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Preface

A time-series describes a discrete sequence of amplitudes of an entity ordered over
time. Typically, a time-series may describe the temporal variations in atmospheric
temperature, rainfall, humidity, stock price, and any other measurable quantity that
has a variation with time and available as a discrete data points sampled uniformly
or non-uniformly over time. Prediction of a time-series refers to determining its
value at unknown time point t + 1 from the knowledge of the time-series at its
current time t and also previous time points (t − 1), (t − 2), …, (t − n − 1).
On occasions, the predicted value of the time-series depends also on one or more
influencing time-series, besides having dependence on its past values. A time-series
prediction thus refers to a regression problem in high-dimensional space, where the
predicted value describes a highly nonlinear function of its past values and also
other relevant time-series. Unfortunately, the nature of nonlinearity being unknown
adds more complexity to the prediction problem.

Several approaches to time-series prediction are available in the literature. One
of the early works on time-series prediction refers to the well-known ARMA
(autoregressive moving average) model, which is appropriate for prediction of a
stationary time-series. However, many of the natural/man-made time-series are
non-stationary with varying frequency components over the time frames. One
indirect approach to predict a non-stationary time-series is to transform it to an
equivalent stationary series by taking the differences of consecutive data points and
then to test its stationarity with the help of autocorrelation (AC) and partial auto-
correlation (PAC) measures. In case the resulting time-series is not stationary yet,
we repeat the above step until stationarity is attained. The prediction of the resulting
stationary time-series is performed using the ARMA model, and the predicted series
is integrated as many times the difference operator has been applied to the original
time-series. The complete process of predicting a non-stationary time-series by
adoption of the above three steps, transformation to a stationary time-series, pre-
diction using the ARMA model, and integration of the predicted stationary
time-series by the requisite number of times is referred to as ARIMA (autore-
gressive integrated moving average) model.
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The fundamental limitation of the ARIMA model lies in the high-order
differentiation of the series, which sometimes results in a white noise with zero
mean, and therefore, it is of no use from the prediction point of view. This calls for
alternative formulation to handle the problem. The logic of fuzzy sets has an
inherent advantage to represent nonlinear mapping, irrespective of non-stationary
characteristics of the time-series. In addition, the non-Gaussian behavior of a
time-series can be approximated by a locally Gaussian formulation. Thus, fuzzy
logic can handle nonlinearity, non-stationarity, and non-Gaussian-ness of the
time-series. In addition, non-deterministic transition of the time-series from a given
partition of a vertically partitioned time-series to others can also be handled with
fuzzy logic by concurrent firing of multiple rules and taking aggregation of the
resulting inferences generated thereof. Besides fuzzy logic, pattern clustering and
classification by neural and/or other means can also take care of the four issues
indicated above. This motivated us to develop new prediction algorithms of
time-series using pattern recognition/fuzzy reasoning techniques.

Song and Chissom in 1994 proposed fuzzy time-series, where they assign a
membership value to each data point to represent the degree of belongingness of
each data point in a given partition. They extracted single-point prediction rules
from the time-series, where each rule represents a partition Pi in the antecedent and
a partition Pj in the consequent, where partition Pi includes the current time point
and Pj the next time point. Once the construction of rules is over, they developed
fuzzy implication relations for each rule. These relations are combined into a single
relational matrix, which is used later to derive fuzzy inferences from membership
functions of measured time-series value at the current time point. A defuzzification
algorithm is required to retrieve the predicted sample value from the fuzzy
inference.

Extensive works on fuzzy time-series have been undertaken over the last two
decades to perform prediction from raw time-series data, primarily to handle
uncertainty in diverse ways. A few of these that need special mention includes
partition width selection, influence of secondary data for the prediction of main
time-series, extension of fuzzy reasoning mechanism (such as many-to-one map-
ping), different strategies for membership function selection, and the like. Pedrycz
et al. introduced a novel technique to determine partition width in the settings of
optimization and employed evolutionary algorithm to solve the problem. Chen et al.
proposed several interesting strategies to utilize secondary memberships for the
prediction of main factored economic time-series. They used more stable Dow
Jones and NASDAQ as the secondary factor time-series for the TAIEX time-series
as the main factor. Huarang et al. proposed different type-1 fuzzy inferential
schemes for prediction of time-series. The details of the above references are given
in this book.

In early studies of time-series prediction, researchers took active interest to
utilize the nonlinear regression and functional approximation characteristics of
artificial neural networks to predict time-series from their exemplary instances.
Traces of research considering supervised learning techniques for prediction of
time-series value are available in the literature. Early attempts include developing
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functional mapping for predicting the next time point in the series from the current
time point value. Most of the researchers employed gradient descent learning-based
back-propagation algorithm neural technique and its variant for time-series pre-
diction. Among other significant works, neural approaches based on the radial basis
function and support vector machine need special mention for time-series predic-
tion. In recent times, researchers take active interest on deep learning and extreme
learning techniques for time-series prediction.

This book includes six chapters. Chapter 1 provides a thorough introduction to
the problem undertaken with justification to the importance of the selected problem,
limitations of the existing approaches to handle the problem, and the new
approaches to be adopted. Chapters 2–5 are the original contributions of the present
research. Chapter 2 examines the scope of uncertainty modeling in time-series using
interval type-2 fuzzy sets. Chapter 3 is an extension of Chap. 2 with an aim to
reason with both type-1 and type-2 fuzzy sets for the prediction of close price
time-series. The importance of using both type-1 and type-2 fuzzy sets is apparent
from the availability of number of data points in a given partition of a prepartitioned
time-series. When there exist a fewer data points in a single contiguous region of a
partition, we represent the partition by a type-1 fuzzy set, else we go for an interval
type-2 representation. Chapter 4 introduces a clustering technique for subsequence
(comprising a few contiguous data points) prediction in a time-series. This has a
great merit in forecasting applications, particularly for economic time-series.
Chapter 5 attempts to design a new neural technique to concurrently fire a set of
prediction rules realized on different neural networks and to combine the output
of the neural networks together for prediction. Chapter 6 is the concluding chapter,
covering the self-review and future research directions.

In Chap. 2, a new technique for uncertainty management in time-series modeling
is proposed using interval type-2 fuzzy sets. Here, the time-series is partitioned into
k number of blocks of uniform width, and each partition is modeled by an interval
type-2 fuzzy set. Thus, transition of consecutive data points may be described by
type-2 fuzzy rules with antecedent and consequent containing partitions Pi and Pj,
respectively, where Pi and Pj denote two consecutive data points of the time-series.
We then employ interval type-2 fuzzy reasoning for prediction of the time-series.
The most important aspect of the chapter is the inclusion of secondary factor in
time-series prediction. The secondary factor is used here to indirectly control the
growth/decay rate in the main factored time-series.

Chapter 3 is an extension of Chap. 2 to deal with fuzzy reasoning using both
type-1 and interval type-2 fuzzy sets. The motivation of using both types of fuzzy
sets has been discussed, and principles used for reasoning with prediction rules
containing both types of fuzzy sets are discussed. The improvement in performance
of the proposed technique with only type-1 and interval type-2 has been demon-
strated, indicating the significance of the technique.

Chapter 4 deals with a novel machine learning approach for subsequence
(comprising a few contiguous data points) prediction. This is undertaken in three
phases, called segmentation, clustering, and automaton-based prediction.
Segmentation is required to represent a given time-series as a sequence of segments
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(time blocks), where each segment representing a set of contiguous data points of
any arbitrary dimension should have a semantically meaningful shape in the context
of an economic time-series. In the current book, segmentation is performed by
identifying the slopes of the data points in the series for a sequence of a finite
number of data points and demarcating them into positive, negative, or near-zero
slopes.

A segment is labeled as rising, falling, or having a zero slope, depending on the
maximum frequency count of any of the three primitives: positive, negative, or
near-zero slope, respectively, for every five or more consecutive data points in the
series. After the segments are identified, we group them using a clustering algo-
rithm based on shape similarity of the normalized segments. As the number of
clusters is an unknown parameter, we used the well-known DBSCAN algorithm
that does not require the said parameter. In addition, we extend the DBSCAN
clustering algorithm to hierarchically cluster the data points based on descending
order of data density. The cluster centers here represent structures of specific
geometric shape describing transitions from one partition to the other. To keep track
of the transition of one partition to the others using acquired structures, we develop
an automaton and use it in the prediction phase to predict the structure emanating
from a given time point. The predicted information includes the following: Given a
terminating partition, whether there exists any feasible structure that terminates at
the desired partition starting at the given time point? In addition, the probable time
to reach the user-defined partition and its probability of occurrence are additional
parameters supplied to the user after prediction. Experiments undertaken on three
standard time-series confirm that the average accuracy of structure prediction is
around 76%.

In Chap. 5, we group prediction rules extracted from a given time-series in a
manner, such that all the rules containing the same partition in the antecedent can
fire concurrently. This requires realization of the concurrently fireable rules on
different neural networks, pretrained with supervised learning algorithms. Any
traditional supervised learning algorithms could be used to solve the problem. We,
however, used the well-known back-propagation algorithm for the training of the
neural networks containing the prediction rules.

This book ends with a brief discussion on self-review of this book and relevant
future research directions in Chap. 6.

Kolkata, India Amit Konar
Diptendu Bhattacharya
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Chapter 1
An Introduction to Time-Series Prediction

Abstract This chapter provides an introduction to time-series prediction. It begins
with a formal definition of time-series and gradually explores possible hindrances in
predicting a time-series. These hindrances add uncertainty in time-series prediction.
To cope up with uncertainty management, the chapter examines the scope of fuzzy
sets and logic in the prediction of time-series. Besides dealing with uncertainty, the
other important aspect in time-series prediction is to learn the structures embedded
in the time-series. The chapter addresses the scope of machine learning in both
prediction of the series and also the structures hiding inside the series. The influence
of secondary factors in the main-factor time-series is reviewed and possible
strategies to utilize secondary factors in predicting main factor time-series are
addressed. The methodologies used to partition the dynamic range of a time-series
for possible labeling of the diurnal series value in terms of partition number and
also for prediction of the next time-point value in terms of the partition number are
reviewed, and possible strategies for alternative approaches to partitioning the
time-series are overviewed. The chapter ends with a discussion on the scope of the
work, highlighting the goals and possible explorations and challenges of economic
time-series prediction.

1.1 Defining Time-Series

A time-series is a discrete sequence of a time-valued function ordered over time.
There exist a lot many real-world entities, such as rainfall, atmospheric temperature,
population growth, gross domestic product (GDP) and the like, where the data are
measured at a regular interval of (real) time. These unprocessed data, representing
the temporal variations of the entity at fixed time-points, within a given finite
interval of time together describes a time-series. The inclusion of finite interval of
real time in the definition of a time-series makes sense from the perspective of its
prediction at a time point not included in the recorded data set. However, if the
motivation of the series is to preserve historical data only, ignoring futuristic
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predictions, the restriction on fixed and finite interval from the notion of time-series
can be dropped. For example, any discrete dynamical process response can be
called a time-series, where the motivation is to examine the nature of dynamic
behavior from the mathematical model of the series dynamics, does also represent a
time-series.

Mathematicians represent a discrete process dynamics by a difference equation,
where the solution of the difference equation describes a sequence of infinite series
of time-valued function in an increasing order of time. Let f(t) be a continuous
function over time t in the interval [tmin, tmax]. We discretize f(t) by f(kT), where T
is the sampling interval and k = 0, 1, 2, 3, 4, … where tmin = 0 and tmax = nT, for
some positive integer n. Given f(kT) for k = 0, 1, 2, …, n, time series prediction
requires determining f(nT) using suitable techniques such as regression, heuristics,
probabilistic techniques, neural net based supervised learning and many others.

1.2 Importance of Time-Series Prediction

Prediction of a time-series is useful for its wide-spread real-world applications. For
example, the population growth in a country from the measure of its current pop-
ulation is useful to determine the future prospect of the citizens. In order to maintain
a healthy environment of the citizens, the planning of proper utilization of national
resources is required to channelize funds in diverse sectors as felt appropriate by the
Government.

Secondly, the prediction of rainfall from the historical time-series data of pre-
vious years in a given locality of a country is an important issue to maintain
necessary seasonal distribution of water for agricultural purposes.

Thirdly, the economic growth of a bank is an interesting time-series, controlled
by several factors including, interest rate, loan sanctioned in the current year,
population of new depositors and many others. The control policies of the bank on
re-allocation of assets thus are detrimental to the forecasted time-series of its
economic growth.

Enrollment of students in a department of a university also is a useful time-series
for self-assessment of the department and the university as well in its international
ranking, facilities offered to students and the job opportunities of the students.
A fall-off in enrollment thus might be due to the failure to offer necessary facilities
and infrastructures to students, which in turn determines the national and interna-
tional ranking of the university.

Various financial institutions of the country have their investments in equities,
derivatives, forex, commodities etc. They have also to maintain hedge funds. For all
these kind of trading/investment activities a complete speculation is necessary. It is
only possible with time series prediction of above trading/investment instruments
(indices, commodities, forex, futures and options etc.

2 1 An Introduction to Time-Series Prediction



Thus wrong prediction of time series of instruments invites big losses for
institutions, which may lead to bankruptcy. The correct prediction results, such as
good profit in trading/investment, are always appreciated.

1.3 Hindrances in Economic Time-Series Prediction

A time-series used to describe stock index, generally, is non-linear, non-deterministic,
non-Gaussian, and non-stationary. Non-linearity refers to non-linear variation of a
discrete function with time. An economic time-series usually is non-linear. In general,
there exists no straight-forward technique to determine the exact nature of the
non-linearity of an economic time-series. This acts as hindrances to predict the
time-series.

Certain real-world signals, such as electrocardiogram (ECG), maintain a periodic
wave-shape. Prediction of such signals is relatively easier as the signals are pre-
dictive to some extent for their fixed wave-shape. These signals are often referred to
as deterministic. An economic time-series like electroencephalogram (EEG) [1, 2]
is a non-deterministic signal as it has no fixed wave-shape. Prediction of a
non-deterministic signal is hard as the signal may take up any possible value within
a wide range of lower and upper bounds, which too may vary under special situ-
ations. The methods adopted for the prediction of deterministic signal are not
applicable for prediction of non-deterministic signals.

Most of the man-made signals used in laboratories for analog signal processing
essentially contain fixed frequencies. Even in human-speech we have fixed for-
mants, i.e., signal frequencies with a fundamental and several harmonics, but these
frequencies do not change appreciably over time. Unlike the above situation, an
economic time-series contains several frequencies that too vary widely over a finite
time-interval of the signal. This characteristic of signals is referred to as
non-stationarity. An economic time-series generally is non-deterministic, and thus
requires special attention for its prediction.

Lastly, most of the commonly used signals support the Gaussian characteristics,
i.e., the instantaneous values of the signal always lie within fixed bounds given by
[mean − 3 � SD, mean + 3 � SD], where mean and SD denotes the mean and
standard deviation of the given signal. The Gaussian property follows from one
fundamental observation that a 99% of the area under a Gaussian (bell-shaped)
function lies in the above interval around the signal mean. Unfortunately, because
of random fluctuation of an economic time-series, the signal sweeps widely and
occasionally falls outside the given bounds and thus fails to satisfy the Gaussian
characteristics of the signal. Consequently, an economic time-series is a
non-Gaussian signal.

The non-stationary and non-Gaussian characteristics of a time-series act as
fundamental hindrances in its prediction. In fact, because of these two character-
istics, a time-series looks like a random fluctuation of the signal and thus requires
non-conventional approaches for its prediction. In other words, the randomness in
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the time-series makes the prediction hard as it needs to deal with uncertainty
management in the process of prediction.

Several approaches to time-series prediction are available in the literature. One
of the early works on time-series prediction refers to the well-known ARMA (Auto
Regressive Moving Average) model, which is appropriate for prediction of a sta-
tionary time-series. However, many of the natural/man-made time-series are
non-stationary with varying frequency components over the time frames. One
indirect approach to predict a non-stationary time-series is to transform it to an
equivalent stationary series by taking the differences of consecutive data points, and
then to test its stationarity with the help of auto-correlation (AC) and partial
auto-correlation (PAC) measures. In case the resulting time-series is not stationary
yet, we repeat the above step until stationarity is attained [3–7]. The prediction of
the resulting stationary time-series is performed using the ARMA model and the
predicted series is integrated as many times the difference operator has been applied
to the original time-series. The complete process of predicting a non-stationary
time-series by adoption of the above three steps: transformation to a stationary
time-series, prediction using the ARMA model and integration of the predicted
stationary time-series by the requisite number of times is referred to as ARIMA
(Auto Regressive Integrated Moving Average) model [8–15].

The fundamental limitation of the ARIMA model lies in the high order differ-
entiation of the series, which sometimes result in a white noise with zero mean, and
therefore is of no use from the prediction point of view. This calls for alternative
formulation to handle the problem. Fuzzy sets and neural networks have inherent
advantage to represent non-linear mapping, irrespective of non-stationary charac-
teristics of the time-series. In addition, the non-Gaussian behavior of a time-series
can be approximated by a locally Gaussian formulation. Thus fuzzy logic can
handle non-linearity, non-stationarity and non-Gaussian-ness of the time-series. In
addition, non-deterministic transition of the time-series from a given partition of a
vertically partitioned time-series to others can also be handled with fuzzy logic by
concurrent firing of multiple rules and taking aggregation of the resulting inferences
generated thereof. Besides fuzzy logic, pattern clustering and classification by
neural and/or other means can also take care of the above four issues indicated
above. This motivated us to develop new prediction algorithms of time-series using
pattern recognition/fuzzy reasoning techniques.

1.4 Machine Learning Approach
to Time-Series Prediction

Learning refers to natural acquisition of knowledge reflected by certain parametric
changes in a system. It is synonymously used with pattern classification and
clustering. However, in general, learning has much more scope than those of pattern
classification/clustering. In a pattern recognition problem, we adapt system
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parameters to represent the measured input-output relationship in a system. This is
often performed by a technique, popularly known as supervised learning. The
name: supervised learning stems from the concept that such learning requires a set
of training/exemplary instances (input and output combinations), generated by the
trainer/supervisor prior to learning. After the learning (adaptation) phase is over, we
use the adapted system parameters to predict system outputs for each known input.
In a pattern clustering problem, we group objects in a cluster based on similarity in
attributes of one objects with other objects. Clustering is advantageous when we do
not have training instances for individual object class. Clustering is often referred to
as unsupervised learning as it works without training instances.

Besides clustering and classification, there exist two other popular varieties of
learning, well-known as reinforcement learning and competitive learning. In rein-
forcement learning, a system acquires knowledge based on reward and penalty
mechanism. In other words, here an agent (a software/hardwired device) acts on its
environment and a critic sitting in the environment measures the reward/penalty the
agent should receive based on the effectiveness of the action in the environment
with respect to a fixed goal. The agent records the reward and penalty during the
learning phase, and uses the measure of reward/penalty to select the action at a
given environmental state (situation) to yield its best response. The last kind of
learning, called competitive learning, allows competition between two or more
learning strategies to select the best in a given situation.

In this book, we would use both supervised and unsupervised learning for
predictive applications. Unsupervised clustering can be employed on the similar
sequence of data points representing structurally similar segments of a time-series.
Such similarity helps in predicting a similar sequence from incomplete early
sub-sequence in a time-series. For instance, suppose, we discovered 6 different
structures comprising a fixed number of consecutive data points in a time-series. Let
us call them sequence 1 through sequence 6. Now, we need to predict which
particular sequence is expected to follow from the time-series points of last few
days (say one week). This requires determining similarity of the daily time-series of
last one week with known sequences 1 through 6, and supposes sequence 4 is the
nearest match. We then conclude that the time-series is expected to follow sequence
4 in the coming days. The sequence thus predicted would have practical value in the
sense it helps users with the knowledge about the pathway to reach certain targets.
This has important consequences in an economic time-series as it offers prediction
to reach a definite target state (such as bullish state with high rise towards a
saturated state) or a possible fall-off of the time-series to a deep down-valley (called
bearish state), indicating a significant reduction in the price of a stock index item.

We also employ supervised classification in a time-series prediction problem.
Typically, a time-series is partitioned vertically into equal sized interval, and each
data point is categorized into one partition. Next we develop prediction rules by
developing a transition from Pi! Pj for two consecutive data points at day r and
day r + 1 in the time-series, where the time-series data on day r and r + 1 fall in
partitions Pi and Pj respectively. Now, suppose we have a time-series containing
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10,000 data taken on a daily basis. We obtain the transition rules for each suc-
cessive pair of days and thus we have 9999 rules. We represent these rules by neural
mapping, so that for a given time-series value at day r, we can obtain the data at day
r + 1. The question that now arises as to how to store the training instance, so as to
efficiently predict the next time-series data point. In this book, we propose a new
approach to time-series prediction using an intelligent strategy to fire multiple rules:
Pi ! Pj, Pi ! Pk, Pi ! Pr having a common premise (representing a partition Pi)
using multiple pre-trained neural networks with middle of the partitions Pi and Pj, Pi
and Pk, Pi and Pr as the input-output component of training instances and take the
average of the predicted outcomes obtained from these neural networks as the
predicted time-series value.

1.5 Scope of Machine Learning in Time-Series Prediction

Neural nets play a vital role in learning the dynamic behavior of a time-series. The
learning process in a neural network is accomplished by suitably selecting a set of
cascaded non-linearity to represent the complex functional relations between the
input and the output training instances supplied to the network. Neural network
based learning is advantageous to Traditional Least Min Square (LMS) approach
used in curve fitting [16] because of the pre-assumption of a fixed functional form
of the latter rather than a variable functional form as used in the former. The
variable functional architecture of the neural network offers the freedom to
autonomously adapt its parameters in the required direction to appropriately tune
the functional form of the network to produce the desired output for known inputs.

Several well-known approaches to supervised neural learning algorithms are
prevalent in the literature. The most popular among these techniques are
Back-propagation (BP) Learning algorithm [17], that adjusts the connectivity
weights of neurons (single unit, comprising a weighted summer followed by a
non-linearity) in the network layer-wise, starting from the last layer with an aim to
minimize the error signals generated at the output layer for each input vector of the
network. The error signal here is defined by taking the component-wise difference
between the desired and the computed output vectors. The learning algorithm used
in Back-propagation algorithm is designed following the well-known steepest
descent learning policy that searches the direction of the shallowest gradient at a
given point on the error surface of weights.

Among the other well-known algorithms used for supervised learning is Linear
Support Vector Machine (LSVM) classifier that optimally segregates the input data
space into two regions by straight line boundaries with sufficient spacing between
the boundaries. Several variant of the basic LSVM are found in the literature [18].
The popular approaches used are kernelized SVM, where kernel functions are used
to project the data points in new dimensions, thereby segregating the linearly
inseparable data point by LSVM after kernel transformation. Besides BP and SVM
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there exist a lot many supervised neural classifiers, such as Radial Basis function
Neural Net (RBF NN) [19], cascaded fuzzy-BP combinations and many others, the
detailed listing is not given here for out of context. We next present a few
well-known neural approaches to time-series prediction.

Frank et al. in [20] consider heuristics to select window size and sampling
rate for efficient time-series prediction. One simple way to model time-series is
to express the time-series x(t) as a non-linear function of x(t − 1), x(t − 2), …,
x(t − n); i.e., x(t) = f(x(t − 1), x(t − 2), …, x(t − n)). Usually researches attempt
to predict f by considering fixed non-linearity.

In Fig. 1.1, we consider a Sigmoid type of non-linear function. The learning
process here requires to adapt weights w1, w2, …, wn such that

z ¼ jf ðgÞ � xðtÞj

¼ jf ð
Xn

i¼1
wi � xðt � iÞ � xðtÞÞj ð1:1Þ

is minimized. This is done by weight adaptation policy using the well-known
gradient descent learning approach, presented below:

wi  wi � gð@z=@wiÞ ð1:2Þ

here, f ðgÞ ¼ 1=ð1þ e�gÞ, is the Sigmoid function.
In [21], Faraway and Chatfield used a two layered architecture, where the first

layer comprises logistic neurons, while the second layer involves a neuron with
linear activation function. For logistic neurons, we use a Sigmoid type non-linearity
over a weighted summer. For example,
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Fig. 1.1 Time-series
prediction using supervised
neural net
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yt ¼ f ð
X

8i
xðt � iÞ � wjÞ ð1:3Þ

where, f ðzÞ ¼ 1=ð1þ e�zÞ, is the Sigmoid function.
The output layer approximate x̂ðtÞ is obtained by simply by a weighted summer

followed by a nonlinear function. Mathematically,

x̂ðtÞ ¼ hð
Xn

i¼1
wi � yiÞ ð1:4Þ

where, hðxÞ ¼ k � x, a linear function of x. In the present problem we used to predict
wi and wj;8i, 8j; so that x̂t approximates xðtÞ (Fig. 1.2).

Meesad et al. in [22] proposed a novel approach for stock market time-series
prediction using support vector regression model. The model employs slack vari-
ables ni and n�i for i ¼ 1 to n, in order to measure the training samples outside the
n� sensitive zone [23, 24]. The regression model is given by

/ðw; nÞ ¼ ð1=2Þ � jjwjj þ c �
Xn

i¼1
ðniþ n�i Þ; ð1:5Þ

Fig. 1.2 Weight adaptation using gradient descent learning
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where the stable variables and n�i fix the band of jjyi � f ðxi � cÞjj. Formally we
have to fix n�i by

Minðyi � f ðxi;wÞÞ� niþ n�i
Min f ðxi;wÞ � yi � 2 þ n�i

subject to

ni� 0

n�i � 0

The above problem is transformed to its dual and solved using the Lagrange’s
multiplier method. The weights w thus obtained are used during prediction phase.

Li and Deng et al. in [25] proposed a novel approach to predict turning points in
a chaotic financial time-series. According to them, in a given time-series
xt 2 R; t ¼ 1; 2; 3; . . .; n, we have turning points xl (peak or trough) such that
the change (increase/decrease) in the series at t ¼ l exceeds a specific percentage
within p steps (Fig. 1.3).

Based on the turning points obtained from the time series, an event characteri-
zation function, also called turning indicator Tc (t) is activated, where

TcðtÞ ¼ 1; if xðtÞ is a peak;

¼ 0; if x tð Þ is a trough:

The time series can be predicted at all the time points by linear interpolation.
Kattan et al. [26] introduced a novel technique for prediction of the position of

any particular target event in a time series. Here, the authors determined a training
set

Fig. 1.3 Feed-forward neural net work with look ahead
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s ¼ Vað Þja ¼ 0. . .nf g

where each Va is a time series vector such that Va ¼ xtð Þjt ¼ 0; 1; . . .; tmaxf g. Here
tmax is the number of data points of the time series.

The work employs a divide and conquer strategy to classify frequency samples
into different bins bið Þ; i ¼ 0; 1; 2; . . .; tmaxf g, where each bin is a subset of s.
A genetic programming [27] is used to extract symmetrical features from each bi’s
members, and k-means clustering is employed to cluster bi’s. After clustering is
over, genetic programming is used as ‘event detection’ to identify the time slot in a
linear time-series. The authors also compared the relative merit of their algorithm
with existing algorithms including radial basis function neural nets, linear regres-
sion and polynomial regression.

The work by Miranian [28] employs a local neuro-fuzzy approach realized with
least square support vector machines (LSSVM). The said LSSVM utilizes hierar-
chical binary tree (HBT) learning algorithm for time-efficient estimation of the local
neuro-fuzzy model. Integration of LSSVMS into local neuro-fuzzy model network
along with the HBT learning algorithm provides high performance approach for
prediction of complex non-linear time-series.

Yan in [29] attempted to employ a generalized model of regression neural
network (GRNN) with one design parameter and fast learning capability for
time-series forecasting. The most attractive aspect of this research is to use multiple
GRNN for forecasting of business time-series. The proposed model of GRNN is
experimentally focused to be very robust with respect to design parameters, which
makes it appropriate for large scale time-series prediction.

Lee et al. in [30] introduced Japanese candlestick theory as an empirical model
of investment decision. It is preferred that the candlestick patterns represent the
psychology of the investors and thus help the internet planners with a suitable
advice on investment. Fuzzy linguistic labels are used to model the vagueness of
imprecise candlesticks. The proposed fuzzy model transforms the candlesticks data
into fuzzy patterns for recognition. The method developed is applied to financial
time-series prediction.

In [31] Coyle et al. present a novel approach for feature extraction from EEG
signals for left and right hand motor imageries. They employed two neural nets to
perform one step ahead of prediction, where one neural net is trained on right motor
imagery and the other on left motor imagery. Features are derived from the mean
squared power of the prediction error. EEG signal is partitioned into equal sized
intervals, and the EEG features of the next window are determined from the EEG
features of the current window.

