to-line fault, 117–118
numerical example, 120
positive and negative system impedances, 115
prefault voltage, 114
sequence circuit models, 114
single leakage reactance, 113
single-phase line-to-ground fault, 116–117, 120
Thevenin impedances, 114–115
3-phase line-to-ground fault, 116
zero-sequence circuits, 119–120
zero-system impedances, 115

Two-winding leakage inductance, 169
circuit equations, 170

leakage reactance, 170
2-winding leakage reactances, 59

amp-turn distribution, 65–66
electrical parameters, 66
flux density, 67
fringing correction factor, 68
geometric parameters, 66
leakage inductance, 67
leakage reactance magnitude, 68
magnetic field, 65
Maxwell’s equation, 65
per-unit impedance, 68
per-unit reactance, 68
tertiary winding, 68–69

2-winding transformer, 169
circuit model with core

amp-turns, 46
with core circuit, 49
flux linkages, 47–48
with leakage flux, 46–48
nonlinear ideal transformer, 48–49
single-winding leakage inductances, 48
voltage equations, 48

circuit model without core
amp-turn balance, 50
equivalent impedance, 51
under load referred to primary side, 50–52
under load referred to secondary side, 

52–53
phasor of angular frequency, 51
resistances and inductances, 51

flux plot, B-field, 234–235
ideal transformers

base currents, 70
base impedances, 70
ideal conditions, 69
with load on secondary terminals, 70
per-unit quantities, 70–71

leakage reactance
base currents, 70
base impedances, 70
circuit parameters, 73–77
ideal conditions, 69
with load on secondary terminals, 70
per-unit quantities, 70–71

tank and clamp losses, 442–443

V

Vector of Lagrange multipliers, 557
Voltage breakdown

asymmetric probability density 
distributions, 367
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distribution function, 365–366
electrode area, 365, 367–368
gap thickness, 367–368
impulse voltage

traveling wave theory, 392
uniform capacitance model, 364, 389–391

impulse waveshape, 366–367
insulation coordination

BIL, 389
chopped wave test, 388
front-of-wave test, 388
full wave impulse level, 388–389
impulse waveshapes, 367, 387–388
infinite time stress, 387
normal operating voltages, 386
relative strength vs. time, 386–387

intrinsic breakdown stress, 365
Paschen curve, 364
solid insulation, 368–369
stress, 364, 366
symmetrical Gaussian probability density, 367
Townsend mechanism, 364–365
transformer oil, 369–371

area effect, 370–371
corona inception field, 372
creep breakdown, 371–372
cylinder–plane geometry, 381–382
cylindrical geometry, 376–378
disk–disk-to-ground plane geometry, 

382–385
E-field, 380–381
electric fields, 369
vs. electrode area, 370
experimental data, 372
gap-distance-dependent, 371
gas-saturated/degassed oil, 370
isolated cylinder/sphere, 379–380
paper/pressboard, 371
planar geometry, 374–376
spherical geometry, 378–379
theory, 373–374

volume dependence, 365–366

W

Winding forces, Rabins’ method
average tensile stress, 237–238
compressive force, 236
force balance in upward direction, 237
force density vector, 236

for stress analysis, 237
Wound-in-shields

analytic method
capacitative energy, 350–351
disk pair, 349–350
equivalent/total capacitance, 351–352
turn–turn capacitance, 352

circuit model
capacitative, inductive, and resistive 

effects, 352–353
coil pair vs. time, 355–356
high-frequency losses, 354–355
Laplace transforms, 356
low frequencies, 355
mutual inductance, 354
turn–turn and turn–shield capacitances, 

353–354
experimental methods, 357
test results, 358–360

Y

Y and delta 3-phase connections
line and phase currents, 94–96
line-to-line voltages, 93–95
open delta connection, 96–97
phasor subtraction, 95
schematic representation, 92–93
terminal voltages and currents, 95
total rated power, 95–96
vector subtraction process, 94

Z

Zero sequence circuit model
squashed delta-phase-shifting transformer, 

142–144
standard delta-phase-shifting transformer, 

147–148
2-core phase-shifting transformer, 152

Zero sequence system, 101–106
Zig-zag connection, 97–98
Zigzag transformer

electrical characteristics, 161–164
fault current analysis, 167–168
per-unit formulas, 164–165
positive sequence phasors, 160–161
3-phase detailed connection diagram, 161
3-phase schematic connection diagram, 160
zero sequence impedance, 166
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