In Dash [32], the authors proposed a learning framework, where they used self
adaptive differential harmony searched based optimized extreme learning machine
(SADHS-OLEM) for single hidden layered feed-forward neural network. The
learning paradigm introduced takes advantage of generalization ability of extreme
learning machines with global learning potential for SADHS. The proposed
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technique has successfully been realized for close price and volatility prediction of
five different stock indices.

There exist extensive literature on artificial neural network for time series pre-
diction using feed-forward network, Boltzmann machines and deep belief network
[33]. The work by Hrasko et al. [34] introduced a novel approach for time-series
prediction using a combination of Gaussian Bernoli Restricted Boltzmann machine
and the back-propagation algorithm.

1.6 Sources of Uncertainty in a Time-Series

A time-series apparently looks like a sequence of random valued data in a finite
range, ordered over time. Because of this randomness, prediction of a time-series at
the next time point from its current or preceding time-point values is difficult. Thus,
for two equal time-series values: x(t1) and x(t2) occurring at time-point t1 and t2, it is
not guaranteed that the next time point values of the series x(t1 + 1) and x(t2 + 1)
need not be equal. To handle the non-deterministic behavior of the time-series,
researchers usually do not take the risk to predict absolute next point value of the
series, rather they offer a small range of the predicted value. This is realized by
dividing the dynamic range of the time-series into a fixed number of partitions,
usually of equal length, which reduces the uncertainty in the prediction as the
prediction refers to identifying a partition containing the next time-point value
instead of an absolute value.

A close inspection of a partitioned time-series now reveals the dependence
relationships between the partitions containing the time-point value before and after
a feasible time-point t present in the series. These relationships are generally referred
to as prediction rules. It is indeed important to note that there exist uncertainty in the
prediction rules: Pi ! Pj and Pi ! Pk where Pi, Pj and Pk are three partitions, where
the transition Pi to Pj takes place around time-point t1, while the transition Pi to Pk
takes place around a second time-point t2. Now, suppose, we like to predict the
time-point value of the series at time t′ + 1, where t′ falls in partition Pi. Now, in
which partition should x(t′ + 1) lie? This is indeed difficult to say. Statisticians may
favor the one with higher probability of occurrence. That is they would say x(t′ + 1)
would lie in partition Pj if prob(Pj/Pi) > prob(Pk/Pi), where prob(Pj/Pi) indicates the
conditional probability of Pj assuming the prior occurrence of Pi around a given
time-point t′. The above example illustrates that there exists uncertainty in prediction
of a time-series for possible non-determinism of the extracted rules.

Another important aspect that influences a time-series prediction is secondary
factor, which usually is hard to ascertain as its clarity is not visible in most cir-
cumstances. For example, a large fall-off in the close price of the DOW JONES
time-series on day t may cause a significant fall-off in the TAIEX time-series on day
t + 1. If this phenomenon is known, we call the DOW JONES time-series as the
secondary factor for the main-factored time-series TAIEX. In absence of any
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knowledge of the secondary factors, the prediction of a main-factored time-series
remains uncertain.

The third important issue responsible for uncertain prediction of a time-series is
its frequency of occurrence in a partition. It is observed that a time-series remains in
fewer partitions most frequently than the rest. Thus its prediction probability is
higher in fewer partitions. However, because of non-stationary characteristics of the
series, the partitions having higher frequency of occurrence vary over time, and thus
extraction of the highly probable partitions at a given time is uncertain. There are
other sources of uncertainty in a time-series. However, in the present book we
consider these three types of uncertainty in time-series modeling and forecasting.

1.7 Scope of Uncertainty Management by Fuzzy Sets

Fuzzy sets are widely being used for uncertainty management in expert systems.
Because of multiple sources of uncertainty in the prediction of a time-series, the
logic of fuzzy sets can be used to handle the problem. Fuzzy logic primarily is
an extension of classical logic of propositions and predicates. In propositional/
predicate logic, we use binary truth functionality to represent the truth value of a
proposition/predicate. Because of strict binary truth functionality, propositional/
predicate logic fails to express the uncertainty of the real-world problems. In fuzzy
logic, the truth values of a fuzzy (partially true) proposition lies in the closed
interval of [0, 1], where the binary digits: 0 and 1 indicate the completely false and
totally true.

Consider, for instance, a fuzzy production rule: if x is A then y is B, where x and
y are linguistic variables and A and B are fuzzy sets in respective universe U and V
respectively. The connectivity between x is A and y is B is represented by a fuzzy
implication relation,
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where x 2 fx1; x2; . . .. . .; xng ¼ X, y 2 fy1; y2; . . .. . .; ymg ¼ Y and R x; yð Þ
denotes the strength of fuzzy relation for x ¼ xi and y ¼ yj, satisfying the impli-
cation between x is A and y is B.

Different implication functions are used in the direct use to describe the fuzzy
if-then connectivity. A few of the well-known implication relations are Mamdani,
Lucksiwcz and Diens-Rescher [35, 36] relations.

Mamdani implication relation

R x; yð Þ ¼ MinðlAðxiÞ; lBðyjÞÞ
or R x; yð Þ ¼ lAðxiÞ � lBðyjÞ

ð1:6Þ

Lukasiewicz implication relation

R x; yð Þ ¼ Min ½1; ð1� lAðxiÞþ lBðyjÞÞ� ð1:7Þ

Deins-Rescher implication relation

R x; yð Þ ¼ l�AðxiÞ _ lBðyjÞ
¼ Max ½l�AðxiÞ; lBðyjÞ�

ð1:8Þ

where �A denotes the complementation of the fuzzy set A. In fuzzy reasoning, we
typically have a fuzzy relation R x; yð Þ for a given fuzzy production rule: if x is A
then y is B and a fuzzy proposition x is A0, we need to infer the membership function
of y is B0.

lB0 ðyÞ ¼ lA0 ðxÞ o Rðx; yÞ
¼ Max

x
½MinðlA0 ðxÞ;Rðx; yÞÞ�

¼Max
x
½MinðlA0 ðxiÞ; lRðxi; yÞÞ�; for xi 2 X; 8i ¼ 1 to n;

¼Max
x
½MinfMinðlA0 ðxiÞ; lAðxÞÞ; lB0 ðyÞg�; 8x

ð1:9Þ

The principle of fuzzy reasoning is illustrated below graphically using Mamdani
implication relation.

Occasionally, a fuzzy rule includes two or more propositions in the antecedent.
For instance consider the fuzzy production rule: if x is A and y is B then z is C,
where A, B, C are fuzzy sets and x, y, z are the fuzzy linguistic variables. Consider
fuzzy observations x is A′ and y is B′.

To get back to the real world we need to defuzzify the inference lB0 ðyÞ in
Figs. 1.4 and 1.5 by the following procedure

�y ¼
P
8y lBðyÞ � yP
8y lBðyÞ

ð1:10Þ
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and

�z ¼
P
8z lCðzÞ � zP
8z lCðzÞ

: ð1:11Þ

Fuzzy reasoning involves three main steps: (i) fuzzification, (ii) inference gen-
eration and (iii) defuzzification. In the fuzzification step, we represent a fuzzy
linguistic variable x into membership of x to belong to a fuzzy set A. In other word,
fuzzification introduces a mapping: x to lAðxÞ. This is done by a specially designed
membership function lAðxÞ. Fuzzy reasoning and defuzzification steps have been
briefly outlined above.

Fig. 1.5 Inference generation using type-1 fuzzy reasoning

Fig. 1.4 Inference generation mechanisms
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1.8 Fuzzy Time-Series

Prediction of a time-series from its current and/or past samples is an open area of
current research. Unfortunately, traditional statistical techniques or regression-based
models are not appropriate for prediction of economic time-series as the external
parameters influencing the series in most circumstances are not clearly known.
Naturally, prediction of a time-series requires reasoning under uncertainty, which
can be easily performed using the logic of fuzzy sets. Researchers are taking keen
interest to represent a time-series using fuzzy sets for an efficient reasoning. One
well-known approach, in this regard, is to partition the dynamic range of the
time-series into intervals of equal size, where each interval is described by a fuzzy
set. Several approaches of representation of the partitions of a time-series by fuzzy
sets are available in the literature [37–95]. One simple approach is to represent each
partition by a membership function (MF), typically a Gaussian curve, with its mean
equal to the centre of the partition and variance equal to half of the height of the
partition. Thus each partition Pi can be represented as a fuzzy set Ai, where Ai is a
Gaussian MF of fixed mean and variance as discussed above.

Choice of the membership function also has a great role to play on the perfor-
mance of prediction. For example, instead of Gaussian MF, sometimes researchers
employ triangular, left shoulder and right shoulder MFs to model the partitions of a
time-series. Selection of a suitable MF describing a partition and its parameters
remained an open problem until this date.

Defining a Fuzzy Time-series
Let Y(t) 	 R, the set of real numbers for t = 0, 1, 2, …, be a time-varying universe
of discourse of the fuzzy sets A1(t), A2(t), … at time t, where Ai(t) = {yi(t)/
µi(yi(t))}, for all i and yi(t) 2 Y(t) We following [37, 38] define a fuzzy time-series
F(t) = {A1(t), A2(t),…}.

The following observations are apparent from the definition of fuzzy time-series.

1. In general, a fuzzy time-series F(t) includes an infinite number of time-varying
fuzzy sets A1(t), A2(t),..

2. The universe of discourse Y(t) is also time-varying.
3. F(t) is a linguistic variable and Ai(t) is its possible linguistic values (fuzzy sets),

for all i.

For most of the practical purposes, we re-structure the above definition of fuzzy
time-series by imposing additional restrictions on its parameters. First, we consider
a finite number of time-invariant fuzzy sets A1, A2, …, An. Second, the universe of
discourse Y is time-invariant.

Example 1.1 Consider a close price time-series for the TAIEX data for the period
2000–2001, which is horizontally partitioned into 7 intervals: U1, U2,…, U7, where
the union of these partitions represent the dynamic range, called the Universe of
discourse U of the time-series. In other words,
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U ¼ [ 7
i¼1Ui: ð1:12Þ

Let the fuzzy sets used to represent the time-series be EXTREMELY-LOW,
VERY-LOW, LOW, MODERATE, HIGH, VERY-HIGH and EXTREMELY-
HIGH, which are hereafter described by A1, A2, …, A7 respectively. Typically, we
aim at representing the 7 partitions by 7 fuzzy sets with overlap in the data points.
The overlapping appears due to inherent fuzziness of the fuzzy sets A1, A2, …, A7

which have a common universe U and thus any member yi(t) of U falls in all the
fuzzy sets with a certain membership lying in [0, 1]. Figure 1.6 provides the par-
titions and the respective fuzzy sets of the TAIEX time-series. In Table 1.1, we
consider a set of 10 points on the series and the assignment of fuzzy sets to those
points.

The definition of fuzzy time series introduced by Song and Chissom [37–40] has
widely been used by subsequent researchers with suitable membership functions of
their choice. In [41–50] Chen et al., the authors considered three valued member-
ship functions of any point on the time-series to lie in a given fuzzy set Ai. For

Table 1.1 Membership
assignment to data points
lying in partitions U1 through
U7

Fuzzy
Sets

Partitions

U1 U2 U3 U4 U5 U6 U7

A1 1 0.5 0 0 0 0 0

A2 0.5 1 0.5 0 0 0 0

A3 0 0.5 1 0.5 0 0 0

A4 0 0 0.5 1 0.5 0 0

A5 0 0 0 0.5 1 0.5 0

A6 0 0 0 0 0.5 1 0.5

A7 0 0 0 0 0 0.5 1

Fig. 1.6 The TAIEX close price divided into 7 horizontal partitions, each describing a fuzzy set
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instance, if a point lies in a partition i, we assign a full membership of one to the
point to lie in fuzzy set Ai. If the point belongs to the next neighbors of partition i,
we assign it a membership of 0.5 to lie in fuzzy set Ai. Further, if a point lies in any
other partition, we assign it a membership of zero to belong to partition i.

Choice of membership functions is an important issue in fuzzy time-series
prediction. In one of the recent papers [96], the authors consider left shoulder, right
shoulder and triangular membership functions to describe the fuzziness involved in
a time-series. In a recent work [62], Bhattacharya et al. modeled the fuzziness in the
partitions using Gaussian membership functions. They considered all possible
contiguous data points in the time-series within a partition by a Gaussian mem-
bership function, and later combined all such Gaussian membership functions for
each contiguous block of data points in the partition using an interval type-2 fuzzy
set [97].

1.8.1 Partitioning of Fuzzy Time-Series

Partitioning is one of the fundamental steps in time-series prediction. The essence
of partitioning arises due to our inability to accurately predict the time-series from
its current and previous sample values. Partitioning helps to divide the dynamic
range (signal swing) of the time-series into small intervals. This helps in prediction
as we can predict the possible partition containing the next time-point rather than
the next time-point itself.

Early research on time-series prediction considered uniform partitioning, where
the interval widths were set equal. Uniform partitioning is acceptable to many
researchers for its simplicity. It works with fewer parameters: partition width,
beginning of the first partition (containing the lowest time-series value) and the end
of the last partition. Usually the beginning of the first partition is set slightly below
the global minimum of the time series within a finite time bounds, whereas the end
of the last partition is set slightly above the global maximum. The extent of
bounding partitions below and above the dynamic range of the time-series is
selected intuitively. The extensions on either side of the dynamic range are required
to allow possible occurrences of the predicted partition outside the dynamic range.
The extended dynamic range is generally referred to as the universe of discourse.

Selection of partition width and partition-count are important issues. In [55],
authors attempted to capture at least half of the consecutive time-point values in
distinct partitions. Selection of a suitable partition-width capable of satisfying the
above criterion is an optimization problem. However, the early researchers
attempted to solve it in a heuristic approach. Huarng suggested two alternative
proposals to handle the problem, In the first proposal, he considered the greatest
value smaller than the median of the absolute first differences as the width of the
partition. His second proposal is concerned with defining the average of absolute
first differences of the time-series data points and fixing half of the average as the
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partition-width. He has experimentally demonstrated that the latter proposal comes
up with better prediction results with respect to the former.

Partitioning a time-series into equi-spaced intervals is not free from flaws. Some
of the disadvantages of uniform partitioning include (i) one or more partitions may
be vacant containing no data points, and thus may not carry any significance for
partitioning, (ii) the data density in the partitions may be non-uniform, which may
give rise to erroneous prediction of the partition on the next day from today’s
time-series value/partition number, (iii) one or fewer partitions may include dis-
tributed fragments of time-series data, while other may include only continuum data
for small intervals of time. The distributed fragments of time-series data carry much
information of the time-series, and the partition containing such data describes
certain characteristics of the time-series, while partitions containing small contin-
uum data only include local characteristics of the time-series.

Although this is the simplest approach to define partitions in a time-series, the
said method is not free from flaws. A few common shortcomings of uniform
partitioning include: (i) one or more partitions may be vacant containing no data
points, and thus may not carry any significance for partitioning, (ii) the data density
in the partitions may be non-uniform, which may give rise to erroneous prediction
of the partition on the next day from today’s time-series value/partition number,
(iii) one or fewer partitions may include distributed fragments of time-series data,
while other may include only continuum data for small intervals of time. The
distributed fragments of time-series data carry much information of the time-series,
and the partition containing such data describes certain characteristics of the
time-series, while partitions containing small continuum data only include local
characteristics of the time-series.

Huarng proposed two simple but interesting algorithms [61] for uniform parti-
tioning of a time-series. In both the algorithms, the primary motivation is to set the
partition-width so as to accommodate the local fluctuation (obtained by taking the
absolute difference between two successive time-series data points) of the
time-series within a partition. The first algorithm assigns the highest value imme-
diately lower than the median of the absolute differences as the partition width. The
second algorithm, on the other hand, evaluates the average of the local fluctuations
over a given time-frame, and takes half of the average value as the partition-width.

Extensive research on time-series partitioning has been undertaken over the last
two decades, which could overcome a few of the above limitations of uniform
partitioning. The principle undertaken to overcome the limitations includes intel-
ligent non-uniform partitioning of the time-series, so as to satisfy certain criteria
independently or jointly. One of the popular but simple density based clustering is
due to Singh and Borah [98], where the authors attempted a two-step procedure to
partition the time-series. In the first step, they partition the dynamic range of the
time-series into two blocks of equal width. In the second step, they uniformly
partition each block based on their data density. In other words, the block with
higher data density is partitioned into more number of equal sized intervals than the
block with lower data density.
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1.8.2 Fuzzification of a Time-Series

Predicting a time-series using fuzzy logic requires three primary steps: fuzzification
(also called fuzzy encoding [99]), fuzzy reasoning and defuzzification (fuzzy
decoding [51], [100]). The fuzzification step transforms a time-series into fuzzy
quantity, described by a membership value (of the sample points of a time-series)
along with the sample value in one or more fuzzy sets. For instance, let A1 (VERY
SMALL), A2 (SMALL), A3 (MEDIUM), A4 (LARGE) and A5 (VERY LARGE) be
linguistic values/fuzzy sets in a given universe, defined in the dynamic range of the
time-series. Usually, the fuzzy sets are represented by membership curves lying in
[0, 1] with respect to time-series sample values. Fuzzifier thus refers to construction
of the membership curves, so that an unknown time series value can be directly
transformed to a membership value by using a membership curve.

The apparent question is how to construct a membership function. This, in fact,
is designed intuitively, using the background knowledge about the logical meaning
of the linguistic values. For instance, the adjective LARGE will take up larger
memberships for larger values of the time-series samples, and so can be best
described by an exponential/linear rise to a certain value of the linguistic variable
followed by a flat level. Any standard mathematical form of the membership
function that satisfies the above criterion qualifies as the membership function for
the given linguistic value. Most commonly, the VERY LARGE/LARGE is repre-
sented by a Left shoulder, an exponential rise with a flat end, special type parabola,
and the like [101]. The MEDIUM linguistic value is described usually by an
isosceles triangle, trapezoid or Gaussian type membership function, while the
SMALL linguistic value is described by a right shoulder or an exponential decay.
Figure 1.7 provides the structures of the above mentioned MFs.

Chen et al. in [41–50, 52, 53], considered a simplified approach to describe a MF
by ternary membership values: 0, 0.5 and 1. Such representation has the primary
advantage of reducing subsequent computations in reasoning and inference gen-
eration stage. One typical such MF representing CLOSE_TO_THE_CENTRE_
OF_PARTITION Pi is indicated in Fig. 1.7.

In case the time-series value lies in partition Pi we assign a membership of 1.0 to
that data point. If it falls in one of the two closest partitions on either side of Pi, we
assign the data point a membership equal to 0.5. If the data point falls in any other
partition except in partition Pi and its immediate neighbors, we assign the data point
a membership equal to 0. In most of the subsequent works, researchers follow the
above principle of membership function assignment in a time-series.

In [62] Bhattacharya et al., the authors attempted to describe the time-series data
points in a partition by a Gaussian MF. Let the partition Pi includes the data points
c(tp), c(tq), …, c(tr). Let the mean and variance of these data points be mi and si

2

respectively. We then describe the data points in partition Pi by a Gaussian curve N
(mi, si) given below.
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Nðmi; siÞ ¼ ð1=si
ffiffiffiffiffiffiffiffiffi
ð2pÞ

p
Þ � exp½ð�ðcðtÞ � miÞ2�=2 � s2i ð1:13Þ

An alternative way to represent the time-series by a Gaussian membership
function is to fix the peak of the Gaussian at the centre of partition Pi, allowing its
excursions to both the left and right extremities of the next partition. Figure 1.8
provides a schematic representation of such membership function. Alternatively,
this can be represented by a triangular MF (Fig. 1.9) with the peak at the centre of
the i-th partition and fall-off of the membership around the peak covering the
neighborhood partitions.

Assigning a linguistic value to each data point of the time-series is essentially a
two-step process:

Fig. 1.7 One way of defining a fuzzy time-series

Fig. 1.8 The representation of partition Pi by a Gaussian membership function with its centre
value as the centre of the Gaussian curve
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1. According to the membership functions defined for the fuzzy sets, compute the
membership value of the data point for each of the fuzzy sets defined on the
universe of discourse.

2. Assign the fuzzy set for which the data point has maximum membership value,
as the linguistic value for the data point.

In [102], the authors attempted to determine membership functions to describe a
time-series by employing fuzzy c-means clustering algorithm. The motivation in
this paper is to represent a data point d̂k in the time-series by m one dimensional
clusters with an associated membership in each cluster, such that the following two
conditions jointly hold:

X
8i lCiðd̂kÞ ¼ 1 ð1:14Þ

and 0\lCiðd̂kÞ\1 for at least one data point d̂k in a given cluster Ci.
The first criterion indicates that the membership of a data point dk in all the

clusters (partitions) together is equal to one. This, in other words, implicates that if
the data point belongs to a specific cluster with high membership close enough to
one, its membership in all other clusters must be very small, close to zero.

The second criterion indicates that for some k, the data point d̂k should have a
non-zero membership to belong to a given cluster Ci, failing which the cluster Ci
would have no existence, which is contrary to the assumption of m clusters. This
explains the part of the second condition: 0 < µCi(d̂k). On the other hand, the
second inequality: lCiðd̂kÞ\1 indicates that d̂k has partial membership in other
clusters too, failing which (i.e., lCiðd̂kÞ ¼ 1) the fuzziness of d̂k to lie in cluster Ci is
lost.

Fig. 1.9 The representation of partition Pi by a triangular membership function
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After fuzzification by one dimensional FCM clustering, the authors obtained the
highest degree of membership of each data point of the time-series in cluster Ci for
all i = 1 to m. The bounding partitions of cluster Ci are formed by enclosing those
supporting data points with highest membership in that cluster.

1.9 Time-Series Prediction Using Fuzzy Reasoning

One primary motivation of time-series prediction by fuzzy logic based reasoning is
to determine the implication functions that exist between the membership function
of a time point and its next time point in a time series. For instance, consider a close
price time-series c(t) where µA(c(t − 1)) and µB(c(t)) denote the respective mem-
bership values of the close price in fuzzy sets A and B. We like to express the
implication relation from “c(t − 1) is A” to “c(t) is B” by a fuzzy relation
R(c(t − 1), c(t)). Now, suppose we have m partitions, and suppose the data
points in a partition is represented by a suitable fuzzy set. Thus for m partitions
P1, P2, …, Pm, we have m fuzzy sets A1, A2, …, Am. To extract the list of all
possible implications, we thus require to mark the transitions of the time-series at all
time points t − 1 and t and then identify the appropriate fuzzy sets to which c(t − 1)
and c(t) belong with the highest memberships.

Let c(t − 1) and c(t) have highest memberships in Ap and Aq for certain value of
t = ti. Then we would construct a fuzzy relation for the rule: If c(t − 1) is Ap Then c
(t) is Aq. The question then naturally arises as to how to construct the implication
relation. In fact there exists quite a few implication relations, a few of these that are
worth mentioning includes Mamdani (Min), Lukasiewicz and Diens-Rescher
implications. Most of the existing literature on fuzzy time-series, however, utilizes
Mamdani (Min-type) implication for its simplicity, low computational complexity
and publicity.

Once a fuzzy implication relation R(c(t − 1), c(t)) is developed, we would be
able to predict the fuzzy membership value µB′(c(t)) for the next time-series data
point c(t) from the measured membership value µA′(c(t − 1)) of the close price at
time c(t − 1). The dash over A′ and B′ here represents that the fuzzy set A′ and B′
are linguistically close enough to the respective fuzzy sets A and B respectively.
The fuzzy compositional rule of inference has been used to determine µB′(c(t)) by
the following step:

l0B c tð Þð Þ ¼ l0A c t� 1ð Þð Þ o R ð1:15Þ

where o is a max-min compositional operation, which is similar to matrix multi-
plication operation with summation replaced by maximum and product replaced by
minimum operators.

In the first successful work by Song and Chissom [37], the authors proposed a
novel approach to determine R from a given university enrollment time-series.
Given a n-point time-series, they evaluated R(c(t − 1), c(t)) for t = 1, t = 2, …,
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t = n − 1. Let the implication relations in order be R1, R2,…, Rn − 1. They define
the time-invariant fuzzy implication relation

R ¼ Un�1
i¼1 Ri ð1:16Þ

The basic philosophy behind the above formulation of R lies in the assumption
that the implication relation of the entire time-series is time-invariant. In later
models, proposed by Song and Chissom [37–40], the authors considered a
time-variant model of the fuzzy implication relations, where they considered a
time-window of width w, over which the implication relation is constant, but it
varies across the windows.

The primary motivation behind the study of any time-series is to develop a
model with the potential for accurate prediction of the time-series. In case of a fuzzy
time-series where each observation (or data point) is a fuzzy linguistic value, the
model that is developed is primarily a fuzzy relationship between the current lin-
guistic value (or fuzzy set) and those obtained in the past. In this regard, Song and
Chissom [37–40] defined a first-order fuzzy relationship between two consecutive
fuzzy time-series values, FðtÞ and Fðt � 1Þ as given by the following definition.

Definition 1.1 If the fuzzy time-series observation at the tth instant, i.e., FðtÞ is
solely dependent on the fuzzy time-series observation at the (t − 1)th instant
ðFðt � 1ÞÞ, then this dependency can be expressed in the form of a first-order
fuzzy relationship Rðt � 1; tÞ as given below

FðtÞ ¼ Fðt � 1Þ 
 Rðt � 1; tÞ: ð1:17Þ
It should be noted, that the operator “
” given in (1.17) is a generic fuzzy

operator which can be defined in several ways. Song and Chissom [38], in their
study chose the max-min composition fuzzy operator for developing the
first-order fuzzy relationship Rðt � 1; tÞ: Based on the nature of the fuzzy rela-
tionship Rðt � 1; tÞ; a fuzzy time-series can be broadly classified into two major
categories: (i) Time-variant fuzzy time-series, (ii) Time-invariant fuzzy time-series.

Definition 1.2 If, the first-order fuzzy relationship Rðt � 1; tÞ is independent of
time t; i.e., for every time instant t; Rðt � 1; tÞ holds a constant value (say R), then
the fuzzy time-series concerned, is said to be time-invariant. On the contrary, if for
any time-instant t;Rðt � 1; tÞ 6¼ Rðt � 2; t � 1Þ; then the fuzzy relationship is
time-dependent and the fuzzy time-series is called a time-variant fuzzy
time-series.

Song and Chissom in their works [38–40] used both time-invariant and
time-variant models to predict the student enrollments of the University of
Alabama. For the time-invariant model, a single fuzzy relationship matrix R; is
computed using all the past observations (Fð1Þ–Fðt � 1Þ for prediction of FðtÞ) of
the fuzzy time-series, whereas, for the time-variant model, the general approach is
to consider a fixed window size w; and develop the fuzzy relationship matrix
Rðt � 1; tÞ; from the past w observations only (i.e.,Fðt � wÞ to Fðt � 1Þ for pre-
diction of FðtÞ).

1.9 Time-Series Prediction Using Fuzzy Reasoning 23



The first-order model is based on the assumption that the fuzzy time-series
observation at the tth instant (FðtÞ) is caused solely by the observation at the (t − 1)
th instant. However, this assumption need not always be true and often it is seen
that a time-series data point has dependencies on multiple past data points. To
incorporate this concept in the case of a fuzzy time-series, a higher order model for
fuzzy time-series was developed, where the dependency of FðtÞ on a sequence of
past fuzzy time-series observations is captured by the higher order fuzzy relation-
ship matrix. For example, the fuzzy relationship matrix of an mth order fuzzy
time-series is computed as follows.

FðtÞ ¼ ðFðt � 1Þ � Fðt � 2Þ � . . .� Fðt � mÞÞ 
 Rmðt � m; tÞ ð1:18Þ

In (1.18), Rmðt � m; tÞ denotes the mth order fuzzy relationship matrix for
the fuzzy time-series FðtÞ: Apart from the model proposed by Song and
Chissom [37–40], there have been a number of variants for modeling a fuzzy
time-series with the motive of accurate prediction. For instance, Sullivan and
Woodall [64] proposed both a time-invariant and a time-variant fuzzy time-series
prediction methodology based on Markov models and applied their model for
prediction of student enrollments at the University of Alabama. Given a vector of
state probabilities Pt at time-instant t; the same for time-instant ðtþ 1Þ; Ptþ 1 can be
computed as given below.

Ptþ 1 ¼ Pt � Rm ð1:19Þ

Ptþ 1 ¼ Pt � Rk
m ðk ¼ 1; 2; . . .Þ ð1:20Þ

In (1.10) and (1.20) Rm and Rk
m are state transition matrices for the time-invariant

and time-variant cases respectively and the ‘�’ operator is a matrix multiplication
operator (not a fuzzy operator).

There exist certain disadvantages of computing a relationship matrix for pre-
diction of a fuzzy time-series. One of the most conspicuous drawbacks is the
computational load involved in calculating the fuzzy relationship matrix using
fuzzy logical operators like the max-min composition operator. To solve this
problem, Chen [41–50] proposed a simple first-order model for a fuzzy time-series
using arithmetic operators. In the proposed model, firstly, each data point in the
time-series is fuzzified to a particular linguistic value (i.e., the linguistic value
associated with the fuzzy set for which the data point has maximum membership).
Next, first-order fuzzy logical relationships (FLR) are computed from the fuzzified
time-series where, for any time-instant t; if Ai is the corresponding fuzzified value
and Aj is the fuzzified value for the (t – 1)th instant, then the first-order FLR
obtained is

Aj ! Ai: ð1:21Þ
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The third step includes grouping the above fuzzy logical relationships into fuzzy
logical relationship groups (FLRG) based on common antecedents. For instance,
the FLRs Aj ! Ai1; Aj ! Ai2 and Aj ! Ai3 can be grouped into the FLRG, Aj !
Ai1;Ai2;Ai3: It should be noted that in this model, multiple occurrences of a par-
ticular FLR have not been prioritized. In other words, even if a particular FLR
occurs multiple times, it will only be considered once in its corresponding FLRG.
The FLRGs are later defuzzified for prediction purposes. A detailed description of
defuzzification techniques is given in a later section [64–95].

A simple drawback of the above model is that it assigns the same weight to each
FLR irrespective of either the number of occurrences of the FLR or its corre-
sponding chronological order. Yu [55–60] observed that the recurrence in the
occurrence of FLRs should be exploited and proposed a model to consider weighted
FLRs based on their chronological order. Let the sequence of FLRs in chrono-
logical order be as follows

FLR 1 : Ai ! Aj1

FLR 2 : Ai ! Aj2

FLR 3 : Ai ! Aj3:

The idea is to assign a higher weight to more recent FLRs as compared to older
FLRs. Thus, FLR 1 is assigned a weight w1 of 1, FLR 2 is assigned a weight w2 of 2
and FLR 3 is assigned a weight w3 of 3. In the next step, the weights are nor-
malized, as

wk ¼ wkP3
j¼1 wj

ð1:22Þ

so that each wk 2 ½0; 1�: Hence, the FLRG obtained is Ai ! Aj1;Aj2;Aj3 with the
corresponding weights assigned to each FLR. It should be noted that the conse-
quents of the FLRG obtained using the above process need not be distinct. Since
each consequent is weighted based on the sequence or chronology in which it
arrived, it is considered separately. This feature is different from Chen’s earlier
model where multiple occurrences of the same consequent in FLRs was reduced to
a single consequent in the FLRG. Another approach in the direction of weighted
fuzzy relationships was proposed by Uslu et al. [54] where the FLRs are weighted
based on their number of occurrences instead of their chronological order. An FLR
having higher number of occurrences possesses a greater weight than an FLR with
relatively lower number of occurrences [37–51].

There have been numerous approaches made by researchers to improve the
existing models of fuzzy time-series. A very basic but important observation in this
regard is that a time-series may be dependent on more than one factors. The general
approach to developing prediction models for any time-series (fuzzy/conventional)
is to predict the future values of the time-series based solely on knowledge obtained
from the time-series values of the past. However, it is generally seen that better
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prediction results can be obtained if multiple factors on which a time-series is
dependent are incorporated in the model. In this direction, Huarng [103] proposed a
heuristic fuzzy time-series model where, in the first step, fuzzy relationships are
obtained based on Chen’s model [41–50]. In the second step, the obtained FLRs are
refined based on heuristic knowledge obtained from secondary time-series. Let the
initial FLRG obtained for the antecedent Ai be Ai ! Ap1;Ap2; . . .;Apn: The FLRG is
then further refined based on heuristic variables x1; x2; . . .xk as follows.

1.10 Single and Multi-Factored Time-Series Prediction

Traditional techniques of time-series prediction solely rely on the time-series itself
for the prediction. However, recent studies [96] reveal that the predicted value of
the time-series cannot be accurately determined by the previous values the series
only. Rather, a reference and more influential time-series, such as NASDEQ and
DOWJONES can be used along with the original time-series for the latter’s
prediction.

Several models of forecasting have been developed in the past to improve
forecasting accuracy and also to reduce computational overhead. There exist issues
of handling uncertainty in business forecasting by partitioning the intervals of
non-uniform length. The work undertaken by Li and Cheng [104] proposes a novel
deterministic fuzzy time-series to determine suitable interval lengths. Experiments
have been performed to test the feasibility of the forecasting on enrolment data in
Alabama Universities. Experimental results further indicate that the first order time
series used here is highly reliable for prediction and thus is appropriate for the
present application.

Existing models of fuzzy time-series rely on a first order partitioning of the
dynamic range of the series. Such partitioning helps in assigning fuzzy sets to
individual partitions. First order partitions being uniform cannot ensure a large
cardinality of data points. In fact, occasionally, a fewer partitions have fewer data
points. In the worst case, the partition may be empty. One approach to overcome the
above limitation is to re-partitioning a partition into two or more partitions. It is
important to note that when data density in a partition is non-uniform, we
re-partition if for having sub-partitions of near uniform data cardinality. The work
by Gangwar et al. [105] is an attempt to achieve re-partitioning of a time-series for
efficient prediction.

Most of the works on fuzzy time series presumed time invariant model of the
time-series. The work by Aladag et al. [102] proposes a novel time-variant model
fuzzy time-series, where they use particle swarm optimization techniques to
determine fuzzy relational matrices connecting the membership functions of the of
the two consecutive time point values. Besides providing a new approach to con-
struct fuzzy relational matrices, the work also considers employing fuzzy c-means
clustering techniques for fuzzification of the time-series.
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The work introduced by Singh et al. [98] proposes four new issues, including
(i) determination of effective length of intervals, (ii) handling of fuzzy logical
relationship, (iii) determination of weight for each logical relationship and (iv) de-
fuzzification of fuzzified time- series values. To handle the first problem, a new
defuzzification technique of fuzzy time-series is introduced. Next fuzzy logical
relationships are constructed from the fuzzified time series. Unlike most of the
existing literature, that ignores multiple occurrences of repeated fuzzy logical
relationships, here we use the multiple occurrences as higher weights to a fuzzy
logical relation. These weights are later used in the defuzzification technique to
obtain actual time series value. The proposed method validated with standard time
series data and compared with existing techniques outperforms all the existing
techniques by a large margin with respect to suitably selected metrics.

Fuzzy time series is currently receiving attention for its increasing application in
business forecasting. Existing methods employ fuzzy clustering and genetic algo-
rithm for fuzzification and artificial neural networks for determining relationship
between successive data points in the time series. The work cited in [102] by
Egrioglu et al. introduced a hybrid fuzzy time series approach to reach more
accurate forecasts. Here the authors used fuzzy c-means clustering and artificial
neural network for fuzzification and defining fuzzy relationship respectively. They
employed proposed technique in enrollment data of University of Alabama. Huarng
et al. in [103] presented a novel algorithm for automatic threshold selection on
Secondary Factor for selection of rules for firing. The main points of their algorithm
are given below.

1. Let cðtÞ be the close price of secondary factor of a time series.

2. we take vðtÞ ¼ cðtÞ�cðt�1Þ
t�ðt�1Þ ¼ cðtÞ � cðt � 1Þ as a variation series.

3. Take jvðtÞj and …. Threshold by the following steps

(a) Compute average value of jvðtÞj by

vav ¼
Pk�1

k¼1 jvðtÞj
ðk � 1Þ ð1:23Þ

(b) Threshold Th ¼ vav
B þ 1

� �� B where B is base factor arbitrarily taken as 10
for NASDAQ and DOW JONES (secondary factors) and xb c is the lower
ceiling value of x.

4. The selection criteria of the consequent fuzzy sets is dependent on the sign of vD
and vN . We first need to order the fuzzy sets in the consequent of the selecting
for firing. Let the consequent fuzzy sets of the rule Aj;Ak;Al: Then we place
them in ascending order of the center of propositions, i.e., Aj;Ak;Al: If
cðPkÞ\cðPjÞ\cðPlÞ; where cðPjÞ is the centered the close price of partition Pj.

Now if both the indices vD and vN are positive, then we select those fuzzy sets in
the consequent where the corresponding partition centre value is � the centre
values of the partition corresponding to the antecedent fuzzy sets.

1.10 Single and Multi-Factored Time-Series Prediction 27



For example, if cðPkÞ\cðPiÞ and cðPjÞ ¼ cðPiÞ and cðPlÞ\cðPiÞ then we select
Aj and Al in the consequent and the corresponding rule is Ai ! Aj; Al. In this
manner we rectify the rules after they are selected for firing.

1.11 Scope of the Book

The book aims at designing novel techniques for economic time-series prediction.
Because of unknown external parametric variations, the economic time-series
exhibits an apparently random fluctuation, thereby making the prediction hard. The
logic of fuzzy sets has proved itself a successful tool for uncertainty management in
real-world systems. This motivated us to use the logic of fuzzy sets to utilize its
fullest power of uncertainty management. One approach to handle the problem is to
employ type-2 fuzzy sets that can capture both intra- and inter-personal level
uncertainty. Among the two well-known variants of type-2 fuzzy sets, Interval
Type-2 Fuzzy Set (IT2FS) is currently gaining popularity primarily for its sim-
plicity and low computational complexity. This inspired us to model uncertainty in
time-series using interval type-2 fuzzy sets. The IT2FS modeling is performed by
constructing a set of prediction rules considering the current and the next sample
points of the time-series. Such first-order dependence relations are widely used in
the literature as the previous values (prior to current time point) of the time-series
usually cannot model the temporal fluctuations in the series due to stray external
disturbances that might occur between the current and the next sample points.

Besides IT2FS rule based models, another alternative approach adopted in the
book is introduction of machine learning techniques for time-series prediction.
Existing works model dynamic behavior of a time-series by supervised learning,
which looks like representing the rules of prediction by supervised learning, such as
pre-trained feed-forward neural networks. Supervised learning offers good predic-
tion results when the fluctuation in the time-series does not depend largely on
external parameters. Alternatively, unsupervised models cluster vertically chopped
time-series components and describe them by a cluster centre. Naturally, a large
daily time-series of 20 years having 365 � 20 sample points, can be fragmented
into fewer clusters, each with a cluster centre that too describe a small duration
time-series. Prediction at a given time point here refers to determining a suitable
cluster centre describing a small fragment of the time-series that should appear next.
In this book, we would consider both supervised and unsupervised approach to
machine learning for time-series prediction.

The book includes five chapters. This chapter reviews the existing works on
time-series prediction with a primary focus on fuzzy and machine learning
approaches to time-series prediction. Chapter 2 provides a novel approach to
time-series prediction by type-2 fuzzy logic. Here, the current to next point tran-
sitions are represented as type-2 production rules. Naturally, reasoning involved for
prediction includes type-2 fuzzy logic. In particular, we here employed IT2FS
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model with provisions for auto-tuning of membership functions. Such tuning helps
learning the current changes in the time-series dynamics.

In Chap. 3, we present a new formulation of hybrid type-1, type-2 reasoning,
particularly considering in mind that we always cannot represent a partition by a
type-2 membership function. When there exist quite a few distributed fragments of
the series in a given partition, we model the partition by an interval type-2 fuzzy set.
On the other hand, when there exist only a few data points forming a contiguous
region, we model the partition by a type-1 fuzzy set. Now, when a rule contains
both type-1 and type-2 fuzzy sets either in the antecedent or the consequent, we use
hybrid fuzzy reasoning introduced in this chapter.

Chapter 4 proposes a clustering based approach, where the homogeneous
fragments of the time-series, called segments are grouped into clusters, and the
cluster centers, representing selective structures of the time-series are used for
prediction of the next structural pattern to emerge at the next day. The encoding of
transition of the time-series from one partition to the other following selected
structures is performed with the help of a specialized automaton, called dynamic
stochastic automaton. The merit of the chapter lies in the prediction of structures
along with its expected duration and probability of occurrence, which has good
impact on financial projections.

Chapter 5 proposes a novel approach for time-series prediction using neural nets.
This approach is different from existing neural techniques for prediction by the
following counts. It is capable of firing a set of concurrently firable prediction rules,
realized with different neural nets. The prediction is performed by considering
weighted sum of the inferences generated from all the fired prediction rules.

The last chapter is the concluding chapter of the book. It examines the scope of
the work in view of the results obtained and performance metrics. It also explores
the scope of future research in the present direction.

1.12 Summary

The chapter attempts to provide a foundation of time-series and its prediction
mechanisms. The fundamental loophole in time-series prediction lies in the ran-
domness of the series, which ultimately introduces uncertainty in the prediction
algorithms. The chapter begins with possible sources of randomness in a
time-series, including nonlinearity, non-Gaussian-ness, non-determinism and
non-stationary characteristics of the time-series. It also demonstrates the scope of
machine learning and fuzzy sets to address the prediction problem of a time-series
in presence of uncertainty. The book would address two important problems of
time-series prediction. The first problem refers to next time-point value prediction
under uncertainty and non-determinism of prediction rules. The second problem is
to predict the structure, comprising next few consecutive data points, using machine
learning techniques. Although several variants of traditional machine learning
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algorithms could be attempted to handle the problem, we solved the problem using
a clustering approach. The chapter ends with a discussion on the scope of the book.

Exercises

1. Check whether the data points given below follow the Gaussian distribution.

x 1 2 6 8 9 10 11 12

f(x) 3 4 7 660 11 12 6 7

[Hints: Obtain �f ðxÞ ¼ P12

x¼1
f ðxÞ=12 and r2 ¼

P12

x¼1 ðf ðxÞ��f ðxÞÞ
12 . Then check whether

f ðxÞ lies in ½�f ðxÞ � 3r;�f ðxÞþ 3r� for all x in [1, 12].]

2. Clarify the set of data points: f ðxÞ versus x into two classes using a straight line.

x 2 3 4 6 8 10 12

f(x) 1 2 3 4 60 72 66

[Hints: Draw a straight line classifier that would segregate the points below
(6, 4) and points above (8, 60) by this line. Hence determine the slope and
y-intersect.]

3. Show that fuzzy implication relation of Lukasiewicz type is always greater or
equal to the implication relation by Deins-Rescher implication function.

[Hints: Deins-Rescher implication is given by,

Rðx; yÞ ¼ Max½l�AðxiÞ; lBðyiÞ�
¼ Max½1� lAðxÞ; lBðyÞ�
¼ Min½1; ð1� lAðxÞþ lBðyÞÞ�
¼ Rðx; yÞ by Lukasiewicz implification.]

4. Let Ai;Aj;Ak;Al be four partitions of a time series. Given the prediction rules,

Ai ! Aj with P(Aj/Ai) = 0.3

Ai ! Ak with P(Ak/Ai) = 0.1

Ai ! Al with P(Al/Ai) = 0.5

Let P(that the time-series at time t falls in Ai) = 0.8 and the mid ranges of Aj, Ak

and Al be 20, 16, 14 K respectively, determine the expected value of series at time
tþ 1:
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[Hints: The probability of transitions to Aj, Ak, Al is given by 0.8 � 0.3 = 0.24,
0.8 � 0.2 = 0.16, 0.8 � 0.5 = 0.40. The expected value of the series at time ðtþ 1Þ
is (0.24 � 20 K + 0.16 � 16 k + 0.40 � 14 K)/(0.24 + 0.16 + 0.40) = 16.2 K.]

5. Let R be the implication relation for transition from partition Pi to Pj given by,

To Pj P1 P2 P3

From Pi

P1 0.6 0.2 0.2

P2 0.3 0.4 0.3

P3 0.2 0.5 0.3

Suppose, the close price c(t − 1) falls in partition P1 with membership 0.6 and
in P2 with membership 0.2, and in P3 with membership 0.2, compute
½lP1
ðcðtÞ lP2

ðcðtÞ lP3
ðcðtÞ�:

[Hints:

½lP1
ðcðtÞ lP2

ðcðtÞ lP3
ðcðtÞ�

by ½lP1
ðcðt � 1Þ lP2

ðcðt � 1Þ lP3
ðcðt � 1Þ� 
 R�

6. Determine the partition containing cðt � 1Þ, given Rðt � 1; tÞ ¼ Rðt; tþ 1Þ ¼
R as given in problem 5.

[Hints:

½lP1
ðcðtþ 1Þ lP2

ðcðtþ 1Þ lP3
ðcðtþ 1Þ�

¼ ½lP1
ðcðt � 1Þ lP2

ðcðt � 1Þ lP3
ðcðt � 1Þ� 
 Rðt � 1; tÞ 
 Rðt; tþ 1Þ

¼ ½lP1
ðcðt � 1Þ lP2

ðcðt � 1Þ lP3
ðcðt � 1Þ� 
 R2�

7. Given the dynamic range of a time-series [10,000, 60,000]. Suppose we need to
partition the series into 6 unequal parts, such that sum of the dynamic range
remains within the said bounds. Let the partition width in the proposed parti-
tioning scheme be 5000. If the partitions are set based on date-density, and the
ratio of data density is P1 : P2 : P3 : P4 : P5 : P6 ¼ 1 : 2 : 1 : 3 : 2 : 1, then
determine the lower and upper bounds of the partition.

[Hints: Range of the 1st partition ¼ 60;000�10;000
1þ 2þ 1þ 3þ 2þ 1� 1 ¼ 5000 units.

Thus the beginning and end of 1st partition is [1000, 15,000]. Similarly, the
range of the 2nd partition is ¼ 60;000�10;000

1þ 2þ 1þ 3þ 2þ 1� 2 ¼ 10; 000 units. Thus the
beginning and end of partition is [15,000, 25,000]. This process can be extended for
other partitions as well.]
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8. The stock price in a partition Pi is approximated by a Gaussian membership with
mean = 50,000 and standard deviation 2000. What is the probability that a stock
price of 55,500 will fall in the partition Pi?

[Hints: Let x = 55,500, mean µ = 50,000, ơ = 2000. Continuing a Gaussian
distribution of the form,

¼ 1

r
ffiffiffiffiffiffi
2p
p e

�ðx�lÞ2
2r2

where,

Pðx ¼ 55; 500Þ
¼ 1

2000� ffiffiffiffiffiffi
2p
p e

�ð55;500�55;000Þ
2�ð2000Þ2

¼ 0:12�
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Chapter 2
Self-adaptive Interval Type-2 Fuzzy
Set Induced Stock Index Prediction

Abstract This chapter introduces an alternative approach to time-series prediction
for stock index data using Interval Type-2 Fuzzy Sets. The work differs from the
existing research on time-series prediction by the following counts. First, partitions
of the time-series, obtained by fragmenting its valuation space over disjoint equal
sized intervals, are represented by Interval Type-2 Fuzzy Sets (or Type-1 fuzzy sets
in absence of sufficient data points in the partitions). Second, an interval type-2 (or
type-1) fuzzy reasoning is performed using prediction rules, extracted from the
(main factor) time-series. Third, a type-2 (or type-1) centroidal defuzzification is
undertaken to determine crisp measure of inferences obtained from the fired rules,
and lastly a weighted averaging of the defuzzified outcomes of the fired rules is
performed to predict the time-series at the next time point from its current value.
Besides the above three main prediction steps, the other issues considered in this
chapter include: (i) employing a new strategy to induce the main factor time-series
prediction by its secondary factors (other reference time-series), and
(ii) self-adaptation of membership functions to properly tune them to capture the
sudden changes in the main-factor time-series. Performance analysis undertaken
reveals that the proposed prediction algorithm outperforms existing algorithms with
respect to root mean-square error by a large margin (� 23%). A statistical analysis
undertaken with paired t-test confirms that the proposed method is superior in
performance at 95% confidence level to most of the existing techniques with root
mean square error as the key metric.

Abbreviations

CSV Composite secondary variation
CSVS Composite secondary variation series
FOU Footprint of uncertainty
IT2 Interval type-2
IT2FS Interval type-2 fuzzy set
IT2MF Interval type-2 membership function
MFCP Main factor close price
MFTS Main factor time-series
MFVS Main factor variation series
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RMSE Root mean square error
SFTS Secondary factor time-series
SFVS Secondary factor variation series
SFVTS Secondary factor variation time-series
T1 Type-1
T1FS Type-1 fuzzy set
VTS Variation time-series

Symbols

Ai;j Type-1 fuzzy set for partition Pi of MFTS
~Ai Interval type-2 fuzzy set for partition Pi in MFTS
Bi Classical set for partition Qi of MFVS
B0
i Classical set for partition Qi for SFVS/CSVS

cðtÞ Close Price on tth day
cl Left end point centroid of IT2FS
cr Right end point centroid of IT2FS
c Centroid of an IT2FS
c′ Measured value of c tð Þ in centroid calculation
cx Type-1 centroid of lAx

ðcðtÞÞ
mA Mean values of the distributions of RMSE obtained by algorithms A
Pi Ith partition for close price time series (of MFTS)
Qi Ith partition for variation series (of MFVS/SFVS/CSVS)
sA Standard deviation of the respective samples obtained by algorithms A
Vd
M tð Þ Main factor variation series with delay d

Vd
Si

Ith secondary factor variation series with delay d

Vd
S tð Þ Composite secondary variation series with delay d

WSi Weight for ith secondary factor
lAðxÞ Type-1 membership function of linguistic variable x in fuzzy set A
�l~AðxÞ Upper membership function of IT2FS ~A
l~A

ðxÞ Lower membership function of IT2FS ~A
DSi Total difference variation for CSVS of ith secondary factor
D̂Si Normalized value of DSi for CSVS of ith secondary factor

2.1 Introduction

Prediction of a time-series [1] refers to determining the amplitude of the series at
time t + 1 from its previous m sample values located at time: t, t − 1, t − 2, …, t −
(m − 1) for a finite positive integer m. An m-th order time-series prediction involves
all the m previous sample values directly for its forecasting/prediction [2, 3]. In this
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chapter, we, for the sake of simplicity, however, use a first order prediction of
time-series, where the (t + 1)-th sample of the time-series directly depends only on
the sample value at time ðtþ 1� dÞ, where d denotes the time-delay, although all
the previous m sample values are required to design the prediction rules. There
exists a vast literature on prediction of time-series for real processes, including
rainfall [4, 5], population growth [6], atmospheric temperature [7], university
enrollment for students [8–11], economic growth [12] and the like. This chapter is
concerned with stock index, the time-series of which describing close price [13], is
characterized by the following four attributes: non-linear [14], non-deterministic,
non-stationary [15] and non-Gaussian jointly.

Designing a suitable model for stock index prediction requires handling the
above four characteristics jointly. Although there exist several attempts to model
time-series using non-linear oscillators [16], non-linear regression [17], adaptive
auto-regression [18], Hzorth parameters [19] and the like, none of these could
accurately model these time-series [20] for their inherent limitations to capture all
the four characteristics jointly.

The logic of fuzzy sets plays a promising role to handle the above problems
jointly. First, the nonlinearity of time-series is modeled by the nonlinearity of
membership functions and their nonlinear mapping from antecedent to consequent
space of fuzzy production rules. Second, the non-deterministic characteristics of the
time-series (that might occur due to randomness in a wide space), is here signifi-
cantly reduced because of its occurrence in one of a few equal sized partitions of the
universe of discourse. Third, the non-stationary characteristics of the time-series
that offers a correlation of signal frequencies with time [15] is avoided in fuzzy
modeling by time-invariant models of membership functions [8]. Lastly, the
non-Gaussian feature may be relaxed as locally Gaussian within small intervals
(partitions) of the time-series. Thus, fuzzy sets are capable of capturing the
uncertainty/imprecision in time-series prediction that might arise because of the
above four hindrances.

The inherent power of fuzzy sets to model uncertainty of time-series has
attracted researchers to employ fuzzy logic in time-series prediction. Song et al. [8–
11] pioneered the art of fuzzy time-series prediction by representing the time-series
value at time t − 1 and time t as fuzzy membership functions (MFs) and connected
them by fuzzy implication relations for all possible time t in the time-series. If there
exist n possible discrete values of time t, then we would have n − 1 possible fuzzy
implication relations. Song et al. combined all these implication relations into a
single relation R by taking union of all of these relations. The prediction involves
first fuzzifying the crisp value of the time series at time t and then using compo-
sition rule of inference to determine the MF of the predicted time series at time
t + 1 using R as the composite time-invariant implication relation. Lastly, they
defuzzified the result to obtain the crisp value of the time-series at time t + 1.

The fundamental deviation in the subsequent work by Chen [21] lies in grouping
of rules having common antecedents. Thus during the prediction phase, only few
rules whose antecedent match with the antecedent of the fuzzified time-series value
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at time t only, need to be fired to obtain multiple MFs of the inferred consequences,
one for each fired rule, an averaging type of defuzzification of which yields the
actual inference at time t + 1. Hwang et al. considered a variation time-series [22]
by taking the difference of two consecutive values of the time-series, and used
max-product compositional rule of inference to predict the inference of the variation
at time t + 1 from its previous values. A weighted average type of defuzzification
was used to obtain the predicted value of the time-series at time t + 1. Cai et al. [23]
introduced genetic algorithm to determine the optimal weight matrix for transitions
of partitions of a given time-series from each day to its next day, and used the
weight matrix to predict the time-series at time t + 1 from its value at time t. In [7],
Chen et al. extended the work of Hwang et al. by first introducing a concept of
secondary factors in the prediction of main factor time-series. There exists a vast
literature on time-series prediction using fuzzy logic. A few of these that deserve
special mention includes adaptive time-variant modeling [24], adaptive expectation
modeling [25], Fibonacci sequence [26], Neural networks [27, 28], Particle Swarm
Optimization [29] based modeling, fuzzy cognitive maps and fuzzy clustering [30],
bi-variate [31, 32] and multi-variate [33–37] modeling and High order fuzzy
multi-period adaptation model [38] for time-series prediction.

Most of the traditional works on stock index prediction developed with fuzzy
logic [39] employ type-1(T1) fuzzy reasoning to predict future stock indices.
Although T1 fuzzy sets have proved their excellence in automated reasoning for
problems of diverse domains, including fuzzy washing machines [40, 41], fuzzy
color TV [42] etc., they have limited power to capture the uncertainty of the real
world problems [43]. Naturally, T1 fuzzy logic is incompetent to stock (and general
time-series) prediction problems. The importance of interval type-2 fuzzy set
(IT2FS) over its type-1 counterpart in chaotic time-series prediction has already
been demonstrated by Karnik and Mendel [44]. There exist a few recent works
attempting to model stock prediction problem using type-2 fuzzy sets [45, 46].
These models aimat representing a single (interval) type-2 membership function
(MF), considering three distinct stock data items, called close, high and low prices
[13]. Here too, the authors partitioned each of the above three time-series into
intervals of equal size, and represented each partition as T1 fuzzy set. They con-
structed fuzzy If-Then rules describing transitions of stock index price from one day
to the next day for each of the above time series. During prediction, they identified a
set of rules containing antecedent fuzzy sets corresponding to current stock prices,
obtained union and intersection of the consequents of the rules to derive (interval)
type-2 fuzzy inferences and employed centre average defuzzifiers to predict the
stock price for the next day. Bagestani and Zare [46] extended the above work by
adaptation of the structure of the membership functions and weights of the
defuzzified outputs to optimize root mean square error. In addition, the latter work
employed centre of gravity defuzzifier in place of centre average defuzzifier used
previously. The present chapter is an extension of the seminal work of Chen et al.
[47] by the following counts.
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1. In order to represent the close price c(t) within a partition (interval), we represent
each short duration contiguous fluctuation of c(t) in a given partition of the
universe of c(t) by a type-1 MF, and take union of all these type-1 MFs within a
partition to represent it by an interval type-2 fuzzy set (IT2FS). Under special
circumstances, when a partition includes one or a few contiguous data points
only, we represent the partition by a type-1 MF only.

2. The antecedent and consequent of fuzzy prediction rules of the form Ai ! Aj

(extracted from the consecutive occurrence of data points in partitions Pi and Pj,
are represented by interval type-2 (IT2) (or type-1) fuzzy sets depending on the
count and consecutive occurrences of data points in a partition. Naturally, there
exist four possible types of fuzzy prediction rules: IT2 to IT2, IT2 to type-1,
type-1 to IT2 and type-1 to type-1 depending on the representation of Ai and Aj

by IT2 or type-1 fuzzy sets. This chapter thus employs four possible types of
reasoning, each one for one specific type of prediction rule.

3. Appropriate defuzzification techniques, such as Karnik-Mendel algorithm for
IT2 inferences [48, 49] and centroidal defuzzification for type-1 inferences have
been employed to obtain the predicted close price at day t + 1.

4. Existing works [47] presume that the variation in secondary factor of the current
day (of reliable reference time-series) identically influences the main factor of
the next day. Naturally, if the interval counts in both the secondary factor and
the main factor are equal, then the above variations have the same interval label
in their respective universes. In the present chapter, we relax the restriction by
considering all possible occurrence of variation of the main factor intervals for
each occurrence of secondary factor interval obtained from the historical data.
Such relaxation keeps the prediction process free from bias. In case, the current
occurrence of secondary factor interval has no precedence in the historical
variation data, we adopt the same principle used in [47].

5. One additional feature that caused significant improvement in performance in
prediction is due to the introduction of evolutionary adaptation in the parameters
of the selected structure of membership functions. The evolutionary adaptation
tunes the base-width of the triangular/Gaussian membership functions (MFs)
employed to reduce the root mean square error (RMSE) [27, 36]. Experiments
undertaken reveal that tuning of parameters of MFs result in over 15%
improvement in RMSE.

The proposed extensions introduced above outperforms all existing works on
IT2 [45, 46] and type-1 fuzzy logic based stock index prediction techniques [8–11,
21, 47, 50] using RMSE as the metric.

The rest of this chapter is divided into five sections. In Sect. 2.2, we provide the
necessary definitions required to understand this chapter. In Sect. 2.3, we present
both training and prediction algorithms using IT2 fuzzy reasoning in the context of
stock price prediction. Section 2.4 is concerned with experimental issues and
computer simulation with details of results obtained and their interpretation.
Performance analysis of the proposed technique with existing works is compared in
Sect. 2.5. Conclusions are listed in Sect. 2.6.

2.1 Introduction 43



2.2 Preliminaries

This section provides a few fundamental definitions pertaining to both time-series
prediction and IT2FS. These definitions will be used in the rest of this chapter.

Definition 2.1 The last traded price in a trading day of a stock index is called close
price, hereafter denoted by c(t).

Definition 2.2 The stock index under consideration for prediction of a time series is
called Main Factor Time Series (MFTS). Here, we consider TAIEX (Taiwan Stock
Exchange Index) as the MFTS.

Definition 2.3 The associated indices of time series that largely influence predic-
tion of the MFTS is called Secondary Factor Time Series (SFTS). Here, we con-
sider NASDAQ (National Association of Securities and Dealers Automated
Quotations) and DJI (Dow Jones Industrial average) as the SFTS.

Definition 2.4 For a given close price time series (CTS) c(t), the Variation Time
Series (VTS) [47] with delay of d days for close price is given by,

VTSdðtÞ ¼ cðtÞ � cðt � dÞ
cðt � dÞ � 100 ð2:1Þ

for t 2 ½tmin; tmax�, where tmin and tmax denote the beginning and terminating days of
the training period [47]. Here we consider Vd

MðtÞ and Vd
S ðtÞ as the VTS for MFTS

and SFTS respectively.

Definition 2.5 Prediction of MFTS cðtþ dÞ here refers to determining cðtþ dÞ
from its historical values: cðtÞ, cðt � 1Þ, cðt � 2Þ, cðt � 3Þ, …, cðt � ðm� 1ÞÞ and
secondary factor VTS (SFVTS) Vd

S ðtÞ, Vd
S ðt � 1Þ, …, Vd

S ðt � ðm� 1ÞÞ for some
positive integer m. Such prediction is referred to as m-th order forecasting.
However, in most of the applications, researchers take d ¼ 1 for simplicity and
convenience [8–11, 47].

Definition 2.6 A T1 fuzzy set is a two tuple given by \x, lAðx)[ where x is a
linguistic variable in a Universe X and lAðx) is the membership function of x in
fuzzy set A, where lAðxÞ 2 ½0; 1�.
Definition 2.7 A general type-2 Fuzzy Set (GT2FS) is a three tuple given by
\x, lAðx),lAðx,lAðx))[ where x and lAðx) have the same meaning as in
Definition 2.6, and lðx,lAðx)) is the secondary membership in [0, 1] at a given
ðx; lAðx)).
Definition 2.8 An interval type-2 fuzzy set (IT2FS) is defined by two T1 mem-
bership functions (MFs), called Upper Membership Function (UMF), and Lower
Membership Function (LMF). An IT2FS ~A, therefore, is represented by
\l~A

ðxÞ; �l~AðxÞ[ where l~A
ðxÞ and �l~AðxÞ denote the lower and upper membership
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functions respectively. The secondary membership lðx,lAðx)) in IT2FS is con-
sidered as 1 for all x and lAðx).
Definition 2.9 The left end point centroid is the smallest of all possible centroids
(of the embedded fuzzy sets [48]) in an IT2FS ~A and is evaluated by

cl ¼
Pk�1

i¼1 �l~AðxiÞ � xi þ
PN

i¼kþ 1 l~A
ðxiÞ � xi

Pk�1
i¼1 �l~AðxiÞþ

PN
i¼kþ 1 l~A

ðxiÞ
ð2:2Þ

using the well-known Karnik-Mendel algorithm [51],
where x 2 fx1; x2; . . .; xNg and xiþ 1 [ xi 8i ¼ 1 toN � 1: Here x ¼ xk is a

switch point and N denotes the number of sample points of �l~AðxiÞ and l~A
ðxiÞ.

Definition 2.10 The right end point centroid is the largest of all possible centroids
(of the embedded fuzzy sets [48]) in an IT2FS ~A and is evaluated by

cr ¼
Pk�1

i¼1 l~A
ðxiÞ � xi þ

PN
i¼kþ 1 �l~AðxiÞ � xiPk�1

i¼1 l~A
ðxiÞþ

PN
i¼kþ 1 �l~AðxiÞ

ð2:3Þ

using the well-known Karnik-Mendel algorithm [51], where x 2
fx1; x2; . . .; xNg and xiþ 1 [ xi 8i ¼ 1 toN � 1: Here x ¼ xk is a switch point and
N denotes the number of sample points of �l~AðxiÞ and l~A

ðxiÞ.
Definition 2.11 The centroid of an IT2FS is given by

c ¼ ðcl þ crÞ
2

ð2:4Þ

where cl and cr are the left and the right end point centroids.

2.3 Proposed Approach

Given a time-series cðtÞ for close price of a stock index, we observe consecutive
10 months’ daily data for the above time-series to extract certain knowledge for
prediction of the time series. To extract such knowledge, we partition the entire
range of cðtÞ into equal sized intervals Pi, i ¼ 1 to p, and determine the list of
possible changes in c(t) from day t ¼ ti to t ¼ tiþ d for any valid integer i and a
fixed delay d. Classical production rule-based reasoning [52] could be performed to
predict the interval of cðtiþ dÞ from the known interval of cðtiÞ using the previously
acquired rules. However, because of uncertainties in time-series, the strict pro-
duction rules may not return the correct predictions. The logic of fuzzy sets, which
has proved itself a successful tool to handle uncertainty, has therefore been used
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here to predict the membership of cðtiþ dÞ in a given partition Piþ d from the
measured membership of cðtiÞ in partition Pi:

In this chapter, each continuum neighborhood of data points of cðtÞ in a given
partition Pi is represented by a T1 fuzzy set, and the union of all such T1 fuzzy sets
under the partition is described by an IT2FS. The IT2FS model proposed for each
individual partition can capture the uncertainty of the disjoint sets of data points
within the partition. In addition, the transition: cðtÞ to cðtþ dÞ from partition Pi to
partition Pj is encoded as an IT2 fuzzy prediction rule, rather than a typical binary
production rule. The IT2 prediction rule indicates that the linguistic variables
present in the antecedent and consequent parts of the rule have IT2 MFs. The
prediction of cðt0 þ dÞ from a given measurement point cðt0Þ, is done in two steps. In
the first step, we use fuzzy reasoning to determine the membership of cðt0 þ dÞ in
partition P0

j from the known membership of cðt0Þ in P0
i: After the inference is

obtained, we use a T1/IT2 de-fuzzification depending on the type of reasoning used.
The modality selection of reasoning (i.e., T1/IT2) is performed based on the dis-
tribution of data points in a given partition. This is undertaken in detail in the
algorithm to be developed for rule identification from transitions history of data
points in the time-series.

The principle of time-series forecasting introduced above is expected to offer
good prediction accuracy, in case the time-series under consideration (called main
factor) is not disturbed by external influences, such as changes in Government
policies, macro/micro economic conditions, and many other unaccountable cir-
cumstances. Since all the external influences are not known, in many circumstances
we model the influences by considering variation from other associated (secondary)
world indices. Chen et al. [47] introduced an innovative approach to represent the
effect of secondary indices to the main factor time-series. They considered com-
posite variation of several secondary indices by measuring the deviation of indi-
vidual index from the main factor time-series, and later used these deviations to
determine normalized weights. These normalized weights are used later to scale the
stock indices to determine the composite variation of secondary stock indices. To
predict a stock data at day tþ 1 from the measurements of the same stock data at
day t, Chen et al. determined the partition of the composite variation at day t with an
assumption that the main factor at day t too would have the same partition. Later
they used T1 fuzzy reasoning (using acquired rules in the training phase) to predict
the stock data for the main factor at day tþ 1.

This chapter proposes three alternative approaches to economic time-series
prediction. The first proposal considers employing IT2FS in place of T1 fuzzy
reasoning introduced in [8–11, 21, 22, 47]. The IT2FS captures the inherent
uncertainty in the time-series and thus provides a better fuzzy relational mapping
from the measurement space to inference space, thereby offering better performance
in prediction than its T1 counterpart. The second approach considers both IT2FS
based reasoning along with feed-forward information from secondary stock indices,
which usually are of more relative stability than the time-series under prediction.
Thus the performance with feed-forward from secondary time-series gives better
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relative performance in comparison to the only IT2FS based reasoning. The third
approach considers adaptation of T1 membership functions used to construct IT2FS
MFs along with feed-forward connections from secondary stock indices. The per-
formance of the third approach is better than its other two counterparts. The main
steps of the algorithms are outlined below.

2.3.1 Training Phase

Given the MFTS and the SFTS of close price cðtÞ for 10 months, we need to
determine (i) group of type-2 fuzzy logical implications (prediction rules) for
individual interval of main factor variation, and (ii) Secondary to Main Factor
variation mapping. This is done by the following six steps.

1. Partitioning of main factor close price (MFCP) into p intervals (partitions) of
equal length.

2. Construction of IT2 or T1 fuzzy sets as appropriate for each interval of close
price.

3. IT2 or T1 fuzzy rule base selection for each interval.
4. Grouping of IT2/T1 fuzzy implication for individual main factor variation

time-series Vd
M tð Þ:

5. Computing Composite Secondary Variation Series (CSVS) and its partitioning.
6. Determining secondary to main factor variation mapping.

Figures 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 together explains the steps involved in
the training phase. The details of individual steps are given below point-wise.

Fig. 2.1 Time Series cðtÞ and the partitions
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Fig. 2.2 Construction of flat-top IT2FS for partition A3: a The close price, b Type-1 MFs for
regions R1 and R2, c IT2FS representation of (b), d Flat-top IT2FS obtained by joining the peaks
of two lobes
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2.3.1.1 Partitioning of Main Factor Close Prices into p Intervals
of Equal Length

Consider a universe of discourse U given by ½MIN � D1; MAXþD2�, where MAX
and MIN are the respective global maximum and global minimum of the time-series
for close price cðtÞ for a given duration of t in 1; 10½ � months. D1 and D2 are
positive real numbers in 1; 99½ �, such that MAXþD1ð Þ=100 and ðMIN � D2Þ=100
are positive integers. Divide the universe U into p disjoint partitions: P1;P2; . . .;Pp

of equal intervals as given in Fig. 2.1 [53] for more precision and clarity), where the
length of an interval [47] is given by ½ MAX þD1ð Þ � ðMIN � D2Þ�=p.

Fig. 2.3 Construction of fuzzy logical implication and their grouping under MFVS Vd
M tð Þ with

d = 1: a If cMðtiÞ 2 Ak and cMðti þ 1Þ 2 Aj; then the rule is Ak ! Aj, b If Vd
M (ti þ 1) ¼ Bs, 9s,

then grouping is done as Bs:Ak ! Aj; 9j; k; s
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2.3.1.2 Construction of IT2 or Type-1 Fuzzy Sets as Appropriate
for Each Interval of Close Price

For each partition Pi, i ¼ 1 to p of c(t), and for each set j of consecutive data points
in Pi, we define fuzzy sets Ai, j for j ¼ 1 to jMax, where the T1 MF of Ai;j indicates
the linguistic membership function (MF) CLOSE_TO_CENTRE_VALUE. For
each group j of (three or more) consecutive data points of cðtÞ in Pi, construct a

Fig. 2.4 Secondary to Main factor variation mapping considering d = 1: If Vd
MðtÞ 2 Bk , then the

mapping is written as B0
j : Bk
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Gaussian T1 membership function with mean and standard deviation equal to the
respective mean and standard deviation of these data points. Construct an IT2FS ~Ai,
the footprint of uncertainty FOUi of which is obtained by taking the union of Ai;j for
j ¼ 1 to jMax. The constructed FOU is approximated (by joining the peaks of T1
MFs with a straight line of zero slope) with a flat top UMF to ensure convexity and
normality [54, 55] of the IT2FS. The following special cases need to be handled for
partitions with fewer data points.

If a partition Pi includes only one data point of cðtÞ; we construct a T1
Gaussian MF with mean equal to the data point and very small variance of the order
of 10−4 or smaller. If a partition Pi includes only two consecutive data points of cðtÞ
we construct a T1 Gaussian MF with mean and standard deviation equal to the
respective mean and standard deviation of these two data points. Lastly, if a par-
tition Pi includes only two (or more) discrete individual data points of cðtÞ we
construct two (or more) Gaussian MFs with means equal to the respective data
points and very small variance of the order of 10−4 or smaller. We now construct a
IT2FS by taking union of these T1 MFs.

Fig. 2.5 The main steps in the prediction algorithm of a stock index time-series considering d = 1
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2.3.1.3 Fuzzy Prediction Rule (FPR) Construction
for Consecutive cðtÞs

For each pair of training days t and tþ d, we determine the mapping from ~Ai to ~Aj,
where ~Ai and ~Aj correspond to IT2 MF of the close prices at day t and day tþ d
respectively.

Fig. 2.6 Inference Generation with T1/ IT2 antecedent-consequent pairs
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2.3.1.4 Grouping of IT2/T1 Fuzzy Implications for Individual Main
Factor Variation Vd

M(t)

(a) MFVS Construction: For trading days t 2 tMin; tMax½ �, we evaluate Vd
MðtÞ using

Eq. (2.1) for the main factor (here, TAIEX [56]).
(b) Partitioning of Vd

MðtÞ into Bis: Although in most of the practical cases Vd
MðtÞ

lies in ½�6%; þ 6%�, we here consider a wider range of it in ½�1; þ1�, so as
to not to disregard the possibility of occurrences of stray data points outside
½�6%; þ 6%�. Partitioning the entire space of ½�1; þ1� is performed by
segregating the range: ½�6%; þ 6%� into equal sized intervals and the range
beyond on either sides of it, i.e., ½�1;�6%Þ and ðþ 6% ; þ1� into two
distinct intervals. Such partitioning ensures a uniformly high probability of
occurrence of any data point at any one of the intervals for the band
½�6%; þ 6%� and a uniformly low probability of occurrence to any data point
lying in ½ð�1;�6%Þ and ðþ 6%; þ1Þ] ranges. The entire space of Vd

MðtÞ in
½�1; þ1� is divided into 14 intervals (partitions) B1 through B14, where
interval B1 describes the range ½ð�1;�6%Þ, B2, through B13 represent 12
partitions covering ½�6%; þ 6%� in order of increasing values of Vd

MðtÞ, and
the interval B14 represents the last partition ðþ 6% ; þ1�].

Fig. 2.7 Optimal Selection
of MFs to minimize RMSE
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(c) Grouping of FPRs Under Each Variation Group Bi: For each feasible tþ d
in tMin; tMax½ �, find the partition Bi, such that Vd

M tþ dð Þ lies in the range of Bi.
Also obtain the fuzzy sets ~Aj; ~Ak corresponding to the partitions Pj and Pk at
days t and tþ d respectively. Then construct a rule: ~Aj ! ~Ak with a label Bi,
represented by

Bi : ~Aj ! ~Ak:

Repeat this step 8 feasible t 2 ½tMin; tMax�. Figure 2.3 describes the above map-
ping of ~Aj ! ~Ak and its labeling against Bi for a MFTS cM tð Þ: Tables 2.1 and 2.2
clarifies the grouping of rules like ~Aj ! ~Ak in Bi following Fig. 2.3.

2.3.1.5 Computing Composite Secondary Variation Series (CSVS)
and Its Partitioning

(a) Computing Secondary Factor Variation Series (SFVS): For ith elementary
secondary factor SFi, we evaluate Vd

SiðtÞ (variation in SFi) using Eq. (2.1),
where ciðtÞ and ciðt � dÞ denote the close price of tth day and ðt � dÞth day of
i-th elementary secondary factor respectively.

(b) Total Difference Variation ðDsiÞ Computation: For i-th elementary secondary
SFi, evaluate total difference variation, denoted by Dsi by using the following
expression,

Table 2.1 Main factor fuzzy
logical implication
(FLI) considering d = 1

Group Time points

t1 … ti+1 tj+1 … tk+1 … tl+1 … tn
B1

…
…
…

…
…

B5

…
A2 ! A2

…
A3 ! A2A5 ! A4A2 ! A1

…

B14 … …

Table 2.2 Main factor fuzzy
logical implication
(FLI) under variation groups
considering d = 1

Group Antecedent of main factor

A1 A2 A3 … A5 … A18

B1 … … … …

… … … … … …

B5 A2 ! A2

A2 ! A1

A3 ! A2 A5 ! A4

… … … … … …

B14 … … … … …
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Dsi ¼
X

8t
jVd

Siðt � dÞ � Vd
MðtÞj ð2:5Þ

where Vd
MðtÞ and Vd

Siðt � dÞ denote the variation is main factor at day t and that
in ith SFi day ðt � dÞ:

(c) Normalization: Use transformation (6) to obtain the normalized value of Dsi :

D̂si ¼ DsiPn
j¼1 Ds j

" #�1

¼
Pn

j¼1 Ds j

Dsi
ð2:6Þ

where index j in 1; n½ � refer to different elementary SFis.
(d) Weight Computation: Determine the normalized weighted variation for ele-

mentary SF over the training period (January 1 through October 31 of any
calendar year).

Wi
S ¼

D̂siPn
j¼1 D̂s j

ð2:7Þ

(e) Composite Secondary Variation Series (CSVS) Computation [47]: The
overall variation at day t is given by

Vd
S ðtÞ ¼

Xn

i¼1

Vt
si � Wt

si ð2:8Þ

2.3.1.6 Determining Secondary to Main Factor Variation Mapping

Like the main factor time-series, the secondary factor variation series ðCSVSÞ is also
partitioned into 14 intervals: B0

1;B
0
2; . . .:;B

0
14 following the same principle as

introduced in step 4(b). For each Vd
S t � dð Þ lying in B0

i; and for each Vd
MðtÞ lying in

Bj;Bk; . . .;Bl; for all t; we group Bj;Bk; . . .;Bl under group B0
i:

Group B0
i : Bj; Bk; . . .;Bl

Figure 2.4 illustrates the principle of group formation under B0
i: Here, for space

limitation we show only 8 intervals B1 through B8 instead of 14 intervals. The
frequency count of Bj in MFTS at day t for a given B0

i in CSVS at day t � d is
evaluated in Fig. 2.4 and included in Table 2.3 for convenience.
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2.3.2 Prediction Phase

Prediction of time-series at day tþ d from its close price at day t could easily be
evaluated by identifying all the rules having antecedent Aj; where Aj; denotes the
fuzzy set corresponding to the partition at day t in the partitioned main factor close
price time-series. However, it is observed by previous researchers [8–11] that
prediction using all the rules with Aj as antecedent does not give good results. This
chapter overcomes the above problem by selecting a subset of all possible rules
with Aj as antecedent. The subset-hood is determined by using the secondary
variation time series. For example, if the partition returned by secondary factor
time-series at day t is B0

i then we obtain the corresponding partitions in MFTS by
consulting the secondary to main factor variation series mapping introduced in
Table 2.3. Suppose the Table 2.3 returns as the partitions in the MFTS. We now
look for rules having antecedent Aj in the labels in Table 2.2. The rules present
under a given label are fired , and the average of the centroids of the resulting
inferences is preserved. The weighed sum of the preserved average centroids
(corresponding to individual labels) is declared as the predicted close price at day
tþ d: The algorithm for close price prediction is given below. Figure 2.5 provides
the steps of the prediction algorithm schematically.

1. Obtain secondary variation B0
i and main factor close price Aj both for day t.

2. Using Table 2.3, determine Bk; Bl; Bm etc. of main factor variation enlisted
against B0

i.

Table 2.3 Frequency of occurrence of main factor variation in each group of secondary factor
variation considering d = 1
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3.

(a) Rule Selection: Identify fuzzy production rules with antecedent Aj against
rules with main factor variation Bk;Bl; Bm in Table 2.2.

(b) For each production rule under a given Bp, p 2 k; l; mf g:,
i. IT2/T1 Fuzzy Reasoning: Perform IT2/T1 fuzzy reasoning with rules

Aj ! Au; Aj ! Av; Aj ! Aw if the row Bp in Table 2.2 includes the rule
Aj ! Au;Av;Aw. If the group Bp does not contain any rule then we
consider the mid value of the partition corresponding to the partition Aj

for forecasting following [47].
ii. IT2/T1 Defuzzification: Employ IT2 or T1 defuzzification, as appli-

cable, to obtain centroids of the discretized MFs: Au; Av; Aw and take
the average of the centroids.

The procedure of reasoning and defuzzification considering the presence of
T1/IT2 MFs in antecedent/consequent is given separately for convenience of the
readers.

(c) Weight Calculation and Prediction: Determine the frequency counts fk; fl; fm
of the main factor variation Bk; Bl; Bm under secondary variation Bi

/ in
Table 2.3 to determine the probability of occurrences as fk= fk þ fl þ fmð Þ,
fl= fk þ fl þ fmð Þ, fm= fk þ fl þ fmð Þ. We use the probabilities to defuzzify
expected value of main factor close price for the next day by taking sum of
products of probabilities and average centroids values under Bk;Bl; Bm.

The complete steps of prediction of a time series are illustrated in Fig. 2.5.

Procedure of T1/IT2 Reasoning and Defuzzification

Case I: When Both Antecedent and Consequents are IT2FS

(a) IT2 Reasoning: Let ~AiðcðtÞÞ be the value of ~Ai for linguistic variable x ¼ cðtÞ.
Let UMF and LMF for ~Ai be UMFiðcðtÞÞ and LMFiðcðtÞÞ respectively. On
firing the rules: ~Ai ! ~Aj, ~Ai ! ~Ak and ~Ai ! ~Al we determine the fuzzy infer-
ences by the following procedure. For the rule: ~Ai ! ~Aj; the IT inference is
obtained by

UMF0
j ¼ Min ½UMFiðc0Þ; UMFj�; ð2:9Þ

LMF0
j ¼ Min ½LMFiðc0Þ; LMFj�; ð2:10Þ

where c0 is a measured value of cðtÞ 9t:

Similarly, we obtain UMF0
y and LMF0

y by replacing index j by y for y 2 fk; lg for
the remaining rules.
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(b) IT2 Centroid Computation: For each pair of UMF0
x and LMF0

x for x 2
fj; k; lg; we determine the centroid of IT2FS A0

x by the following method.
Determine the lower End Point centroid cxL and Upper End Point centroid cxR,
for x 2 fj; k; lg and centroid cx following Eqs. 2.2, 2.3 and 2.4 respectively.
Thus for the rule: Bi : ~Ai ! ~Aj; ~Ak; ~Al, we obtain the c j, ck and cl: Determine the
average of c j, ck and cl:

Case II: When Antecedent is T1FS and Consequent is IT2FS

(a) IT2 Reasoning: For the rule: Bi : Ai ! ~Aj; ~Ak; ~Al we determine the fuzzy
inferences by the following procedure for

UMF0
j ¼ Min ½lAi

ðc0Þ; UMFj�; ð2:11Þ

LMF0
j ¼ Min ½lAi

ðc0Þ; LMFj�; ð2:12Þ

where c0 is a measured value of cðtÞ 9t and lAi
ðc0Þ is the T1 membership at

cðtÞ ¼ c0: Similarly, we obtain UMF 0
y and LMF0

y by replacing index j by y for
y 2 fk; lg:
(b) IT2 Centroid Computation: The centroid computation procedure, here, is

similar to that in Case I.

Case III: When Antecedent is IT2FS and Consequent is T1 FS

(a) T1 Reasoning: For the rule: Bi : ~Ai ! Aj;Ak;Al, we determine the fuzzy
inferences by the following procedure.

lA0
j
ðcðtÞÞ ¼ Min ½UMFiðc0Þ; lAj

ðcðtÞÞ�; ð2:13Þ

where c0 is a measured value of cðtÞ 9t:

Similarly, we obtain lA0
y
ðcðtÞÞ by replacing index j by y for y 2 fk; lg:

(b) T1 Centroid Computation: For each T1 discretized MF lA0
x
ðcðtÞÞ for x 2

fj; k; lg; we determine the T1 centroid of A0
x by the following formula

cx ¼
P1

cðtiÞ¼�1 lAx
ðcðtiÞÞ:cðtiÞP1

cðtiÞ¼�1 lAx
ðcðtiÞÞ For x 2 j; k; lf g ð2:14Þ

Thus for the rule Bi : ~Ai ! Aj;Ak;Al, we obtain the centroids c j, ck and cl:
Determine the average of c j, ck and cl:
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Case IV: Antecedent and Consequent Both are T1 FS

(a) T1 Reasoning: For the rule: Bi : Ai ! Aj;Ak;Al we determine the fuzzy
inferences by the following procedure.

lA0
j
ðcðtÞÞ ¼ Min ½lAi

ðc0Þ; lAj
ðcðtÞÞ�;

Where c0 is a measured value of cðtÞ 9t:
Similarly, we obtain lA0

y
ðcðtÞÞ by replacing index j by y for y 2 fk; lg:

(b) T1 Centroid Computation: The centroid computation procedure, here, is
similar to that in Case III.

Figure 2.6 provides the inference generation mechanism introduced above
graphically for the above four cases.

2.3.3 Prediction with Self-adaptive IT2/T1 MFs

Large scale experiments with time-series prediction reveal that the results in RMSE
are highly influenced by the shape of MFs used in the antecedent/consequent of the
prediction rules. This motivated us to arrange on-line selection of MFs from a
standard list, here triangular and Gaussian, with provisions for variations in their
base-width. The optimal selection of base width can be performed by employing an
evolutionary algorithm with an ultimate aim to minimize the RMSE. Any standard
evolutionary/swarm algorithm could serve the above purpose. However, for our
experience of working with Differential Evolution (DE) algorithm [57, 58] coupled
with its inherent merits of low computational overhead, simplicity, requirement of
fewer control parameters and above all its high accuracy, we used DE to adaptively
select the right structure of MFs with RMSE as the fitness function.

Figure 2.7 provides a schematic overview of the MF adaptation scheme. The
bold box in Fig. 2.7 includes the complete adaptation steps, while the bottommost
block represents the prediction algorithm with adapted parameters. The adaptation
module makes trial selection of standard deviation (base-width) of the Gaussian
(triangular) MFs within ±30% of their original values. Next the change in RMSE
due to adoption of the new MFs is evaluated. Finally, we loop through the above
steps until no further reduction in change in RMSE is observed. The last obtained
values of parameters of MFs are saved for subsequent usage in prediction. The
benefits of the adaptation of MFs is compared in the next section vide Fig. 2.8.
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2.4 Experiments

The experiment includes both training and testing with TAIEX [56] close price
[13], hereafter called main factor, and NASDAQ and DOWJONES close prices as
secondary factors. The training session comprises T1/IT2 membership function
construction, extraction of fuzzy prediction rules and mapping of secondary to main
factor variations. The testing session comprises fuzzy prediction rule selection for
firing, T1/IT2 fuzzy reasoning as applicable, defuzzification and weighted aver-
aging of multiple defuzzified rules falling under different main factor variations.
While performing the experiments, we consider five distinctive methods. The
proposed method 1 includes only IT2FS based reasoning, ignoring the effect of
secondary factor without adaptation of membership function is given only for the
sake of academic interest. The proposed method 2 to proposed method 5 includes
the influence of secondary factor. The proposed method 2 to proposed method 5 are
hereafter called (a) Proposed method 2: fixed Gaussian MF (without adaptation),
(b) Proposed method 3: Gaussian with provisions for adaptation in standard devi-
ation, (c) Proposed method 4: fixed triangular MF (without adaptation), and
(d) Proposed method 5: triangular with provisions for adaptation in base-width. The
training and prediction algorithms incorporating the above five types of MFs are
hereafter referred to as proposed methods: 1, 2, 3, 4 and 5 respectively for brevity.

Fig. 2.8 Forecasted TAIEX of the months November and December 2003 using Gaussian MFs
and Triangular MFs, a Actual TAIEX, forecasted data using proposed method 2 without adopting
the Gaussian MFs and forecasted data using proposed method 3 adopting the Gaussian MFs,
b Actual TAIEX, forecasted data using proposed method 4 without adopting the triangular MFs
and forecasted data using proposed method 5
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For clarity, we summarized the strategies adopted in these five methods are shown
in Table 2.4. The initial MFs in Proposed method 4 and Proposed method 5 are
represented by isosceles triangles with a peak membership of one at the centre and
base-width equal to 6r, where r denotes the standard deviation of the consecutive
data points in a given partition of close price.

2.4.1 Experimental Platform

The experiment was performed using MATLAB 2012b under WINDOWS-7
operating system running on a IBM personal computer with Core i5 processor with
system clock of 3.60 G-Hz frequency and system RAM of 8 GB.

2.4.2 Experimental Modality and Results

2.4.2.1 Policies Adopted

The close price data for both main factor and secondary factors are obtained for the
period 1990–2004 from the website [56]. The training session was fixed for
10 months: January 1 to October 31 of each year on all trading days. In case all the
trading days of secondary factors do not coincide with those of the main factor, we
adopt two policies for the following two cases. Let Set A and B denote the dates of
trading in main and secondary factors respectively. If A − B (A minus B) is a
non-null set, then the close price of previous trading days in secondary factor has to
be retained over the missing (subsequent) days. If B − A is non-null set, then we
adopt the following policies. First, if the main factor has missing trading days due to
holidays and/or other local factors, then no training is undertaken on those days.

Table 2.4 Strategies adopted in various experimental proposed methods

Methods Reasoning Membership function
considered

Secondary factor
considered

Adaptation

Proposed
method 1

IT2 Gaussian No No

Proposed
method 2

T1 and IT2
combined

Gaussian Yes No

Proposed
method 3

T1 and IT2
combined

Gaussian Yes Yes

Proposed
method 4

T1 and IT2
combined

Triangular Yes No

Proposed
method 5

T1 and IT2
combined

Triangular Yes Yes

2.4 Experiments 61



Second, in the trading of next day of main factor, we consider the influence of the
last day of trading in secondary closing price. After the training is over, the fol-
lowing items including prediction rules (also called Fuzzy Logic Implications
(FLI)) and secondary to main factor variation groups are saved for the subsequent
prediction phase. The prediction was done for each trading day during the month of
November and December. Comparison of the results of prediction with those of
Chen et al. [47] is given in authors’ webpage [53], and is not given here for space
restriction. The results of prediction (November-December, 2003) with and without
adaptation of parameters (standard deviations) of MFs are given in Fig. 2.8 along
with the actual close price.

2.4.2.2 MF Selection

Experiments are performed with both Gaussian and triangular T1 MFs. The UMF
(LMF) of the IT2FS is obtained by taking maximum (Minimum) of the T1 MFs
describing the same linguistic concept obtained from different sources. Figure 2.2
respectively provides the construction of IT2FS from triangular and Gaussian T1
MFs, following the steps outlined in Sect. 2.3. The relative performance of trian-
gular and Gaussian MFs is examined by evaluating RMSE of the predicted close
price with respect to its actual TAIEX values. In most of the test cases, prediction of
close price is undertaken during the months of November and December of any
calendar year between 1999 and 2004.

The RMSE plots shown in Fig. 2.8 reveal that triangular MFs yield better
prediction results (less RMSE) than its Gaussian counterpart. For example, the
RMSE for TAIEX for the year 2003 using triangular and Gaussian MFs are
respectively found to be 37.123 and 47.1108 respectively, justifying the importance
of triangular MFs over Gaussian ones in the time-series prediction.

2.4.2.3 Adaptation Cycle

The training algorithm is run with the close price time-series data from January 1st
to October 31st on all trading days. For tuning the T1 MFs (before IT2FS con-
struction) for qualitative prediction, the adaption algorithm is run for the period of
September 1st to October 31st for the subsequent prediction of November. After the
prediction of November month is over, the adaption procedure is again repeated for
the month of October 1st to November 30th in order to predict the TAIEX close
price in December. Such adaption over two consecutive months is required to track
any abnormal changes (such as excessive level shift) in the time-series.

The improvement in performance due to inclusion of adaptation cycles is
introduced in Fig. 2.8 (see [53] for precision), obtained by considering Gaussian
MFs. It is apparent from Fig. 2.8a that in presence of adaptation cycles, the RMSE
appears to be 47.1108, while in absence of adaptation, RMSE is found to be 52.771.
The changes in results (RMSE) in presence of adaptation cycles due to use of
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triangular MFs are illustrated in Fig. 2.8b. Both the realizations confirm that
adaptation has merit in the context of prediction, irrespective of the choice of MFs.

2.4.2.4 Varying d

We also study the effect of variation of ‘d’ [62, 63] on the results of forecasting
using proposed method 5. Here, for each integer value of d in [1, 4], we obtain the
plots of actual and forecasted close price as indicated in Fig. 2.5. The fuzzy logical
implication rules and frequency of occurrences from CSVS to MFVS are deter-
mined using Fig. 2.9 following similar approach as done for d ¼ 1. These rules and
frequency of occurrences are given in Tables 2.7 and 2.14 (SEE APPENDIX). It is
apparent from Fig. 2.9 that forecasted price with delay d ¼ 1 yields an RMSE of
36.6006, which is found to be smallest among the considered RMSEs for d = 1, 2,
3 and 4. This indicates that setting d ¼ 1 returns the best possible prediction, which
also has logical justification in the sense that the predicted close price intricately
depends on close price of yesterday, rather than that of day before yesterday or its
preceding days.

2.5 Performance Analysis

This section attempts to compare the relative performance of the proposed five
techniques with 27 other techniques [21, 27, 31, 32, 36, 47] using RMSE as the
metric for comparison. Table 2.5 provides the results of comparison for the period
1999–2004 with mean and standard deviation of all the RMSEs obtained for the
above period. It is apparent from Table 2.5 that the entries in the last row are

Fig. 2.9 Forecasted TAIEX of the months November and December 2004 using Proposed
method 5 for different values of d. The respective RMSEs are RMSE = 36.6006 for d = 1,
RMSE = 72.8012 for d = 2, RMSE = 122.4201 for d = 3, RMSE = 140.2005 for d = 4
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smaller than the entries above. This indicates that that RMSE for each column on
the last row of Table 2.5 being the smallest, the proposed method 5 seems to
outperform the other techniques (calculated with respect of mean of 6 years RMSE)
by at least 23%, encountered in method-19 in Table 2.5.

We here use paired t-test [64] to examine the statistical confidence on the results
of prediction by different algorithms using RMSE as the metric. Let, Ho be the null
hypothesis to compare two algorithms’ performance, where one is the reference
algorithm, while the other is any one of the existing algorithms. Here, we consider
the proposed algorithm as the reference algorithm. Thus, Ho ¼ Performance of
algorithm A and reference algorithm R are comparable.

Let A be the algorithm by Chen et al. [47]. To statistically validate the
Hypothesis Ho, we evaluate t-measure, given by

t ¼ ðmA � mRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sA2 þ sR2

p ; ð2:15Þ

where mA and mR are the mean values of the distributions of RMSE obtained by
algorithms A and R respectively with equal sample size in the two distributions, and
sA and sR are the standard deviations of the respective samples obtained by algo-
rithms A and R.

After evaluation of statistic t, we consult the t-Table (Table 2.6) with degrees of
freedom KI ¼ sample size of any one population minus 1 ¼ n� 1, say. Let the
value obtained from the t-Table for given confidence level a and KI be z. Now, if
z\t, the calculated value by formula (2.15), then the Ho is wrong, and its con-
tradiction that the proposed algorithm is better than A with respect to RMSE is true.
We now repeat the above steps for different comparative algorithms A and found
that z\t always holds, thereby indicating that the proposed algorithm outperforms
all other existing algorithms.

Table 2.6 Results of statistical significance with the proposed method 1–5 as the reference, one at
a time (t-table)

Statistical significance

Existing
methods

Reference methods

Proposed
method 1

Proposed
method 2

Proposed
method 3

Proposed
method 4

Proposed
method 5

1 − − + + +

2 + + + + +

3 + + + + +

4 + + + + +

5 + + + + +

6 − + + + −

7 − + + + +
(continued)
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Table 2.6 is designed to report the results of statistical test considering proposed
method 1–5 as the reference. The degree of freedom is here set to 5 as the prediction
data set used involves six years’ RMSE data. The plus (minus) sign in Table 2.6
represents that the difference of means of an individual method with the proposed
method as reference is significant (not significant). The degree of significance here
is studied at 0.05 level, representing 95% confidence level.

2.6 Conclusion

This chapter introduced a novel approach to stock index time-series prediction
using IT2Fs. Such representation helps overcoming the possible hindrances in stock
index prediction as introduced in the introduction. Both triangular and Gaussian
MFs along with provision of their adaptation have been introduced to examine their
relative performance in prediction. The strategy used to consider secondary to main
factor variation has considerably improved the relative performance of the stock

Table 2.6 (continued)

Statistical significance

Existing
methods

Reference methods

Proposed
method 1

Proposed
method 2

Proposed
method 3

Proposed
method 4

Proposed
method 5

8 + + − + −

9 + − − − −

10 − − + − −

11 − + + + +

12 + + + + +

13 + − − − −

14 − − − − −

15 + + + + +

16 + + + + +

17 + + + − +

18 + + + + +

19 + − − + +

20 + + − + +

21 + + − + +

22 − − + − +

23 + + + + +

24 − + + + −

25 − + + + +

26 − + − + +

27 + + + − +
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index time-series prediction. A thorough analysis of results using RMSE as the
metric indicates that the proposed methods outperform the existing techniques on
stock index prediction by a considerable margin (� 23%). Out of the five proposed
methods, the method employing triangular MF with provision for its adaptation
yields the best performance following the prediction of TAIEX stock data for the
period of 1999–2004 with DOWJONES and NASDAQ together as the composite
secondary index. A statistical analysis undertaken with paired t-test confirms that
each of the proposed algorithms outperforms most of the existing algorithms with
root mean square error as the key metric at 95% confidence level. With an addi-
tional storage of fuzzy logical implication rules and frequency of occurrences from
CSVS to MFVS for d ¼ 1; 2; . . .; k, we would be able to predict the close price on
the next day, next to next day and the like from today’s close price. Further
extension of the proposed technique can be accomplished by using General Type-2
fuzzy sets, which is expected to improve performance at the expense of additional
complexity.

2.7 Exercises

1. Graphically plot the interval type-2 fuzzy set constructed from type-2 mem-
bership functions in Fig. 2.10.

[Hints: The UMF and LMF constructed from the given type-1 MFs are given in
Fig. 2.11.]

2. Construct the rules from a partitioned time-series, indicated in Fig. 2.12.

[Hints: The rules following the occurrence of the data point in the partition are:
P1 ! P2, P2 ! P4, P4 ! P2, P2 ! P1.]

3. Let there be three partitions P1; P2; P3 of a stock data of a stock data, the
corresponding fuzzy sets are A1, A2, and A3. Suppose we have the rules: A1 !
A2 and A1 ! A3 as indicated below, Determine the stock price of tomorrow if
the stock price of today, as indicated falls in partition P1 (i.e. fuzzy set of P1).
Presume that,

P
x x movement of the inferred membership function is 100 with

1
2 ( )x

1( )xμ μ

μ (x)

10         15 20 30 40 50

Fig. 2.10 Figure for
Problem 1
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and area under the inferred membership = 12 unit [Ans: 100/12 = 8.33]
(Fig. 2.13).

4. Let the inferred membership function be a sine function for x = 0 to p. Find the
centroid. Refer Figs. 2.14 and 2.15.

[Hints: Centroid ¼
R p

0
x sin xdxR p

0
sin xdx

¼ ½xð� cos xÞþ sin x�p0
½� cos p�p0 ¼ p

1þ 1 ¼ p=2]

5. Let the partitions be P1;P2 and, also the IT2FS used for three partitions be
~A1; ~A2 and ~A3 respectively. Given the IT2FS for the stock data and the rules
A1 ! A2 and A1 ! A3. If today’s stock price falls in ~A3, then will you be able to
generate the fuzzy inference for tomorrow.

1

10         15 20           30        40             50  

1

10         15 20           30        40             50  

μ (x)

μ (x)

1( )xμ

1( )xμ

2 ( )xμ

2 ( )xμ

Fig. 2.11 Solution for
Problem 1

P4

P3

P2

P1 A

B

C

D

E

F

Fig. 2.12 Figure for Problem
2
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[Hints: The inference generation is examined below. Add figure given in
Fig. 2.16]

6. In stock index prediction, we use the secondary factor, here DOW JONES stock
index data for the main factor TAIEX time-series as indicated in Fig. 2.17. On
the day (t � 1), it is observed that the secondary index lies in partition B5, while
the main factor time-series falls in A3. Given the rules under group B5

(Fig. 2.18):

Today’s stock 
price

Membership of  

2A and 3A

A2

A3

2A
A1

3A

Fig. 2.13 Figure for Problem 3

0 πx →

↑
Sin x

Fig. 2.14 Figure for Problem
4
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A1 !
A2 !
A3 ! A4;A6

A4 !
. . .
A5!

Given the MFs of A3;A4;A6 as follows and today’s price as 1100.
Determine the fuzzy inference (Fig. 2.19).

7. A close price time-series is partitioned into 4 partitions: P1, P2, P3 and P4. The
close price falling in Pi would have a membership 1 in Ai fuzzy sets and
membership 0.5 in Ai-1 and Ai+1 and zero elsewhere. If the range of P1, P2, P3
and P4 are [0, 1 K), [1 K, 2 K), [2 K, 3 K) and [3 K, 4 K] respectively, con-
struct A1, A2, A3 and A4 (Fig. 2.20).

1A

1A

12K

12K10

~

~
~

~

K 22K 24K

22K 24K10K

3A

18K12K

6K 16K 22K12K

2A

12K 16K

IT2 Inference

Fig. 2.15 IT2 Inference generation for Problem 4
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10K

1A

22K 24K 12K 14K 16K 18K

10K 12K 22K 24K 6K 12K 16K 22K

12K

1A

2A
~ ~

~

Fig. 2.16 Figure for Problem 5

B

(a)

(b)

5

A3

Fig. 2.17 Figure for Problem 6
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500 1K 2K 5K 600 4.8K 6K

1.0

0.5

1.0

1.2K

0.5

1.5K

0.5

1.0

650 2K 8K

A3 A4

A6

Today’s 
price=1.2K

Fig. 2.18 Figure for Problem 6

A1 A2

1.0

0.5

1K 2K 3K 0 1K 2K 3K 4K

1.0

(a)

(b)

0.5

0

Close Price → Close Price →

A4

1.0

0.5

0 1K 2K 3K 4K

Close Price →

A3

0

1.0

0.5

1K 2K 3K 4K

Close Price →

Fig. 2.19 Figure for Problem 7
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[Hints: membership functions are given below.]

8. In question 7 suppose we need to construct the membership function of
(i) neither A1 nor A2, (ii) either A1 or A3, (iii) neither A1 nor A2 and A3.

[Hints: We show the solution for part (i). The rest can be obtained similarly.]

1K

1.0

0.5

0

Close Price →
2K 3K

A1

4K

1.0

Close Price →

1K 3K 4K

Close Price →
2K

A1

1.0

0.5

0.5

0 1K 2K 3K 4K

Neither 
A1

3K 4K

Neither 
A2

1K 2K
Close Price →

1.0

0.5

2K 4K1K 3K

Neither 
A1

Nor
A2

Close Price →

Fig. 2.20 Computation of Neither A1 Nor A2
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Appendix 2.1

See Tables 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12 and 2.13.

Table 2.7 Fuzzy logical implication rules for year 2004

Group Fuzzy logical implication

B3 A3 ! A2

B4 A2 ! A1;A2; A3 ! A2; A5 ! A4

B5 A1 ! A1; A4 ! A4;A5; A2 ! A2;
A6 ! A6;A7; A3 ! A3;A8 ! A8

B6 A1 ! A1;A1; A7 ! A6;
A2 ! A1;A1;A2;A2;A8 ! A8;
A3 ! A2;A2;A3;A3;
A9 ! A8; A4 ! A3; A10 ! A10;
A5 ! A5;A5;A5;A11 ! A10;A6 ! A6

B7 A1 ! A1;A1;A1; A7 ! A7;A7;A7;A7;A7;A7;
A2 ! A2;A2;A2;A2;A2;A2;A2;
A8 ! A8;A8;A8;A8;A8;A8;A8;A8;A8;
A3 ! A2;A2;A2;A3;A3;A3;A3;A3;A3;A3;A3;A3;A3;A3;A3;
A4 ! A4;A4;A4;A4;A9 ! A8;A8;A8;A9;
A5 ! A4;A5;A5;A5;A5;A5; A10 ! A10;A10;A10;A10;A10;

B8 A1 ! A1;A1;A1;A1;A1; A6 ! A6;A6;A6;A6;
A2 ! A2;A2;A2;A2;A2;A2;A3; A7 ! A7;A7;A7;A8;
A3 ! A3;A3;A3;A3;A3;A4;
A8 ! A8;A8;A8;A8;A8;A8;A8;A9;A9;A9;A9;
A4 ! A4;A4;A4;A4;A4; A9 ! A9;A9;A9;A9;A9;
A5 ! A5;A5;A5;A5;A5;A5;A5;A5;A5;

B9 A1 ! A1;A1;A1;A1;A2;A2;A2;
A7 ! A7;A7;A7;A2 ! A2;A2;A3;A3;
A8 ! A8;A8;A9;A3 ! A3;A3;A3;A4;A9 ! A9;A10;
A4 ! A4;A4;A5;A10 ! A10;A10;A5 ! A5;A5;A6

B10 A2 ! A2;A2;A3;A3;A7 ! A7;A7;A3 ! A3;A3;
A8 ! A9;A9;A4 ! A4;A5;A5

B11 A2 ! A2;A6 ! A7;A7;A3 ! A3

B12 A2 ! A3;A4

Table 2.8 Fuzzy logical implication rules considering d = 2

Group Fuzzy logical relationship

B1 A3 ! A2; A6 ! A4; A5; A8 ! A5;

B2 A3 ! A2;A3; A5 ! A5;

B3 A3 ! A4;

B4 A1 ! A1;A3;A3 ! A2;A3; A4 ! A1; A7 ! A5;A7; A6 ! A7;

B5 A2 ! A1;A2;A2;A2;A4;A3 ! A3;A4A4 ! A3;A3;A3;A4;
A5 ! A4;A5; A7 ! A6;

(continued)
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Table 2.8 (continued)

Group Fuzzy logical relationship

B6 A1 ! A1;A1;A2 ! A2;A2;A3 ! A2;A2;A2;A3;A3;A3;A3;A3;A3;
A4 ! A2;A3;A3;A3;A5 ! A5;A6;A6 ! A5;A6;A7 ! A7;

B7 A1 ! A1;A1;A1;A1;A1;A1;A1;A1;A1;A1;
A2 ! A1;A2;A3;A3;
A3 ! A2;A3;A3;A3;A3;A3;A3;A3;A3;A3;A3;A3;
A4 ! A3;A3;A4;A5;A5 ! A4;A4;A5;A5;A5;
A6 ! A6;A6;A7;A7 ! A7;A7;A7;A8;A8;A6 ! A6;A6;A7;
A7 ! A7;A7;A7;A8;A8;A8 ! A7;A8;A8;A8;A8;A8; A9 ! A8

B8 A1 ! A1;A1;A1;A1;A1;A2 ! A2;A2;A2;A3;A3;A8 ! A8;A8

A3 ! A2;A3;A3;A4;A4 ! A3;A3;A5;A5;A9 ! A8;A9;A9;A9

A5 ! A4;A5;A5;A5;A5;A5;A5;A5;A5;A5;A6;A6

A6 ! A5;A7;A7 ! A7;A7;A7;A7;A7;A7;

B9 A1 ! A1;A1;A1;A2;A2 ! A2;A3 ! A3;A3;A3;A3;A3;A3;A3;A4;A4

A4 ! A3;A3;A4;A4;A4;A5;A5 ! A5;A5;A6;A6;
A6 ! A6;A7;A7 ! A7;A7;A7;A8;A8;A8;A8 ! A8

B10 A2 ! A3;A3 ! A3;A3;A4;A4;A4;A4 ! A4;A4;A6 ! A6;A7 ! A7;A8;A8 ! A8;A9;

B11 A2 ! A2;A3;A4 ! A3;A4;A6 ! A6;A8 ! A6

B12 A1 ! A2;A3 ! A3;A4;A4;A4 ! A4

B13 A5 ! A6;A6 ! A7;

B14 A2 ! A3;

Table 2.9 Fuzzy logical implication rules considering d = 3

Group Fuzzy logical relationship

B1 A1 ! A3;A3 ! A2;A3;
A5 ! A3;A5;A6 ! A5;A5;

B2 A3 ! A4;

B3 A2 ! A4;A3 ! A2;A4 ! A3;A3;
A5 ! A4;A7 ! A4;A8

B4 A1 ! A1;A7 ! A8;A2 ! A1;A1;A2;A2;A8 ! A5;A7;
A3 ! A3;A3;A4 ! A4;A5 ! A6;

B5 A2 ! A1;A2;A3;A3 ! A2;A3;A3;
A4 ! A3;A3;A3;A5 ! A6;A7 ! A5;A8 ! A7;

B6 A1 ! A1;A1;A1;A1;A2 ! A2;A3;A3;
A3 ! A3;A3;A3;A3;A4;A4;
A4 ! A2;A2;A6 ! A5;A7 ! A7;A8 ! A6;A7;A8;

B7 A1 ! A1;A1;A1;A1;A1;A1;A2 ! A3;
A3 ! A2;A2;A2;A3;A3;A3;A3;A3;A3;A3;A3;A3;A4;A4;A4;A4;
A4 ! A2;A3;A4;A5 ! A3;A5;A6;A6;
A6 ! A5;A5;A7;
A7 ! A8;A8;A8;A8 ! A7;A7;A8;A8;A8;A9 ! A8;A8;A8;A9;

B8 A1 ! A1;A1;A1;A1;A1;A1;A1;A2;
A2 ! A3;
A3 ! A2;A2;A3;A3;A3;A3;A4;

(continued)
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Table 2.10 Fuzzy logical implication rules considering d = 4

Group Fuzzy logical relationship

B1 A1 ! A4; A3 ! A2;A3;A4; A5 ! A3;A4;A6;A6; A6 ! A3;A5

B2 A1 ! A1; A2 ! A2;A2; A4 ! A4;A4; A7 ! A5

B3 A2 ! A1;A1;A4; A3 ! A3; A4 ! A3; A7 ! A6;A8; A8 ! A8

B4 A2 !;A1; A8 ! A5; A3 ! A2;A3;A3; A5 ! A7;

B5 A1 ! A1;A1;A1; A3 ! A3;A3;A4;A4; A4 ! A2;A3;A4;
A6 ! A6; A7 ! A4; A8 ! A5; A9 ! A7;

B6 A1 ! A1; A2 ! A1;A2;A3;A3; A3 ! A3;A3;A3;A4;
A4 ! A3; A5 ! A6;A6; A7 ! A5; A8 ! A6;A7;A7;A8; A9 ! A8;

B7 A1 ! A1;A1;A1;A1;A1;A1;A1;A1;A2;A2; A2 ! A3;A3;A4;
A3 ! A2;A2;A2;A2;A3;A3;A3;A3;A4;A4;A4;
A4 ! A3;A3; A5 ! A5; A7 ! A5;A8;A8;A8; A8 ! A7;A7;A8;

B8 A1 ! A1;A1;A2; A2 ! A3;A3; A3 ! A2;A3;A3;A3;A3;A4;A4;
A4 ! A3;A3;A3;A4;A5; A5 ! A5;A5;A5;A5;A6;
A6 ! A5;A6;A7;A7; A7 ! A7;A7;A7;A7;A8;A8;A9;
A8 ! A8;A8;

B9 A1 ! A1;A1; A2 ! A2;A3;A4; A3 ! A3;A3;A3;A3;A4;A4;A4;
A4 ! A1;A3;A3;A4;A4;A5;A5; A5 ! A5;A5;A5;A6;A6;
A6 ! A6;A7; A7 ! A7;A7;A7;A7;A8; A8 ! A8;

B10 A3 ! A2;A3;A3;A3; A4 ! A2;A3;A4; A5 ! A5; A6 ! A7;
A7 ! A7;A7;A7;A7;A8; A8 ! A5;A8;

B11 A1 ! A2; A2 ! A3; A3 ! A3; A4 ! A3;A4;A4;A5;
A6 ! A6;A7; A8 ! A8; A9 ! A9;

B12 A2 ! A3; A3 ! A3; A4 ! A5; A6 ! A7; A8 ! A9;A9; A9 ! A9;

B13 A2 ! A2;A3; A4 ! A2; A6 ! A7;

B14 A3 ! A4; A4 ! A4; A7 ! A7

Table 2.9 (continued)

Group Fuzzy logical relationship

A4 ! A3;A4;
A5 ! A4;A4;A5;A5;A5;A5;A5;A5;A5;A6;A6;
A6 ! A6;A7;A7 ! A7;A7;A7;A7;A7;A8;
A8 ! A8;A8;

B9 A1 ! A1;A1;A2 ! A2;A3;A4;
A3 ! A3;A3;A3;A3;A4;A4;A4;
A4 ! A1;A3;A3;A4;A4;A5;A5;
A5 ! A5;A5;A5;A6;A6;
A6 ! A6;A7;A7 ! A7;A7;A7;A7;A8;A8 ! A8;

B10 A2 ! A3;A3;A3 ! A2;A3;A3;A4 ! A3;A4;
A7 ! A6;A7;A7;A9;A9 ! A9;A9;

B11 A4 ! A4;A6 ! A6;A6;

B12 A1 ! A2;A2 ! A2;A3 ! A3;A3;
A4 ! A3;A4;A5;A5 ! A7;A8 ! A9;

B13 A2 ! A2;A4 ! A3;A6 ! A7;

B14 A3 ! A4;A4;A6 ! A7;
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Appendix 2.2: Source Codes of the Programs

% MATLAB Source Code of the Main Program and Other Functions for Time
% Series Prediction by IT2FS REasoning

% Developed by Monalisa Pal

% Under the guidance of Amit Konar and Diptendu Bhattacharya

% Main Program

%______________________________________________________________

clear all;

clc;

str=input(‘Data file having Main Factor:’);

load(str);

closeMF=close;

n=input(‘Number of secondary factors:’);

n=str2double(n);

SF=zeros(length(closeMF),n);

for i=1:n

strSF=input([‘Data file having ’,num2str(i),’-th Secondary Factor:’]);

load(strSF);

SF(:,i)=close;

end

clear close;

tic;

%% Training

[A,B,VarMF,Au,Al]=partitioning(closeMF);

plotpartitions(closeMF(s:e1),A(s:e1),Al,Au);

FLRG=tableVI(B(2:e1),A(1:e1-1),A(2:e1));

VarSF=overallvar(VarMF,SF,e1,n);

BSF=fuzzyvarSF(VarSF);

FVG=tableIX(B(2:e1),BSF(2:e1));

WBS=tableX(FVG);

%% Validation (Differential Evolution)

sd=extractSD(A(s:e1),closeMF(s:e1));

[UMF,LMF,typeMF,rmse]=MFusingDE(A(s:e1),closeMF(s:e1),

Al:Au-1,sd,closeMF(e1+1:e2),A(e1:e2),FLRG,WBS,BSF(e1:e2));

plotDE(rmse);

plotFOU(UMF,LMF,Al:Au-1);

%% Inference

forecasted=predict(closeMF(e2+1:f),A(e2:f),Al,Au,UMF,LMF,typeMF,

FLRG,WBS,BSF(e2:f));

[CFE,ME,MSE,RMSE,SD,MAD,MAPE]=

errormetrics(forecasted,closeMF(e2+1:f));
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disp(‘CFE’);disp(CFE);

disp(‘ME’);disp(ME);

disp(‘MSE’);disp(MSE);

disp(‘RMSE’);disp(RMSE);

disp(‘SD’);disp(SD);

disp(‘MAD’);disp(MAD);

disp(‘MAPE’);disp(MAPE);

plotforecasted(forecasted,closeMF(e2+1:f),RMSE);

comp_time=toc;

disp(‘Execution Time’);disp(comp_time);

%End of Main Program

% Function KMmethod to compute IT2FS Centroid

%____________________________________________

function centroid=KMmethod(LMF,UMF,x)

diff=ones(1,length(x))*5000;

for i=1:length(x)

if UMF(i)>0

theta(i,:)=[UMF(1:i) LMF(i+1:length(LMF))];

centroid(i)=defuzz(x,theta(i,:),’centroid’);

diff(i)=abs(x(i)−centroid(i));

end

end

[mindiff sw_index]=min(diff);

cl=x(sw_index);

theta_l=[UMF(1:sw_index) LMF(sw_index+1:length(LMF))];

diff=ones(1,length(x))*5000;

for i=1:length(x);

if i<length(x)

if UMF(i+1)>0

theta(i,:)=[LMF(1:i) UMF(i+1:length(LMF))];

centroid(i)=defuzz(x,theta(i,:),’centroid’);

diff(i)=abs(x(i)−centroid(i));

end

end

end;

[mindiff sw_index]=min(diff);

cr=x(sw_index);

theta_r=[LMF(1:sw_index) UMF(sw_index+1:length(LMF))];
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centroid=(cl+cr)/2;

end

% End of functiom KMmethod

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Error Metric Calculation

function [CFE,ME,MSE,RMSE,SD,MAD,MAPE]=errormetrics(predicted,TestCP)

% a=isnan(predicted1);

% p=size(TestCP1);

% z=1;

% for i=1:p

% if a(i)*=1

% predicted(z)=predicted1(i);

% TestCP(z)=TestCP1(i);z=z+1;

% end

% end

CFE=sum(TestCP−predicted);

% disp(‘CFE=‘);

% disp(CFE);

ME=mean(TestCP−predicted);

% disp(‘ME=‘);

% disp(ME);

MSE=mean((TestCP−predicted).^2);

% disp(‘MSE=‘);

% disp(MSE);

RMSE=sqrt(MSE);

% disp(‘RMSE=‘);

% disp(RMSE);

SD=std(TestCP−predicted);

% disp(‘SD=‘);

% disp(SD);

MAD=mean(abs(TestCP−predicted));

% disp(‘MAD=‘);

% disp(MAD);

MAPE=mean(abs(TestCP−predicted)./TestCP)*100;

% disp(‘MAPE=‘);

% disp(MAPE);

End

%%%%%%%%%%%%%%%%%

% RMSE calculation

function rmse=evalfit(x,TestCP,TestA,UMF,LMF,typeMF,FLRG,WBS,TestB)

Al=x(1);
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Au=x(end)+1;

forecasted=predict(TestCP,TestA,Al,Au,UMF,LMF,typeMF,FLRG,WBS,

TestB);

[*,*,*,rmse,*,*,*]=errormetrics(forecasted,TestCP);

End

%%%%%%%%%%%%%%%%%%

% Find Standard Deviations(SD)

function sd=extractSD(A,close)

numFS=unique(A); % converting the close series into a matrix

FS=zeros(length(numFS),length(close));

for i=1:length(A)

FS(A(i),i)=close(i);

end

b=1;

for i=1:size(FS,1)

temp=find(FS(i,:));

%Case2: Partition has one point

if length(temp)==1

sd(b)=0.001;

% flag(b)=2;

b=b+1;

%Case3: Partition has two points

elseif length(temp)==2

sd(b)=std(close(temp));

% flag(b)=3;

b=b+1;

%Case 1 and 4: More than 2 contiguous or discrete points

else

indx=zeros(length(temp),1);

l=1;

for j=2:length(temp) %contiguous points have been labelled sequen-

tially

if (temp(j)−temp(j−1))==1

indx(j−1)=l;

indx(j)=l;

elseif j>2 && (temp(j−1)−temp(j−2))==1 && (temp(j)−temp(j−1))*=1

l=l+1;

end

end

if max(indx)==0
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sd(b)=std(close(temp));

% flag(b)=4;

b=b+1;

else

for j=1:max(indx)

temp1=temp(indx==j); % selecting days where the contigu-

ous points occur

tempsd=std(close(temp1));

% if tempsd>=1

sd(b)=tempsd;

% flag(b)=1;

b=b+1;

% end

end

end

end

end

end

%%%%%%%%%%%%%%%%%

% Forming Membership Functions(MFs)

function [UMF,LMF,typeMF]=formingMF(A,close,x,sd)

numFS=unique(A); % converting the close series into a matrix

FS=zeros(length(numFS),length(close));

for i=1:length(A)

FS(A(i),i)=close(i);

end

b=1;

UMF=zeros(length(numFS),length(x));

LMF=ones(length(numFS),length(x));

typeMF=zeros(length(numFS),1);

for i=1:size(FS,1)

temp=find(FS(i,:));

%Case2: Partition has one point

if length(temp)==1

m=round(close(temp));

typeMF(i)=1;

UMF(i,:)=max(UMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

LMF(i,:)=min(LMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

b=b+1;

%Case3: Partition has two points

elseif length(temp)==2

m=round(mean(close(temp)));
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typeMF(i)=1;

UMF(i,:)=max(UMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

LMF(i,:)=min(LMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

b=b+1;

%Case 1 and 4: More than 2 contiguous or discrete points

else

indx=zeros(length(temp),1);

l=1;

for j=2:length(temp) %contiguous points have been labelled sequen-

tially

if (temp(j)−temp(j−1))==1

indx(j−1)=l;

indx(j)=l;

elseif j>2 && (temp(j−1)−temp(j−2))==1 && (temp(j)−temp(j−1))*=1

l=l+1;

end

end

if max(indx)==0

m=round(mean(close(temp)));

typeMF(i)=1;

UMF(i,:)=max(UMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

LMF(i,:)=min(LMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

b=b+1;

else

% c=0;

for j=1:max(indx)

temp1=temp(indx==j); % selecting days where the contigu-

ous points occur

m=round(mean(close(temp1)));

% if sd>=1

UMF(i,:)=max(UMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

LMF(i,:)=min(LMF(i,:),trimf(x,[m−3*sd(b) m m+3*sd(b)]));

b=b+1;

% c=c+1;

% end

end

% if c==1

% typeMF(i)=1;

% else

typeMF(i)=2;

% end

end

end

end
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%Ensuring flat top

loc1=0;loc2=0;

for i=1:size(UMF,1)

for j=1:1:size(UMF,2)

if UMF(i,j)>0.999

loc1=j;

break;

end

end

if j*=size(UMF,2)

for j=size(UMF,2):−1:1

if UMF(i,j)>0.999

loc2=j;

break;

end

end

end

if loc1*=0

UMF(i,loc1:loc2)=1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%

% Gaussian MF Creation

function [UMF,LMF,typeMF]=formingMF(A,close,x,sd)

numFS=unique(A); % converting the close series into a matrix

FS=zeros(length(numFS),length(close));

for i=1:length(A)

FS(A(i),i)=close(i);

end

b=1;

UMF=zeros(length(numFS),length(x));

LMF=ones(length(numFS),length(x));

typeMF=zeros(length(numFS),1);

for i=1:size(FS,1)

temp=find(FS(i,:));

%Case2: Partition has one point

if length(temp)==1

m=round(close(temp));

typeMF(i)=1;

UMF(i,:)=max(UMF(i,:),gaussmf(x,[sd(b) m]));

LMF(i,:)=min(LMF(i,:),gaussmf(x,[sd(b) m]));

b=b+1;
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%Case3: Partition has two points

elseif length(temp)==2

m=round(mean(close(temp)));

typeMF(i)=1;

UMF(i,:)=max(UMF(i,:),gaussmf(x,[sd(b) m]));

LMF(i,:)=min(LMF(i,:),gaussmf(x,[sd(b) m]));

b=b+1;

%Case 1 and 4: More than 2 contiguous or discrete points

else

indx=zeros(length(temp),1);

l=1;

for j=2:length(temp) %contiguous points have been labelled sequen-

tially

if (temp(j)−temp(j−1))==1

indx(j−1)=l;

indx(j)=l;

elseif j>2 && (temp(j−1)−temp(j−2))==1 && (temp(j)−temp(j−1))*=1

l=l+1;

end

end

if max(indx)==0

m=round(mean(close(temp)));

typeMF(i)=1;

UMF(i,:)=max(UMF(i,:),gaussmf(x,[sd(b) m]));

LMF(i,:)=min(LMF(i,:),gaussmf(x,[sd(b) m]));

b=b+1;

else

% c=0;

for j=1:max(indx)

temp1=temp(indx==j); % selecting days where the contigu-

ous points occur

m=round(mean(close(temp1)));

% if sd>=1

UMF(i,:)=max(UMF(i,:),gaussmf(x,[sd(b) m]));

LMF(i,:)=min(LMF(i,:),gaussmf(x,[sd(b) m]));

b=b+1;

% c=c+1;

% end

end

% if c==1

% typeMF(i)=1;

% else

typeMF(i)=2;

% end
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end

end

end

%Ensuring flat top

loc1=0;loc2=0;

for i=1:size(UMF,1)

for j=1:1:size(UMF,2)

if UMF(i,j)>0.999

loc1=j;

break;

end

end

if j*=size(UMF,2)

for j=size(UMF,2):−1:1

if UMF(i,j)>0.999

loc2=j;

break;

end

end

end

if loc1*=0

UMF(i,loc1:loc2)=1;

end

end

end

%%%%%%%%%%%%%%%

% FUZZY Secondary Factor Variation

function BSF=fuzzyvarSF(VarSF)

BSF=zeros(length(VarSF),1);

for i=2:length(VarSF)

for j=1:14

if VarSF(i)<−6

BSF(i)=1;

elseif VarSF(i)>=6

BSF(i)=14;

elseif VarSF(i)>=(j−1)−6 && VarSF(i)<j−6

BSF(i)=j+1;

end

end

end

end

90 2 Self-adaptive Interval Type-2 Fuzzy Set …



%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% MF Using DE

function [UMF,LMF,typeMF,rmse]=MFusingDE(A,close,x,sd,TestCP,TestA,

FLRG,WBS,TestB)

genmax=50;

F=0.2; % Scale Factor

Cr=0.9; % Cross−over probability

NP=20; % no. of population members

gen=1;

%% Initialization

Zmin=ones(1,length(sd))*0.1;

Zmax=sd;

Z=zeros(NP,length(sd));

for i=1:NP

Z(i,:)=Zmin+rand*(Zmax−Zmin);

end

%%

rmse=zeros(genmax,NP);

while(gen<=genmax)

disp(‘Gen=‘);

disp(gen);

%% Mutation

V=zeros(NP,length(sd));

for i=1:NP

j=datasample(1:NP,1);

while j==i

j=datasample(1:NP,1);

end

k=datasample(1:NP,1);

while k==i || k==j

k=datasample(1:NP,1);

end

l=datasample(1:NP,1);

while l==i || l==j || l==k

l=datasample(1:NP,1);

end

V(i,:)=Z(j,:)+F.*(Z(k,:)−Z(l,:));

for j=1:length(sd) % Ensuring V(i,j) is within Zmax and Zmin

if V(i,j)<Zmin(j)

V(i,j)=Zmin(j);

elseif V(i,j)>Zmax(j)

V(i,j)=Zmax(j);

end

end
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end

%% Crossover

U=zeros(NP,length(sd));

for i=1:NP

for j=1:length(sd)

if rand<=Cr

U(i,j)=V(i,j);

else

U(i,j)=Z(i,j);

end

end

end

%% Selection

for i=1:NP

[UMFu,LMFu,typeMFu]=formingMF(A,close,x,U(i,:));

[UMFz,LMFz,typeMFz]=formingMF(A,close,x,Z(i,:));

if evalfit(x,TestCP,TestA,UMFu,LMFu,typeMFu,FLRG,WBS…

,TestB)<evalfit(x,TestCP,TestA,UMFz,LMFz,typeMFz…

,FLRG,WBS,TestB)

Z(i,:)=U(i,:);

end

end

%% Storing fitness over generations

for i=1:NP

[UMFz,LMFz,typeMFz]=formingMF(A,close,x,Z(i,:));

rmse(gen,i)=evalfit(x,TestCP,TestA,UMFz,LMFz,typeMFz…

,FLRG,WBS,TestB);

end

%%

gen=gen+1;

end

[*,indx]=min(rmse(genmax,:));

[UMF,LMF,typeMF]=formingMF(A,close,x,Z(indx,:));

End

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Over All Variation

function VarSF=overallvar(VarMF,SF,e,n)

%

VarSF1=zeros(size(SF,1),n);

for i=1:n

for j=2:size(SF,1)

VarSF1(j,i)=(SF(j,i)−SF(j−1,i))*100/SF(j−1,i);

end

end
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%

%

tempDiffer=zeros(e,n);

for i=1:n

for j=3:e

tempDiffer(j,i)=abs(VarSF1(j−1,i)−VarMF(j));

end

end

DifferSF=sum(tempDiffer);

%

%

WVSF=zeros(1,n);

for i=1:n

WVSF(i)=sum(DifferSF)/DifferSF(i);

end

%

%

WSF=zeros(1,n);

for i=1:n

WSF(i)=WVSF(i)/sum(WVSF);

end

%

%

VarSF=zeros(1,size(SF,1));

for i=1:size(SF,1)

VarSF(i)=sum(VarSF1(i,:).*WSF);

end

%

End

%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Partitioning The Universe of Discourse(UOD)

function [A,B,Var,Au,Al]=partitioning(CP)

%%

A=zeros(length(CP),1);

B=zeros(length(CP),1);

Var=zeros(length(CP),1);

%%
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templ=min(CP);

tempu=max(CP);

if (roundn(templ,2)−templ)>0

Al=roundn(templ,2)−100;

else

Al=roundn(templ,2);

end

% if (roundn(tempu,2)−tempu)>0

% Au=roundn(tempu,2);

% else

% Au=roundn(tempu,2)+200;

% end

Au=Al;

while(1)

Au=Au+200;

if Au>tempu

break;

end

end

nFS=(Au–Al)/200;

for i=1:length(CP) %partioning the close series of main factor

for j=1:nFS

if CP(i)>=(j−1)*200+Al && CP(i)<j*200+Al

A(i,1)=j;

break;

end

end

end

%%

for i=2:length(CP) % finding the var series

Var(i)=(CP(i)−CP(i−1))*100/CP(i−1);

end

for i=2:length(Var) % partioning the var series

for j=1:14

if Var(i)<−6

B(i)=1;

elseif Var(i)>=6

B(i)=14;

elseif Var(i)>=(j−1)−6 && Var(i)<j−6

B(i)=j+1;
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end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%

%% Plot RMSE with adaptation

function plotDE(rmse)

figure,plot(1:size(rmse,1),min(rmse,[],2),’kx−’,’MarkerSize’,5);

xlabel(‘Generations −−>‘);

ylabel(‘RMSE −−>‘);

title(‘Evolving parameters to minimize RMSE’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Plot Forecasted Price

function plotforecasted(predicted,TestCP,RMSE)

figure,

subplot(3,2,[1 2 3 4]);

plot(TestCP,’k*:’);

hold on

plot(predicted,’ko−’);

ylabel(‘Close Price’);

axis([0 length(TestCP)+5 min(min(predicted),min(TestCP))−1000 max(max

(predicted),max(TestCP))+1000]);

hold off

legend(‘Actual’,’Predicted’,’location’,’SouthEast’);

subplot(3,2,[5 6]);

stem(TestCP−predicted,’ko−’);

text(27,max(TestCP−predicted)+50,{‘RMSE=‘,RMSE});

axis([0 length(TestCP) min(TestCP−predicted) max(TestCP−predicted)

+150]);

xlabel(‘Testing days’);

ylabel(‘Error’);

end

%%%%%%%%%%%%%%%%%%%%%%

%% Plot FOU(Foot Print of Uncertainity)

function plotFOU(UMF,LMF,x)

for i=1:size(UMF,1)

figure,shadedplot(x,LMF(i,:),UMF(i,:),[0.8 0.8 0.8]);

xlabel(‘Close’);

ylabel(‘Membership values’);

title([‘FOU for fuzzy set A’, num2str(i)]);

end
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Plot Partitions

function plotpartitions(close,A,Al,Au)

numFS=unique(A); % converting the close series into a matrix

FS=zeros(length(numFS),length(close));

for i=1:length(A)

FS(A(i),i)=close(i);

end

% Plot Input Close

plot(close,’k*−’);

hold on;

for i=1:length(numFS)

part=Al+(i−1)*200;

plot([1 length(close)],[part part],’k:’);

hold on;

end

hold off;

axis([1 length(close) Al Au]);

xlabel(‘Training days’);

ylabel(‘Close’);

title(‘Fuzzifying training data’);

%

End

%%%%%%%%%%%%%%%%%%%

%% PredictionFunction

function forecasted=predict(TestCP,A,Al,Au,UMF,LMF,typeMF,FLRG,WBS,B

x=Al:Au−1;

AB=horzcat(A,B);

forecasted=zeros(length(TestCP),1);

for i=2:size(AB,1)

a=AB(i−1,1);

b=AB(i−1,2);

consequent=find(FLRG(a,:,b));

centroid=zeros(1,size(FLRG,1));

if isempty(consequent)

if typeMF(a)==1

forecasted(i−1)=sum(x.*UMF(a,:))/sum(UMF(a,:));

elseif typeMF(a)==2

avgMF=(LMF(a,:)+UMF(a,:))/2;

forecasted(i−1)=sum(x.*avgMF)/sum(avgMF);

% forecasted(i−1)=KMmethod(LMF(a,:),UMF(a,:),x);
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end

else

%SF1=0;SF2=0;SF3=0;

NF=0;
for j=1:length(consequent)

%Case1: a=T1FS, consequent(j)=T1FS

if typeMF(a)==1 && typeMF(consequent(j))==1

predy=interp1(x,UMF(a,:),TestCP(i−1),’linear’,’extrap’);

temp=ones(1,length(x))*predy;

projMF=min(temp,UMF(consequent(j),:));

centroid(consequent(j))=sum(x.*projMF)/sum(projMF);

%Case2: a=T1FS, consequent(j)=IT2FS

elseif typeMF(a)==1 && typeMF(consequent(j))==2

predy=interp1(x,UMF(a,:),TestCP(i−1),’linear’,’extrap’);

temp=ones(1,length(x))*predy;

projUMF=min(temp,UMF(consequent(j),:));

projLMF=min(temp,LMF(consequent(j),:));

avgMF=(projLMF+projUMF)/2;

centroid(consequent(j))=sum(x.*avgMF)/sum(avgMF);

% centroid(consequent(j))=KMmethod(projLMF,projUMF,x);

%Case3: a=IT2FS, consequent(j)=T1FS

elseif typeMF(a)==2 && typeMF(consequent(j))==1

predU=interp1(x,UMF(a,:),TestCP(i−1),’linear’,’extrap’);

% predL=interp1(x,LMF(a,:),TestCP(i−1),’linear’,’extrap’);

temp=ones(1,length(x))*predU;

projMF=min(temp,UMF(consequent(j),:));

centroid(consequent(j))=sum(x.*projMF)/sum(projMF);

%Case4: a=IT2FS, consequent(j)=IT2FS

elseif typeMF(a)==2 && typeMF(consequent(j))==2

predU=interp1(x,UMF(a,:),TestCP(i−1),’linear’,’extrap’);

predL=interp1(x,LMF(a,:),TestCP(i−1),’linear’,’extrap’);

tempU=ones(1,length(x))*predU;

tempL=ones(1,length(x))*predL;

projUMF=min(tempU,UMF(consequent(j),:));

projLMF=min(tempL,LMF(consequent(j),:));

avgMF=(projLMF+projUMF)/2;

centroid(consequent(j))=sum(x.*avgMF)/sum(avgMF);

% centroid(consequent(j))=KMmethod(projLMF,projUMF,x);

end

if j<a

forecasted(i−1)=forecasted(i−1)+centroid(consequent(j))*FLRG

(a,consequent(j),b)*WBS(b,1);

elseif j==a

forecasted(i−1)=forecasted(i−1)+centroid(consequent(j))*FLRG

(a,consequent(j),b)*WBS(b,2);
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else

forecasted(i−1)=forecasted(i−1)+centroid(consequent(j))*FLRG

(a,consequent(j),b)*WBS(b,3);

end

end

for j=1:length(consequent)

if j<a

NF=NF+FLRG(a,consequent(j),b)*WBS(b,1);

elseif j==a

NF=NF+FLRG(a,consequent(j),b)*WBS(b,2);

else

NF=NF+FLRG(a,consequent(j),b)*WBS(b,3);

end

end

forecasted(i−1)=forecasted(i−1)/NF;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Shade Plot

function [ha hb hc] = shadedplot(x, y1, y2, varargin)

y = [y1; (y2−y1)]’;

ha = area(x, y);

set(ha(1), ’FaceColor’, ’none’) % this makes the bottom area invisible

set(ha, ’LineStyle’, ’none’)

% plot the line edges

hold on

hb = plot(x, y1, ’k’, ’LineWidth’, 2);

hc = plot(x, y2, ’k’, ’LineWidth’, 2);

hold off

% set the line and area colors if they are specified

switch length(varargin)

case 0

case 1

set(ha(2), ’FaceColor’, varargin{1})

case 2

set(ha(2), ’FaceColor’, varargin{1})

set(hb, ’Color’, varargin{2})

set(hc, ’Color’, varargin{2})

otherwise

end
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% put the grid on top of the colored area

set(gca, ’Layer’, ’top’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Table IX

function FVG=tableIX(B_MF,B_SF)

FVG=zeros(14,14);

temp=zeros(14,14);

for t=2:length(B_MF)

Bx=B_MF(t);

Bz=B_SF(t−1);

temp(Bz,Bx)=1;

FVG=FVG+temp;

temp=zeros(14,14);

end

end

%%%%%%%%%%%%%%%%%%%%%%%

%% TableVI

function FLRG=tableVI(B,fromA,toA)

endA=max([max(fromA),max(toA)]);

FLRG=zeros(endA,endA,14);

temp=zeros(endA,endA,14);

for i=1:length(B)

temp(fromA(i),toA(i),B(i))=1;

FLRG=FLRG+temp;

temp=zeros(endA,endA,14);

end

end

%%%%%%%%%%%%%%%%%%%%%%

%% Table X

function BS=tableX(FVG)

BS=zeros(14,3);

for i=1:14

if sum(FVG(i,:))*=0

BS(i,1)=sum(FVG(i,1:i−1))/sum(FVG(i,:));
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BS(i,2)=FVG(i,i)/sum(FVG(i,:));

BS(i,3)=sum(FVG(i,i+1:14))/sum(FVG(i,:));

end

end

end

%%%%%%%%%%%%%%%%%%

How to run the program with workspace construction in MATLAB is available
in the url: http://computationalintelligence.net/fuzzytimeseries/howtorun.html
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Chapter 3
Handling Main and Secondary Factors
in the Antecedent for Type-2 Fuzzy Stock
Prediction

Abstract Traditional fuzzy logic based approaches to prediction of stock index
time-series utilize the reasoning mechanisms of type-1 fuzzy sets. The predictions
undertaken thereby occasionally suffer from representational uncertainty. This
chapter introduces interval type-2 fuzzy reasoning to capture the uncertainty buried
under the individual partitions of a time-series. It presents three different methods of
autonomous construction of membership functions, and one additional method for
automatic adaptation of membership function for further tuning of memberships
with the latest data of the time-series. The first method employs interval type-2
fuzzy reasoning to predict the next day variation in main factor time-series from its
current value. The second method too introduces an interval type-2 reasoning with
secondary factor variation as an additional antecedent for the prediction. It orga-
nizes the dynamic range of the (main factor) time-series as non-uniformly parti-
tioned segments using evolutionary algorithm, so that each partition includes at
least one data point sufficient to capture the uncertainty by interval type-2 model.
The third method employs uniform partitioning with no restriction on the number of
data points in the partitions. It employs type-1 fuzzy sets to capture the uncertainty
in a partition when it includes a single block of contiguous data and an interval
type-2 fuzzy set when the partition includes two or more blocks. The last method
involves additional tuning of the membership functions with recent data from the
time-series to imbibe the prediction results with the current trends. Experiments
undertaken reveal that the third method with provisions for adaptation of mem-
bership functions with recent data outperforms the first two methods. The said
method also outperforms existing techniques by a large margin of root mean square
error.

3.1 Introduction

A time-series represents discrete samples of a time-valued function obtained at
uniform intervals of time [1]. Prediction of the next sample value of a time-series
from its current sample values is generally regarded as the time-series prediction
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problem. In an economic time-series, the next sample value is presumed to depend
only on the current sample value [2, 3] and other external factors [4–6] where the
latter in many circumstances are not completely known. This chapter attempts to
predict an economic time-series considering other standard time-series as
influencing factors in the prediction process. The other standard time-series that
may influence the prediction of given time-series is called secondary factor.

Quite a few interesting chapters on time-series prediction are available in the
literature [7–14]. A few selected chapters that need special mention include neural
network models [15–17], regression analysis [18], fuzzy techniques [7, 10–13, 19]
evolutionary algorithms [20], adaptation models [21–23] automatic clustering [3,
24, 25], heuristic model [26], genetic algorithm [19], and Fibonacci sequence [27].
In the present work, we employ fuzzy models for their inherent potential to handle
uncertainty in the prediction process. The first successful work employing fuzzy
models for economic time-series prediction [12] is due to Song et al. [10–13]. In
[10, 11], the authors employed fuzzy relational algebra for time-series prediction.
Several extensions [4, 5, 8, 10, 14, 16, 17, 19–34] to the primitive fuzzy model
introduced by Song et al. have been developed in the past to minimize the root
mean square error of time-series prediction. However, unfortunately, none of the
existing models could capture the inherent uncertainty hidden in the time series or
its secondary factors. This chapter attempts to employ Interval type-2 [35] fuzzy
sets (IT2FS) to model both intra- and inter-personal level uncertainty in a
time-series.

Most of the fuzzy logic based time-series prediction algorithms use type-1 [39]
fuzzy reasoning for prediction. Very recently, researchers took keen interest to
examine the role of interval type-2 fuzzy sets (IT2FS) [35–38, 40] for time-series
prediction. Unfortunately, none of the above prediction algorithms used traditional
IT2FS in its true spirit, as indicated by Mendel and his research group [41]. For
instance, in [37, 38], the authors employ three type-1 fuzzy sets HIGH, LOW and
CLOSE and consider their union together to represent an IT2FS. Unfortunately, the
type-1 fuzzy sets used to develop the IT2FS should be of same genre [40–42] i.e.,
they all should characterize the same fuzzy concept such as CLOSE. This chapter,
however, considers type-1 fuzzy sets of the same genre to construct the IT2FS. In
addition, propositional logic [37, 38] instead of traditional fuzzy logic, is used to
perform fuzzy reasoning, which may not be acceptable to practitioners of fuzzy sets
and logic. The present work strictly follows the formalisms of IT2FS [43, 44] to
develop the algorithm for time-series prediction.

Although there exist traces of works on using secondary indices [4, 6, 9] for
time-series prediction, we feel that an alternative but more simplified method to
address the same problem can be developed by embedding the last sample values of
both main factor time-series and secondary factor in the premise of the fuzzy
production rules used for prediction. In fact, the present work employs such pro-
duction rule to infer the current value of the main factor time-series. The objective
of the present work thus is two-fold. First, we attempt to design a general frame-
work of reasoning with rules indicated above, where the type of fuzzy propositions
present in the premise and consequent are determined by the time-series data only
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and not by the user. For example, if a partition of the time series contains one or a
few contiguous data point, the membership function selected to represent those
fragments of data is type-1. On the other hand, if a partition includes several
contiguous blocks of data points, an IT2FS representation is a better choice for the
data points in the partition.

Secondly, because of allowance of fuzzy propositions in premise and/or con-
sequent as type-1 or IT2FS, the reasoning mechanism may take eight different
forms with either or both propositions in premise and the single proposition in
consequent to take either of two forms. Naturally, for each of the eight cases, we
need to develop a method of fuzzy reasoning. Lastly, to get back the predicted
results in real quantity, we need to use a process of de-fuzzification to transform a
fuzzy inference back to real data. Two possible modalities of de-fuzzification apply
in the present context, depending on the type of the inference. If it is a type-1 fuzzy
set, we use type-1 defuzzification. Otherwise, we go for IT2 defuzzification using
the well-known Karnik-Mendel algorithm [41].

Finally, we consider a system validation approach to tune membership functions
with an ultimate aim to reduce the root mean square prediction error. This is done
using an evolutionary approach realized with Differential Evolution algorithm. Any
traditional evolutionary algorithm could be used to solve the problem. However, we
use Differential Evolution [52] for pour past experience of using it [49] along with
its added benefit of low computational cost, few control parameters and its small
length of code.

The rest of the chapter is fragmented into five sections. Section 3.2 provides
preliminaries to IT2FS. In Sect. 3.3, we develop the algorithm for time-series
prediction. Experimental results undertaken through computer simulation are given
in Sect. 3.4. Conclusions are listed in Sect. 3.5.

3.2 Preliminaries

This section introduces a few definitions covering both time-series prediction and
IT2FS. These definitional are used in the rest of the chapter.

Definition 3.2.1 The close price c ðtÞ [45] of a stock index refers to the last traded
price on the trading day t in a given stock exchange.

Definition 3.2.2 The stock index under consideration for prediction of a time series
is called Main Factor Time Series (MFTS). Here, we consider TAIEX (Taiwan
Stock Exchange Index) as the MFTS [46].

Definition 3.2.3 The indices associated with MFTS that have large influence on the
prediction of the MFTS are called Secondary Factor Time Series (SFTS). Here, we
consider NASDAQ (National Association of Securities and Dealers Automated
Quotations) as the SFTS.
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Definition 3.2.4 The Variation Time Series (VTS) for a given close price time
series (CTS) c ðtÞ, is evaluated by,

VTS ¼ cðtÞ � cðt � 1Þ ð3:1Þ

for t 2 ½tmin; tmax�, where tmin and tmax denote the beginning and terminating days of
the training period [4]. We here onwards use VMðtÞ and VSðtÞ to denote the VTS for
MFTS (or MFVTS) and SFTS (or SFVTS) respectively.

Definition 3.2.5 Prediction of an MFTS at time tþ 1 refers to evaluating
cðtþ 1Þ from its past Main factor VTS (also known as MFVS) values:
VMðtÞ; VMðt � 1Þ; . . .; VMðt � ðm� 1ÞÞ, obtained from MFTS values
cðtÞ; cðt � 1Þ; cðt � 2Þ; cðt � 3Þ; . . .; cðt � ðm� 1ÞÞ and secondary factor VTS
(SFVTS also known as SFVS) VSðtÞ;VSðt � 1Þ; . . .;VSðt � ðm� 1ÞÞ for some
positive integer m. This is referred to as mth order forecasting. However, in most
time-series forecasting [2, 4, 5, 9–13] including the one in the present chapter, 1st
order forecasting model with m ¼ 1 is used [6].

Definition 3.2.6 A T1 fuzzy set is represented by a two tuplehx; lAðx)i, where x
denotes a linguistic variable in a Universe of discourse X and lAðx) denotes the
membership value of x in the fuzzy set A, lying in ½0; 1�.
Definition 3.2.7 A general type-2 Fuzzy Set (GT2FS) [36] is a three tuple given by
hx; lAðx); lAðx,lAðx))i where x and lAðxÞ have the same meaning as in Definition
3.2.6, and lAðx; lAðx)) is the secondary membership in [0, 1] for a given ðx; lAðx)).
Definition 3.2.8 An interval type-2 fuzzy set (IT2FS) [35], [40, 42] is defined by
two T1 membership functions (MFs), called Upper Membership Function (UMF) ,
and Lower Membership Function (LMF). An IT2FS eA, therefore, is represented by
hleAðxÞ; �leAðxÞi where leAðxÞ and leAðxÞ denote the lower and upper membership

functions respectively. The secondary membership lAðx; lAðx)) in IT2FS is con-
sidered as 1 for all x and lAðx).
Definition 3.2.9 The left end point centroid is the smallest of all possible centroids
of the embedded fuzzy sets [42–44] in an IT2FS eA and is evaluated by

cl ¼
Pk�1

i¼1 leAðxiÞ:xi þ PN
i¼kþ 1 leAðxiÞ:xiPk�1

i¼1 leAðxiÞþ PN
i¼kþ 1

leAðxiÞ
ð3:2Þ

using the well-known Karnik-Mendel algorithm [42–44] where x 2 x1; x2; . . .; xNf g
and xiþ 1 [ xi 8i ¼ 1 to N � 1. Here x ¼ xk is a switch point and N denotes the
number of sample points of leAðxiÞ and leAðxiÞ:
Definition 3.2.10 The right end point centroid is the largest of all possible cen-
troids of the embedded fuzzy sets [48, 49, 51] in an IT2FS eA and is evaluated by
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cr ¼
Pk�1

i¼1 leAðxiÞ:xi þ PN
i¼kþ 1 leAðxiÞ:xiPk�1

i¼1 leAðxiÞþ PN
i¼kþ 1 leAðxiÞ ð3:3Þ

using the well-known Karnik-Mendel algorithm [42–44] where x 2 fx1; x2; ::; xNg
and xiþ 1 [ xi 8i ¼ 1 to N � 1. Here x ¼ xk is a switch point and N denotes the
number of sample points of leAðxiÞ and leAðxiÞ.
Definition 3.2.11 The centroid of an IT2FS is given by

c ¼ ðcl þ crÞ
2

ð3:4Þ

where cl and cr are the left and the right end point centroids.

Definition 3.2.12 The RMSE [4] for predicted values is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðAV � FVÞ2
n

s
ð3:5Þ

where n is the number of days predicted, AV is actual value, FV is forecasted value.

3.3 Proposed Approach

Traditional approaches to economic time-series prediction usually adopt uniform
partitioning of the dynamic range of the series for its efficient prediction [2, 4–6,
9–13]. Choice of the number of partitions here plays a vital role on the accuracy of
the prediction. The prediction accuracy seems to be increased for increasing number
of partitions, however, with a risk of having one or fewer data points in a partition.
This chapter offers two alternative approaches to handle the above problem. In
Method-I and -II presented below, we consider non-uniform partitioning of the
time-series, so as to ensure that each partition includes two or more disjoint blocks
of contiguous data points with at least two consecutive data points in a block. The
above restriction on the width of individual partition helps us develop a type-1
fuzzy model for each block of data in a partition, and an IT2FS model for a
complete partition. In Method-III, we allow uniform-width partitioning, even with a
single block (in a partition) containing at least one data point. In case there exists a
single block in a partition, we represent the partition by a type-1 fuzzy set.
However, partitions with two or more blocks are represented by IT2FS. Thus,
method-III employs a mixed model of fuzzy reasoning, where antecedent and
consequents of implication rule may include both type-1 and IT2 MFs.

The fundamental difference between Method-I and -II lies in the fact that
method-I considers implication from MFVTS at day ðt � 1Þ to MFVTS at day t,
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whereas the method-II considers implication from MFVTS and SFVTS both at day
ðt � 1Þ to MFVTS at day t. The method-III is similar with method-II from the point
of view of implication rules, but is different with respect to the types of partitioning.
Lastly, even after doing all as stated above, we noticed that the results of prediction
are sensitive to the choice of T1 MFs. This motivated us to develop method IV,
where the T1 MFs are adapted using an evolutionary algorithm with an aim to
reduce root mean square error (RMSE) [4].

3.3.1 Method-I: Prediction Using Classical IT2FS

Step 1: For a given time-series cðtÞ, we compute the main factor variation
time-series as shown in Fig. 3.1 vðtÞ ¼ cðtÞ�cðt � 1Þ for all t.
Step 2: Partition the main factor variation time-series MFVS vðtÞ into unequal sized
p intervals, called Pi for i ¼ 1 to p, where the length of the ith interval is given di,
such that

J ¼ vmax � vminð Þ �
Xn
i¼1

di

 !2

ð3:6Þ

is minimized, where vmax and vmin respectively denote the maximum and minimum
values of the time-series respectively for a given finite range of time. This mini-
mization problem has to satisfy two constraints. First, the number of blocks within
any partition should be � 2. Second, the number of data points in a block should
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� 2. This is realized by formulating an optimization problem with di; for i ¼ 1 to n
as unknown such that

J ¼ vmax � vminð Þ �
Xn
i¼1

di

 !2

þw1 � Penalty1 þw2:Penalty2

is minimized where

Penalty1 ¼ 100; if number of blocks of contiguous data points \2;

¼ 0; otherwise:

and

Penalty2 ¼ 100; if number Penalty of data points within a block\2;

¼ 0; otherwise:

Any evolutionary algorithm with a trial solution having components equal to the
partition widths d1; d2; . . .; dn can be used to solve the minimization problem. We
here use the well-known Differential Evolution (DE) algorithm for its fast con-
vergence, better accuracy and fewer control parameters and above all our familiarity
with the algorithm for quite a long time [49, 51, 52]. The pseudo code of DE
algorithm is given in the appendix.

Step 3: For each set of contiguous data points in a partition Pi, we construct a T1
triangular MF Ai;j, where the centre and base width of the isosceles triangular MF
are equal to the respective mean and twice the variance of the data points within the
contiguous data points and j denotes a particular (here jth) type-1 membership
function in a partition. In case there is a single isolated data point, we consider the
centre of the triangular MF equal to the value of the actual data point and consider a
small fixed base width of 0.001 units.

Step 4: For all T1 MFs Ai;j lying in a partition Pi, we construct a single IT2 MF eAi

whose UMF is obtained by taking the maximum of the MFs of all T1 FS within the
partition. Similarly, the LMF of the IT2Fs is obtained by taking the minimum of the
MFs of all the T1 fuzzy sets in a partition. Symbolically,

LMFðeAiÞ ¼ leAi
ðxÞ ¼ Min

jmax

j¼1
ðlAi;j

ðxÞÞ ð3:7Þ

and

UMFðeAiÞ ¼ leAi
ðxÞ ¼ Max

jmax

j¼1
ðlAi;j

ðxÞÞ: ð3:8Þ
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Step 5: To satisfy convexity criterion, the UMF is approximated by a flat-top
representation. This is done by joining the first and last maxima of the UMF by a
straight line parallel to the x-axis.

Step 6: For each pair of current day t � 1 and next day t, determine the respective
IT2FS eAi and eAj, lying in partitions Pi and Pj, and save the fuzzy relational

mappings: eAi ! eAj in a list.

Step 7: For a given day t � 1, check the occurrence of eAi in the list. If eAi occurs in r
number of rules, fire each rule with current value of vðt � 1Þ and generate IT2
inference using the following policy.

Let ðt � 1Þth day’s variation lies on ith partition. On firing the rules with
antecedent eAi:eAi ! eAj; eAi ! eAk, and eAi ! eAl we determine the fuzzy inferences

by the following procedure. Let UMF and LMF for eAi be UMFi and LMFi

respectively. For the rule: eAi ! eAj, the IT2 inference is obtained by

UMF0
j ¼ Min½UMFiðv0Þ;UMFj�; ð3:9Þ

LMF0
j ¼ Min ½LMFiðv0Þ; LMFj�; ð3:10Þ

where,v0 is a measures value of v ðt � 1Þ 9 t. Similarly, we obtain UMF0
y and LMF0

y

by replacing index j by y for y 2 fk; lg in the remaining rules.

Step 8: Defuzzify each inference using (3.2), (3.3) and (3.4) and determine the final
variation by taking weighted sum of each centroid by the probability of occurrence
of the rule, i.e., �c ¼Pj ðwij � cjÞ, where cj is the centroid of the inference obtained

by consulting the rule eAi ! eAj:

The probability of occurrence for the rule eAi ! eAj is wij ¼ fjðAi!AjÞP
8l flðAi!AlÞ, where fj

and fl the frequency count of the rule eAi ! eAj and eAi ! eAl respectively.

Step 9: Next Predicted price at day t i.e., c(t) is evaluated by the following step:

cðtÞ ¼ cðt � 1Þþ vðtÞ;

where vðtÞ ¼ c the defuzzified signal amplitude, representing the predicted varia-
tion for the next day t.

3.3.2 Method-II: Secondary Factor Induced IT2 Approach

Step 1: Repeat step 1 of Method-I to compute the variation time-series vðtÞ ¼
cðtÞ � cðt � 1Þ for all t, where cðtÞ is the close price at day t.
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Step 2: Partition the main factor variation time-series MFVS vðtÞ into unequal sized
p intervals, called Pi for i ¼ 1 to p, following step 2 of Method-I.

Step 3: For each set of contiguous data points in a partition Pi, construct a T1
triangular MF Ai;j, where j denotes a particular (here jth) type-1 membership
function in a partition using step 3 of Method-I.

Step 4: For all T1 MFs Ai;j lying in a partition Pi, we construct a single IT2 MF eAi

whose UMF and LMF are obtained as

LMF ðeAiÞ ¼ leAi
ðxÞ ¼ Min

jmax

j¼1
ðlAi;j

ðxÞÞ ð3:11Þ

UMFðeAiÞ ¼ leAi
ðxÞ ¼ Max

jmax

j¼1
ðlAi;j

ðxÞÞ: ð3:12Þ

following step 4 of Method-I.

Step 5: Carry out flat-top approximation of the resulting IT2FS by joining the first
and last maxima of the UMF by a straight line parallel to the x-axis, as indicated in
step 5 of Method-I.

Step 6: For a given SFTS csðtÞ, compute the secondary factor variation series
(SFVS) vsðtÞ ¼ csðtÞ � csðt � 1Þ for all t.
Step 7: Partition for the sake of simplicity the SFVS vSðtÞ into equal sized q in-
tervals, called Qj; j ¼ 1 to q, where the length of the intervals is given by
ðvmaxS � vminS Þ=q, where vmaxS and vminS respectively denote the maximum and mini-
mum values of the SFTS respectively for a given finite range of time.

Step 8: Construct a T1 Triangular MF Bi;j for a set of contiguous data points in
partition Qi following the same policy as used at step 3 of Method-I.

Step 9: Construct IT2MF eBi for all T1 MF Bi;j lying on partition Qi following the
same policy used in method 1 at step 4 and step 5.

Step 10: Determine the pair of IT2FS for MFVTS eAi and SFVTS eBj at current day
t � 1, lying in partitions Pi and Qi respectively and also determine the IT2FS for
MFVTS eAk at next day t, and save the fuzzy relational mapping: eAi; eBj ! eAk in a
list L.

Step 11: For a given day t � 1, check the occurrence of eAi; eBj pair in all sets of

rules of the form given above in the list L. If eAi; eBj occur in r number of rules, fire
each rule with current value of vMðt � 1Þ; vS ðt � 1Þ and generate IT2 inference
using the following policy.

(a) Let ðt � 1Þth day’s MFVTS lies on ith partition and SFVTS lies on jth
partition of their respective universe of discourses. Let the rules found in the list L
with antecedent eAi; eBj include: eAi; eBj ! eAk; eAi; eBj ! eAl; eAi; eBj ! eAm. Let UMF
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and LMF for eAi be UMFi and LMFi, that for eBj be UMFj and LMFj respectively.

For the rule: eAi; eBj ! eAk the IT2 inference is obtained by

umf ¼ Min½UMFiðv0MÞ;UMFjðv0SÞ� ð3:13Þ

lmf ¼ Min½LMFiðv0MÞ; LMFjðv0SÞ� ð3:14Þ

UMF0
k ¼ Min½umf ;UMFk� ð3:15Þ

LMF0
k ¼ Min½lmf ; LMFk� ð3:16Þ

where v0M is a measured value of vMðt � 1Þ 9 t: and v0S is a measured value of
vSðt � 1Þ 9 t:

Similarly, we obtain UMF0
y and LMF0

y by replacing index k by y where y 2
fl;mg for the remaining rules.

Step 12: Defuzzification is done and forecasted value c is computed by the fol-
lowing step:

c ¼Pk ðwi; j;k � ckÞ, where ck is the centroid of the inference obtained by

consulting the rule eAi; eBj ! eAk, where wi;j;k is obtained by

wi;j;k ¼ fkðeAi; eBj ! eAkÞP
8l flðeAi; eBj ! eAlÞ

ð3:17Þ

where fk is the frequency count of the rule eAi; eBj ! eAk:

Step 13: The Predicted price at day t i.e., c(t) is evaluated by the following step:

c ðtÞ ¼ cðt � 1Þþ vðtÞ;

where vðtÞ ¼ c the defuzzified signal amplitude, representing the predicted varia-
tion for the next day t.

3.3.3 Method-III: Prediction in Absence
of Sufficient Data Points

In Method-III, we partition a time-series into equal sized intervals for both MFVS
and SFVS. Here, the partitions containing a single time block are represented by
type-1 fuzzy sets, where the partitions containing two or more blocks are repre-
sented by IT2FS. The prediction algorithm introduced here uses type-1, IT2 and
mixed (type1-IT2) reasoning depending on the types of the fuzzy sets used in the
antecedents and consequents of the fired rules. Here, the antecedent part of the rules
include MFVTS at day ðt � 1Þ and SFVTS at day ðt � 1Þ, where the consequent
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part includes only MFVTS at day t. Naturally, considering each proposition in
antecedent/consequent to be type-1 or IT2FS, we have eight possible reasoning.

Algorithm for Time-Series Prediction Using Mixed Type-1 and IT2 Fuzzy Sets
in the Rule
Step 1: Repeat Step 1 of Method-I to compute the variation time-series vðtÞ ¼
cðtÞ � cðt � 1Þ for all t, where cðtÞ is the close price at day t.

Step 2: Partition the main factor variation time-series MFVS vðtÞ into equal sized
p intervals, called Pi for i ¼ 1 to p, where the length of the intervals is given by
ðv2 � v1Þ=p, where v2 ¼ vmax þD2 and v1 ¼ vmin � D1, here D1 and D2 are two
positive real numbers such that ðv2 � v1Þ=p is an integer number, where
D1;D2\ðv2 � v1Þ=p, vmax; vmin respectively denote the maximum and minimum
values of the time-series respectively for a given finite range of time.

Step 3: For each set of contiguous data points in a partition Pi, construct a T1
triangular MF Ai;j, where j denotes a particular (here jth) type-1 membership
function in a partition using step 3 of Method-I.

Step 4: For T1 MFs Ai;j lying in a partition Pi;

IF j 2 1; jmax½ � and jmax [ 1

we construct a single IT2 MF eAi whose LMF and UMF are obtained as

LMFðeAiÞ ¼ leAi
ðxÞ ¼ Min

jmax

j¼1
ðlAi;j

ðxÞÞ ð3:18Þ

UMFðeAiÞ ¼ leAi
ðxÞ ¼ Max

jmax

j¼1
ðlAi;j

ðxÞÞ: ð3:19Þ

following step 4 of Method-I,
Else jmax ¼ 1ð Þ consider Ai ¼ Ai;1 as a T1 MF.
End—For;

Step 5: Carry out flat-top approximation of the resulting IT2FS eAi by joining the
first and last maxima of the UMF by a straight line parallel to the x-axis, as
indicated in Step 5 of Method-I.

Step 6: For a given SFTS csðtÞ, compute the secondary factor variation series
(SFVTS) vsðtÞ ¼ csðtÞ � csðt � 1Þ for all t.
Step 7: Partition the SFVTS vSðtÞ into equal sized q intervals, called Qj; j ¼ 1 to q,
where the length of the intervals is given by ðvmaxS � vminS Þ=q, where vmaxS and vminS
respectively denote the maximum and minimum values of the SFVTS respectively
for a given finite range of time.
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Step 8: Construct a T1 Triangular MF Bi;j for a set of contiguous data points in
partition Qi following the same policy as used at Step 3 of Method-I.

Step 9: For T1 MFs Bi;j lying in a partition Qi,

IF j 2 1; jmax½ � and jmax [ 1

we construct a single IT2 MF eBi whose UMF and LMF are obtained as

LMFðeBiÞ ¼ l
B
_

i

ðyÞ ¼ Min
jmax

j¼1
ðlBi;j

ðyÞÞ ð3:20Þ

UMFðeBiÞ ¼ leBi
ðyÞ ¼ Max

jmax

j¼1
ðlBi;j

ðyÞÞ: ð3:21Þ

following Step 4 of Method-I,
Else consider Bi ¼ Bi;1 as a T1 MF.
End—For;

Step 10: Determine the pair of IT2FS for MFVTS eAi or Ai and SFVTS eBj or Bj at
current day t � 1, whichever is available, lying in partitions Pi and Qi respectively
and also determine the IT2FS for MFTVS eAk or Ak at next day t, and save the fuzzy
relational mapping:Ai;Bj ! Ak or Ai; eBj ! Ak or eAi;Bj ! Ak or Ai; eBj ! eAk oreAi;Bj ! eAk or eAi; eBj ! Ak or Ai;Bj ! eAk or eAi; eBj ! eAk , whichever is applica-
ble, in a list L.

Step 11: Given the variation value for MFVTS v0M and SFVTS v0S on day ðt � 1Þ,
we first check whether the measurements v0M and v0S; belonging to partitions PmPm

and Qs respectively, have membership functions lying in the antecedent of the
pre-constructed rules. In case MFs corresponding to any one the linguistic variables
v0M and v0S is absent from the pre-constructed rules, we take the predicted variation
(of close price) as the centre of the partition Pm. However, if MFs for both the
linguistic variables v0M and v0S are present in the antecedent of any rule, we use three
distinct types of fuzzy reasoning as applicable. The general structure of fuzzy rules
and reasoning mechanism are given in Table 3.1.

Let vK be the linguistic variable denoting variation in MFVTS at day t. In case
the MFs of v0M ; v

0
S and vK are found as type-1 memberships in one of the pre-defined

rules, then the reasoning is purely type-1 reasoning. In case the MFs of the above
linguistic variables appear as IT2FS, we develop a pure IT2 fuzzy reasoning. For all
other cases, we use mixed reasoning, where both type-1 and IT2 MFs are used
jointly in the same rule and reasoning procedure. Figure 3.2a, b geometrically
explains the inference generating mechanism introduced in Table 3.1.

Step 12: After the resulting inference is obtained, we defuzzify the inference using
IT2 or T1 defuzzification, which one is applicable in Table 3.1. The defuzzified
value represents the predicted variation at day t.
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Fig. 3.2 a Inference generation with T1/IT2 antecedent and consequent pair, b inference
generation with T1/T2 antecedent consequent pair
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Fig. 3.2 (continued)
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Step 13: The Predicted price at day t i.e., c(t) is evaluated by the following step:

cðtÞ ¼ cðt � 1Þþ vðtÞ;

where vðtÞ ¼ c the defuzzified signal amplitude, representing the predicted varia-
tion for the next day t.

3.3.4 Method-IV: Adaptation of Membership Function
in Method III to Handle Dynamic Behaviour
of Time-Series [47–52]

In Method-III, we constructed membership functions from the time-series data of
first 10 calendar months and attempted to predict the time-series daily for the next
two months. Our experience with time-series prediction [6] reveals that occasion-
ally such prediction suffers, perhaps, due to structural changes in the series during
the last two calendar months. Method-IV overcomes this problem by arranging
adaptation of MFs after a regular interval of 15 days starting from 1st November.
Such adaptation in MF improves the prediction accuracy, as indicated by RMSE
[4], for the next 15 days after the MFs are adapted. This section proposes a novel
approach to optimally adapt the MFs used in the prediction rules adopted in
Method III. In order to accomplish the tuning of MFs, we attempt to optimally
select the base-width of the isosceles triangular MFs. Any traditional meta-heuristic
algorithm could serve the optimization problem. We, however, select the
well-known Differential Evolution (DE) algorithm for its low computational
overhead, simplicity and above all our familiarity with the algorithm [51, 52].

While employing DE, we consider base widths of the trial solutions in DE as
unknown with a motivation to minimize J, the fitness function, as introduced below.
In the proposed algorithm, trial solutions representing base widths of the MFs are
randomly initialized within ±30% of their actual values used for non-adaptive
prediction. The mutation, crossover and selection steps are like those of standard
DE. The fitness function evaluation in the selection step, however, requires running
the prediction algorithm daily for fifteen days for different settings of trial solutions.
The algorithm is iterated until the convergence in fitness measure is attained.
Several methods for testing convergence of the algorithm are available in the lit-
erature. We here considered ‘no further improvement in average fitness of the
population’ as the metric to test the convergence criterion. The steps of the adap-
tation algorithm are outlined below.

Step 1: Initialize population of trial solution TSi, where each trial solution includes
the base width of type-1 MFs present in the rules used for prediction from ith to
ðiþ 1Þth day randomly from a range of �30% of their original base widths.
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Step 2: For each day i, starting from the beginning of the 11-th month and con-
tinuing up to the middle of the 11-th month, do evaluate RMSEi ¼ jðAVi � FViÞj,
where AVi and FVi are actual close price value and forecasted close price value on
ith day respectively and hence determine the metric J ¼Pi¼15

i¼1 RMSEi, where i = 1
to 15 corresponding to training period of first day of November and the 15th day of
November, considering 15 calendar days in the month of November.

Step 3: Considering J as the fitness value of the trial solutions, change the trial
solutions by undertaking Mutation, Crossover and select the trial solutions for the
next generation (by undertaking the Selection step of DE) [47–52].

Step 4: Repeat from step 2 until the difference between average fitness of two
consecutive generation is lower than a predefined very small positive real number e:

Step 5: Report the best trial solution containing the optimal settings of base widths
of the T1 MFs used in the rules.

Step 6: Loop through step 2 with redefined value of i increased by 15 days until i
attains 31st December of the calendar year. This is adopted by the principles
outlined below.

The type-1 MFs are adapted using the above algorithm for every fifteen days to
predict for the next fifteen days. In our study, we determined prediction rules and
the membership functions from the time-series data for the first ten months (1st
January to 31st October). Then we adapted the type-1 MFs using the prediction
results obtained by method III for the next fifteen days (November 1–15). Next we
go for daily prediction of the time-series for the period: November 16 to November
30 using the adapted MFs obtained previously.

In order to predict the time-series for the period December 1 to 15, we first need
to adapt type-1 MFs for the period (November 16–31) with the predicted result
obtained during this period, and then go for the step of prediction. Lastly, to predict
the time series for the last fifteen days in the year, we adapt MFs for the first fifteen
days in December and perform prediction with the adapted type-1 MFs.

3.4 Experiments

3.4.1 Experimental Platform

We performed the experiment using MATLAB 2012b under operating system as
WINDOWS-7 running on a IBM personal computer with Core i5 processor with
system clock of 3.60 G-Hz frequency and system RAM of 8 GB.
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3.4.2 Experimental Modality and Results

Policies considered: Experiments are performed on TAIEX stock data for the
duration of 1999–2004 [46], considering January 1 to October 31 as the training
period and November 1 to December 31 as the testing period, irrespective of any
methods. Here, we transform the actual time-series into a variation series by taking
the differences of two consecutive close price data.

The close price data for both main factor and secondary factors are obtained for
the period 1990–2004 from the website [46]. The training session includes all
trading days. In case all the trading days of secondary factors do not coincide with
those of the main factor, we adopt policies for the following two cases.

Case-I: Let us consider two sets A and B, representing respectively the dates of
trading in main and secondary factor time-series. If the set difference: A − B is
non-null, we retain the close price of previous trading days in secondary factor over
the missing (subsequent) days.

Case-II: If the set difference: B − A is non-null, the following policy is adopted
as applicable. In case the main factor has missing trading days due to holidays
and/or other local factors, we simply omit those days for training. Further, in the
trading of next day of main factor time-series, the influence of the last day of trading
in secondary factor closing price would be considered. After completion of the
training, prediction rules (also called Fuzzy Logic Implications (FLI)) are saved for
prediction of the main factor time series.

MF Selection: From our previous experience [6], we note that triangular type-1
MFs yield better prediction accuracy than those obtained by Gaussian MFs. This
prompted us to take up the present study with triangular MFs. In method I to III, we
fix the type-1 triangular MFs once only. However, in method IV, we need to adapt
the parameters of the triangular MFs after the training session is over. Such
adaptation is required to improve RMSE in the prediction phase performed during
the last two months of the calendar year.

In this section, we attempt to compare the relative performance of the proposed
four methods with existing techniques for stock index time-series prediction. We
used root mean square error (RMSE) as the metric for this study. All the experi-
ments are undertaken with the TAIEX stock data as the main factor time series.
Method-I utilizes only the MFTS. Method-II to IV however used NASDAQ as the
secondary factor time-series. We used 28 well-known techniques to compare the
relative performance of the proposed techniques with them.

Table 3.2 provides the list of rules obtained from the 2003 TAIEX main-factor
time series using Method-II, III and IV with NASDAQ as secondary factor
time-series. The rule selection is performed for the said time-series for the first
10 months. The rules obtained by Method-I are simply the implication rules
without Bj; 8j. In addition to the above, we need to adapt MFs in Method-IV at
15 days’ interval and validate it for the next 15 days. We repeat it starting from
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October to December with 15 days’ interval. Using the prediction rules stated in
Table 3.2, we plot the predicted time-series value by the proposed four methods
along with the actual time-series in Fig. 3.3 and evaluate the RMSE for all the four
existing works. The results are listed in Table 3.4. It is apparent from Table 3.4 that
Method-IV yields the best performance with respect to RMSE, followed by
Method-III, II and I in order. It is also noted that our proposed four methods
outperform existing techniques with RMSE as the key metric (Table 3.3).

Fig. 3.3 Forecasted TAIEX of the months November and December 2003 using Triangular MFs,
(1) Actual TAIEX; (2) Forecasted data using proposed method I; (3) Forecasted data using
proposed method II; (4) Forecasted data using proposed method III; (5) Forecasted data using
proposed method IV

Table 3.3 Comparison of RMSEs obtained by the proposed techniques

Methods Years

1999 2000 2001 2002 2003 2004 Mean

1. Proposed
method I(1)

175.74 192.75 230.45 181.26 144.2603 197.34 241.3001

2. Proposed
method II(2)

122.493 169.314 169.614 129.547 119.8202 132.719 152.2512

3. Proposed
method III(3)

83.141 116.471 101.423 56.756 43.71476 49.471 75.1628

4. Proposed
method IV(4)

74.541 110.145 94.127 50.441 33.75384 39.065 67.0121
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3.5 Conclusion

In this chapter, we proposed four incrementally improved methods of economic
time-series prediction using interval type-2 fuzzy sets, and compared their relative
performance with a set of 28 well-known existing techniques with RMSE as the key
metric. The first method attempted to predict economic time-series using classical
IT2FS. The second method attempted to use both main- and secondary factor
time-series for the prediction of the main factor time-series using IT2FS. The third
method deals with insufficient number of data points in training phase to construct
MFs. The fourth method adapts the MFS to handle the dynamic behavior of the
time-series.

We here undertook experiments with triangular MFs. Gaussian MFs are not
intentionally used as we have noted relatively worse performance of Gaussian MFs
in our previous work in comparison to triangular MFs. Experiments undertaken
confirmed that there is a chronological improvement in performance based on the
use of improved strategies in the methods proposed. The RMSE metric computed
over 6 years: 1999–2004, for example, indicates a steady decrease for the four
methods. For example, for methods 1, 2, 3 and 4, the measured RMSE in the year
2003 are obtained as 145, 120, 44 and 34 respectively.

An analysis of results using RMSE as the metric further indicates that the
proposed methods outperform the existing techniques on stock index prediction by
a considerable margin (� 15%). Out of the four proposed methods, the method 4
with provision for its adaptation of MFs yields the best performance following the
prediction of TAIEX stock data for the period of 1999–2004 with NASDAQ as the
secondary index.

Exercise

1. Consider the fuzzy prediction rule: If the secondary factor is B3 on the t-th day
and main factor is A2 then the close price at day (t − 1) is A3. Given triangular
MFs of B3, A2 and A3 is indicated below. If secondary factor is 2K and main
factor is 2.5K, then compute the IT2 fuzzy inference (Fig. 3.4).

2. One simple form of defuzzification is to represent the IT2FS by a type 1 fuzzy
set. This is one form type reduction. After transformation of the IT2FS given in
Fig. 3.5 into type -1 fuzzy set, evaluate the centroid of the type-1 fuzzy set.
Hints: Compare the type-reduced fuzzy set as follows:
In Fig. 3.6 OAB is the derived type-1 MF centroid of OAB.

Appendix 3.1: Differential Evolution Algorithm [36, 48–50]

The classical Differential Evolution (DE) algorithm consists of the four fundamental
steps—initialization of population vectors, mutation, crossover or recombination,
and selection. The steps are given below.
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I. Initialize the generation number t = 0 and randomly initialize a population of
NP individuals _Pt = {x1(t), x2(t), … , xNP (t)} with xi(t) = {xi,1(t), xi,2(t),
2026, xi,D(t)} and each individual uniformly distributed in the range [xmin,
xmax], where xmin = {xmin,1, xmin,2, …, xmin,D} and xmax = {xmax,1, xmax,2, …,
xmax,D} for i = [1, 2, …, NP].

II. While stopping criterion is not reached, do Begin
For i = 1 to NP

(a) Mutation: Obtain a donor vector V (t) = {vi,1 (t), vi,2 (t), …, vi,D (t)}
corresponding to the i-th target vector xi(t) by the following scheme
Vi(t) = xr1(t) + F (xr2 (t) – xr3(t)) where r1, r2 and r3 are randomly chosen
distinct integers in [1, NP].

Today’s Main factor close price

3

Min

Min

323

Today’s Secondary close price

A
~

A
~

A
~

B
~

Fig. 3.4 Figure for problem 1

O B

Type reduced

C(t) →O B

A

Fig. 3.6 Figure for
problem 2

1

3 3

1

1.0

0.5

Fig. 3.5 Figure for
problem 2
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(b) Crossover: Generate trial vector Ui (t) = {ui,1 (t), ui,2 (t), …, ui,D(t)} for
the i-th target vector xi(t) by binomial crossover, given by

ui;jðtÞ ¼ vi;jðtÞ if rand ð0; 1Þ\Cr; a fixed crossover rate

¼ xi;jðtÞ otherwise:

(c) Selection: Evaluate the trial vector ui(t)

If f UiðtÞð Þ\ f xiðtÞð Þ;
Then xiðtþ 1Þ ¼ UiðtÞ
End if;

End for;
(d) Increase the counter value t = t + 1.

End while;

In the above algorithm, we introduced two parameters, called crossover rate Cr

and scale factor F. They are defined once for all at the beginning of the program.
Typically Cr lies in [0, 2] and has been fixed as 1.2 in the program. Similarly,
typical range of F to attain convergence is [0, 2], and we fixed it as 0.7. In addition,
selection of terminating condition is an important issue. It could be defined in many
alternative ways, such as (1) fixing upper bound of program iterations, (2) fixing an
error bound to the best-fit member in the population and best fit average fitness over
each iterations or any one of the above whichever occurs earlier.
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Chapter 4
Learning Structures in an Economic
Time-Series for Forecasting Applications

Abstract The chapter introduces a machine learning approach to knowledge ac-
quisition from a time-series by incorporating three fundamental steps. The first step
deals with segmentation of the time-series into time-blocks of non-uniform length
with distinguishable characteristics from their neighbours. The second step groups
structurally similar time-blocks into clusters by an extension of the DBSCAN
algorithm to incorporate multilevel hierarchical clustering. The third step involves
representation of the time-series by a special type of automaton with no fixed start
or end states. The states in the proposed automaton represent (horizontal) partitions
of the time-series, while the cluster centres obtained in the second step are used as
input symbols to the states. The state-transitions here are attached with two labels:
probability of the transition due the input symbol at the current state and the
expected time required for the transition. Once an automaton is built, the knowledge
acquisition (training) phase is over. During the test phase, the automaton is con-
sulted to predict the most probable sequence of symbols at a given starting state and
the approximate time required (within user-defined margin) to reach a user-defined
target state with its probability of occurrence. Test phase prediction accuracy being
high over 90%, the proposed prediction can be utilized for trading and investment
in stock market.

4.1 Introduction

A time-series represents a discrete time-valued function describing population
growth [1], variation of atmospheric temperature [2] and rainfall [3], economic
growth [4] and the like. Prediction of a time-series refers to determining its future
values from its current and previous values. Several methods of time-series mod-
eling and prediction are available in the literature [5–11]. Most of these methods are
concerned with partitioning the dynamic range of a time-series into fixed size
intervals, called partitions, and then determining the set of rules that direct the
transitions of the series from a given partition (containing the data point at time t) to
the next partition (containing the data point at time t + 1). The rules obtained
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thereby are used to predict the partition containing the data point at time (t + 1)
from the given partition, containing the data point at time t. Unfortunately, the
fluctuation in the time-series [12] is usually governed by external factors, many of
which are unknown and unpredictable. Naturally, forecasting of a time-series based
on the extracted rules is often not free from errors. This chapter proposes a novel
approach for knowledge acquisition from a time-series by incorporating three
fundamental steps: segmentation of the series, clustering of the generated segments
and representation of the time-series by a special type of automaton [13].

Segmentation is a process by which a time-series is vertically fragmented
(sliced) into segments or time-blocks, where each block maintains certain common
characteristics different from those of its neighbours. In this chapter, we propose a
novel, non-parametric, online segmentation algorithm that slices the time-series into
segments based on the local gradient of the transitions between successive data
points. Segmentation is performed in three steps. First, transitions of the consec-
utive data points in a time-series are assigned one of three labels: rise, fall and
equality, indicating a positive, a negative and a near-zero slope respectively. In the
second step, we construct a dynamic window covering a fixed number (here, 5) of
consecutive transitions and assign it a label having the maximum frequency-count
of all the three labels within the window. The last step combines successive win-
dows having the same label to form a temporal segment or time-block.

The merits of the proposed segmentation algorithm lies in its (a) simplicity in
natural grouping of similar structures of the time-series in a segment, (b) low
computational complexity and (c) non-parametric characteristic. The segmented
time-blocks of unequal length are next normalized by representing them with a
fixed number (here, 10) of equi-spaced data points. Clustering is required here to
group similar normalized temporal structures of the segments. Apparently, any
traditional clustering algorithm could have been employed to cluster the segments.
Since we have no knowledge about the cluster-count, we prefer an algorithm that
does not require number of clusters as an input parameter. In addition, we want the
highly dense local data points, representative of a specific geometry of segments, to
lie in a cluster. Fortunately, the DBSCAN [14] algorithm satisfies both the criteria,
and thus is selected as the base clustering algorithm.

The DBSCAN is a parametric algorithm that considers a fixed radius of
data-neighbourhood around each data point, and thus may group data points of
different density in the same cluster. This undesirable characteristic of DBSCAN
has been eliminated by the proposed extension of multi-level (hierarchical) clus-
tering. The said technique clusters data-points of similar density at one level, and
passes the un-clustered data-points as outliers for further clustering at subsequent
levels. The proposed extension of DBSCAN thus ensures that data-points of low
densities even are not disregarded, in case they belong to one or more clusters. The
obtained cluster centres are then recorded for subsequent use as input symbols in a
specialized automaton, constructed for knowledge representation [15] of the given
time-series.

The last step of knowledge acquisition involves construction of the above
(stochastic) automaton. The states of the automaton here represent horizontal
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partitions of a time-series and the state-transitions indicate the transition from one
partition to another due to the occurrence of an input symbol (cluster centre
describing a temporal segment). Each transition is associated with two labels:
(a) the probability of occurrence of the transition and (b) the expected duration of
the transition. Unlike traditional automata, the proposed stochastic automaton has
no fixed starting or end states as they are determined dynamically by user-defined
query, thus signifying its name as dynamic stochastic automaton.

The merit of the above automaton is to autonomously determine the most
probable sequence of transitions between given starting and target states (partitions)
for a user provided time-limit. Experiments undertaken on the TAIEX [16]
close-price economic time-series reveal a very high prediction accuracy over 90%
for predicting the most probable sequence of transitions from a given starting state
to reach a given target state within a user defined time limit of 90 days. A high
prediction accuracy ensures a good knowledge transfer to the stochastic automaton,
thereby enabling it to be an effective tool for business forecasting such as trading
and investment in stock market.

A performance analysis is undertaken to compare the relative merits of the
proposed segmentation and clustering algorithms with traditional ones. We intro-
duce a metric, called match-score, to measure the positional similarity of the seg-
ment boundaries produced by a segmentation algorithm with hand-crafted
ground-truth segment boundaries. Experiments undertaken indicate that the pro-
posed segmentation algorithm outperforms its competitors by a large difference in
match-score. For example, the match-score of the proposed algorithm is 76.5% in
comparison to the nearest best segmentation algorithm, which has a match-score of
50%. To compare the relative performance of the clustering algorithms, we here use
two important metrics, called sum of squared intra-cluster distance (SSID) and Sum
of inter-cluster distances (SICD) [17]. Experimental results reveal that the proposed
clustering technique outperforms traditional clustering algorithms (k-means [18],
fuzzy-c means [19] and DBSCAN) with respect to the above metrics. Further, when
compared with the DBSCAN algorithm, we note that the proposed clustering
algorithm run on TAIEX time-series data for the period 1990–2000 produces 9
clusters (of diverse geometry) in comparison to only 2 clusters (representative of
bullish and bearish patterns [20]) produced by the DBSCAN algorithm.

The chapter is divided into ten main sections. Section 4.2 provides a brief
introduction to related existing works on time-series segmentation and clustering. In
Sect. 4.3, we provide an overview of the DBSCAN clustering algorithm.
Section 4.4 discusses the principles and techniques for the development of a novel
time-series segmentation algorithm. In Sect. 4.5, we propose an extension of the
DBSCAN clustering algorithm. Section 4.6 is concerned with the construction of a
dynamic stochastic automaton. Section 4.7 discusses the computational complexity
of the proposed algorithms. Section 4.8 deals with prediction experiments on
Taiwan Stock Exchange Index (TAIEX) time-series. Section 4.9 discusses the
performance analysis of the proposed time-series segmentation and clustering
algorithms. Conclusions are listed is Sect. 4.10.
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4.2 Related Work

Most of the works on time-series are concerned with its modelling and prediction
[5–11]. Yet another field of research on time-series deals with its segmentation. The
primary motivation behind segmentation is to reduce the data dimension of the
time-series in an efficient manner by selecting certain data points of the time-series,
as segment boundaries where significant changes in its slope are observed. Several
methods to reduce data points between two consecutive boundaries are available in
the literature. A few of these approximation models, which are popularly being used
include Piecewise Linear Approximation [21], Piecewise Aggregate Approximation
[22] and Singular Value Decomposition [23]. Common metrics used to measure
approximation error in segmentation are root mean square error (RMSE) [11] and
maximum vertical distance error (MVD) [24]. Both the errors are evaluated by
measuring the vertical distances between the regressed/interpolated curve and the
time-series within a segment.

Among the well-known time-series segmentation algorithms, the following need
special mention. The first one, called the sliding window (SW) algorithm [25],
primarily determines the location of the next segment boundary by iteratively
widening the current segment, until the approximation error of the segment exceeds
a given value. The second algorithm, called the top-down algorithm [26] employs a
divide and conquer rule for segmentation of a time-series. It is a recursive algo-
rithm, where each step of recursion attempts to optimally place a segment boundary
within a given fragment of a time-series in order to divide it into two parts. The
location of the segment boundary is optimal in the sense that the approximation
error in the left and right halves, thus formed, is minimal. Unlike top down real-
ization, which employs splitting of the time-series for optimal segmentation, the
third algorithm employs a bottom-up [27] approach to merge segments to determine
segment boundaries. Starting with each data point as a segment boundary, the
algorithm merges segments following a greedy approach until the approximation
error of the time-series exceeds a given threshold. The fourth one, called the Sliding
Window and Bottom Up (SWAB) algorithm [21] combines the joint benefits of SW
and bottom-up techniques to perform online segmentation of a time-series using a
buffer. The contiguous blocks of time-series data are placed in the buffer sequen-
tially for online segmentation using the bottom-up algorithm.

Besides the above, there remain a few other interesting algorithms on time-series
segmentation. Liu et al. [24], for instance, extend the SW algorithm to reduce its
computational overhead. They developed two extensions of SW, referred to as
Feasible Space Window (FSW) and the Stepwise Feasible Space Window (SFSW)
algorithms. Unlike the SW algorithm, where the approximation error for the entire
segment needs to be calculated every time a new data point is added to the segment,
both the FSW and SFSW algorithms use a modified segmentation criterion based
on the MVD error metric. The segmentation criterion is designed in a way such that
the error computation for a newly added point is carried out once, thus improving
upon the computational complexity of the SW algorithm. Other noticeable efforts in

136 4 Learning Structures in an Economic Time-Series for Forecasting …



time-series segmentation include the use of dynamic programming [28], fuzzy
clustering [29], least square approximations [30] and evolutionary algorithms [31].
The segmentation algorithm that we develop in this chapter provides a novel
non-parametric online approach to natural segmentation of a time-series based on
rising, falling or zero slopes of time-blocks in the series.

Apart from segmentation, there exist quite a few other interesting techniques in
the field of time-series analysis. Clustering [32] is one of the machine learning [33]
based approaches which has found its way into several applications to process
time-series data. Clustering is primarily used to detect structural similarity in
unlabeled data sets based on various distance metrics like Euclidean distance,
Minkowski distance [34] and others. A literature survey of the application of
clustering algorithms on time-series data can be found in [34].

As has been mentioned before, for the purpose of identifying clusters of variable
densities, we use an extended version of the data density based DBSCAN clustering
algorithm. Among the existing extensions of DBSCAN which solve the problem of
clustering data with variable densities, the DBSCAN-DLP [35] algorithm requires
special mention. In DBSCAN-DLP, the entire data set is pre-processed and ordered
into multiple layers based on their density. Each layer is later clustered using the
DBSCAN algorithm. Although we employ a similar principle in our approach, the
primary difference lies in the application of a greedy recursive technique where,
instead of pre-processing the data set, we layer the data set by isolating the max-
imum density clusters and removing points with lower surrounding density as
outliers. The main advantages of such recursive layering are that cluster centres are
hierarchically arranged in decreasing order of data density. In addition data points
of uniform, density, scattered spatially are clustered at the same level.

4.3 DBSCAN Clustering—An Overview

This section outlines the DBSCAN algorithm. DBSCAN is a density-based spatial
clustering algorithm that groups points lying in a data-dense region into a cluster
and marks points with non-dense surroundings as noise. It requires two input
parameters: (i) the radius e describing the neighbourhood of a point, and (ii) a
threshold m representing the minimum number of points to lie in the neighbourhood
of a (randomly or otherwise) selected point. The following terminologies are
required to explain the rest of this section.

Definition 4.3.1 A point P in a given domain of points D is called a core point, if
there exists a set of points P0 ¼ P1; P2; P3; . . .; Pkf g, such that the distance
between Pi 2 P0 and P is less than or equal to a pre-assigned small positive number
e (i.e., the point Pi lies in the e-neighbourhood of P) and the number of points k in
the set P0 is greater than or equal to an empirically selected threshold value m as
given in (4.1–4.2).
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P� Pik k� e; 8Pi 2 P0 ð4:1Þ

and

k�m ð4:2Þ

Any point Pi 2 P0, lying in the e-neighbourhood of P is said to be directly
density-reachable from the point P: Data-density of point P here, is defined as e=e
where e is the number of points in the e-neighbourhood of P.

Definition 4.3.2 A point P is density-reachable from a point Q, if there exists a
sequence of points P1; P2; . . .; Pn such that P is directly density-reachable from P1,
Piþ 1 is directly density-reachable from Pi; 8i 2 1; 2; . . .; n� 1f g and Q is directly
density-reachable from Pn. A point Pk is an outlier, if it is not density-reachable
from any other point.

Pseudo Code 4.3.1: DBSCAN Clustering

Input: A data set D, of q unlabeled data points, P1; P2; . . .; Pq
� �

in k-dimensional space, and
user-defined parameters e and m; representing respectively, the neighbourhood radius of a point
and minimum number of points around a core point.
Output: A q-dimensional vector ~C ¼ ½c1; c2; . . .; cq�, where ci denotes the cluster number
(representative of cluster identity) of the point Pi 8i 2 f1; 2; . . .; qg.
BEGIN
Initialize cluster count  1, and declare all points in D as unprocessed;
Initialize set N  £;
FOR each unprocessed point Pi; in D do
BEGIN
Mark Pi as processed;
FOR each point p in D, if p is directly density reachable from Pi; save p in N;
IF ð Nj j\mÞ THEN ignore Pi as noise;
ELSE do
BEGIN

Mark Pi as a core point and assign cluster count as cluster number ci to Pi;
FOR each unprocessed point Pj in N, do
BEGIN
Mark Pj as processed; Initialize set M  £;
FOR each point s in D, if s is directly density reachable from Pj, save s in M;
IF ð Mj j �mÞ THEN N  N [M;
N  N � Pj

� �
;

Assign cluster count as cluster number cj to Pj;
END FOR;

END IF;
Increment cluster count by one; Reinitialize N  £;
END FOR;
END.
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Definition 4.3.3 Two points Pi and Pj are density-connected, if there exists a point
P such that both Pi and Pj are density-reachable from P.

A pseudo code for the DBSCAN algorithm is given in below. In this algorithm,
we call a point Pi processed, when it is selected to examine the points in its e-
neighbourhood. Any point not processed so far is called unprocessed.

The algorithm includes three main steps.

1. It begins by selecting an arbitrary unprocessed point Pi from the given data set D
and checks if the point is a core point. If not, Pi is ignored as noise. However, if
it is a core point, the algorithm identifies all points in the e-neighbourhood of Pi

and stores them in a set N. This set is used to store points which are yet to be
processed for the creation of an individual cluster.

2. Next, the algorithm processes each point Pj in the set N by finding points lying
in the e-neighbourhood of Pj (storing them in a separate set M) and including
them in N, (i.e., N  N [M). The inclusion of new unprocessed points in N,
with progressively increasing distance from the initial core point leads to the
growth of the cluster boundary. When all points in N are processed, a cluster is
formed and a new core point is searched.

3. The algorithm ends when unprocessed core points can no longer be detected.

It should be noted that a cluster always has the following two properties.

Property 4.3.1 Any two points Pi and Pj, lying in a cluster are mutually
density-connected.

Property 4.3.2 If Pi is a point which is density-reachable from point Pj and
Pj 2 C, where C is a cluster, then Pi 2 C.

4.4 Slope-Sensitive Natural Segmentation

In this section, we propose a novel algorithm for Slope-Sensitive Natural
Segmentation (SSNS) of a time-series into time-blocks of unequal lengths. The
principles adopted in the algorithm follow from the natural labelling of ridges in a
mountain as rising/falling and plateau (zero slope). The algorithm intuitively
attempts to determine the transitions of consecutive pairs of data points in a
time-series into one of three distinct categories (labels): rise (R), fall (F) and
equality (E), based on the measure of an approximate slope of the straight line
joining the points. The measure of slope is determined by dividing the dynamic
range of the time-series into a fixed number of horizontal partitions, and then by
examining their relative positions along the y-axis of the time-series. A rise (fall)
refers to a relative rise (fall) in the position of the partitions containing the con-
secutive data points over time, whereas an equality indicates occupancy of both the
data points in the same partition. After the transitions are labelled, we group five
consecutive transitions, called a window, and assign the window a label having the
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highest count (frequency) of occurrence in the window. In case there is a tie of two
labels, we break it by additional constraints. A segment refers to a sequence of
consecutive windows having the same label. Segmentation deals with vertically
slicing a time-series at the centre of a window, when the next window has a
different label with respect to the current window.

4.4.1 Definitions

Definition 4.4.1 A time-series is a discrete sequence of samples of a measurable
entity, such as temperature, atmospheric pressure, and population growth, taken
over a finite interval of time. For an entity x, varying over time t in tmin; tmax½ �, the
time-series of length n can be expressed as a vector ~X ¼ ½xðkTÞ� ¼ ½xk�, 0 where T
is the sampling interval and k is an integer in ½1; n�.
Definition 4.4.2 Given a time-series ~X, let Xmax and Xmin respectively denote the
maximum and minimum sample values of the series. Partitioning the time-series
here refers to dividing the range Z ¼ Xmin;Xmax½ � into k non-overlapping contiguous
blocks Z1; Z2; . . .; Zk , called partitions, such that the following two conditions
jointly hold:

Zp
\

Zq ¼£; 8p; 8q 2 1; 2; . . .; kf g; p 6¼ q ð4:3Þ

[k

i¼1
Zi ¼ Z; for integer i ð4:4Þ

Example 4.4.1 Let ~X ¼ 2; 5; 4; 10; 3½ � be a time-series. According to Definition
4.4.2, Xmin ¼ 2 and Xmin ¼ 10. We divide the range 2; 10½ � into four partitions
Z1 ¼ ½2; 4Þ, Z2 ¼ ½4; 6Þ, Z3 ¼ ½6; 8Þ and Z4 ¼ 8; 10½ �. It should be noted that the
bounds of Z2 upper bound of Z2 and lower bound of Z4 are not present in ~X.
However, such partitioning is allowed by Definition 4.4.2.

Definition 4.4.3 Let Zp ¼ Z�p ; Z
þ
p

h i
and Zq ¼ Z�q ; Z

þ
q

h i
be two partitions in a

time-series ~X and xi; xiþ 1ð Þ be two successive data points in the series, such that
xi 2 Zp and xiþ 1 2 Zq. Then the transition of xi to xiþ 1, denoted by Trðxi; xiþ 1Þ, is
assigned one of three possible linguistic labels: Rise (R), Fall (F) and Equality
(E) using (4.5).

Trðxi; xiþ 1Þ ¼
R; if Z þp � Z�q
F; if Z�p � Z þq
E; if Z þp ¼ Z þq and Z�p ¼ Z�q

8
<
: ð4:5Þ
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Example 4.4.2 Considering the time-series ~X given in Example 4.4.1, x1 ¼ 2 and
x2 ¼ 5. Thus, x1 2 Zp ¼ ½2; 4Þ and x2 2 Zq ¼ ½4; 6Þ. Since, Z�q � Z þp , by Definition
4.4.3, Trðx1; x2Þ ¼ R. h

Definition 4.4.4 For a time-series ~X ¼ x1; x2; . . .; xn½ �, a string of the form ~S ¼
S1; S2; . . .; Sn�1½ � where Si ¼ Trðxi; xiþ 1Þ, for any integer i 2 ½1; n� 1�, is called a
ternary string of transitions (T-SOT).

Example 4.4.3 For the time-series ~X of Example 4.4.1, x1 ¼ 2; x2 ¼ 5; x3 ¼
4; x4 ¼ 10 and x5 ¼ 3. It can be verified using Z1; Z2; Z3 and Z4 that
Trðx1; x2Þ ¼ R; Trðx2; x3Þ ¼ E; Trðx3; x4Þ ¼ R and Trðx4; x5Þ ¼ F. Thus, the tern-
ary string of transitions ~S for ~X is given by ~S ¼ ½R;E;R;F�. h

Definition 4.4.5 Let ~S ¼ S1; S2; S3; . . .; Sn�1½ � be a T-SOT constructed from the
time-series ~X ¼ x1; x2; . . .; xn½ �. For each character Si, a string of length L� 3
characters selected from ~S centred around Si is referred to as window ~Wi. For
instance, a window ~Wi of length L characters is given in (4.6).

~Wi ¼ Si� L=2b c; Si� L=2b cþ 1; . . .; Si; . . .; Siþ L=2b c�1; Siþ L=2b c
� � ð4:6Þ

where i 2 L=2b cþ 1; L=2b cþ 2;. . .; n� L=2b c � 1f g. Here onwards, we use a
window of five linguistic characters, of the form ~Wi ¼ Si�2; Si�1; Si; Siþ 1; Siþ 2½ �,
for the development of the SSNS algorithm.

Example 4.4.4 Let~S ¼ R;F;E;E;R;R½ � ¼ S1; S2; S3; S4; S5; S6½ � be a T-SOT. Here,
n� 1 ¼ 6 and hence, n� 3 ¼ 4: So, we have two valid windows of length, L ¼ 5
characters: ~W3 ¼ R;F;E;E;R½ � and ~W4 ¼ F;E;E;R;R½ � for i 2 f3; 4g. h

Note 4.4.1 It is important to note that windows containing a fixed length of r
linguistic symbols refer to a time-series of length rþ 1 data points. h

Definition 4.4.6 Let ~X ¼ x1; x2; . . .; xn½ � be a time-series and ~S ¼
S1; S2; S3; . . .; Sn�1½ � be the T-SOT constructed from ~X. Let ~Wi ¼
Si�2; Si�1; Si; Siþ 1; Siþ 2½ � for 3� i� n� 3 be the ith window of the time-series. Let
fxð~WiÞ denote the frequency count (number of occurrences) of the linguistic char-
acter x 2 fR;F;Eg in ~Wi. The window ~Wi, is assigned a label Lð~WiÞ based on the
following policy.

Lð~WiÞ ¼ R; if fRð~WiÞ[ fxð~WiÞ; x 2 fF;Eg ð4:7Þ

¼ E; if fEð~WiÞ[ fxð~WiÞ; x 2 fR;Fg ð4:8Þ
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If there exists three different linguistic characters: p; q; r 2 fR;F;Eg, such that
fpð~WiÞ ¼ fqð~WiÞ[ frð~WiÞ, then

Lð~WiÞ ¼ p; if Lð~Wi�1Þ ¼ p ð4:9Þ

¼ q; if Lð~Wi�1Þ ¼ q ð4:10Þ

¼ p or q arbitrarily otherwise: ð4:11Þ

Note 4.4.2 In Definition 4.4.6, we assign a label x 2 fR;F;Eg to a window ~Wi, if
the frequency count of x is the highest in ~Wi. Furthermore, if frequency count of any
two of the three labels are equal and higher than the rest, and if any one of these
labels has already been assigned to ~Wi�1, then we assign the same label to ~Wi. In
case, the former condition holds but the latter condition fails, we can arbitrarily
assign any one of the labels with the highest frequency count, to ~Wi. h

Example 4.4.5 For a given time-series ~X, let ~S ¼ ½R;F;R;E;R;R;E;E;F;E� be a
T-SOT. The windows in the above series are ~W3 ¼ ½R;F;R;E;R�,
~W4 ¼ ½F;R;E;R;R�, ~W5 ¼ ½R;E;R;R;E�, ~W6 ¼ ½E;R;R;E;E�, ~W7 ¼ ½R;R;E;E;F�,
and ~W8 ¼ ½R;E;E;F;E�. Since, fRð~W3Þ ¼ 3 [ fEð~W3Þ ¼ fFð~W3Þ ¼ 1, hence,
Lð~W3Þ ¼ R.

Similarly, Lð~W4Þ ¼ R and Lð~W5Þ ¼ R. In ~W6; fEð~W6Þ ¼ 3 [ fRð~W6Þ ¼
2[ fFð~W6Þ ¼ 0. Hence, Lð~W6Þ ¼ E. In ~W7; fEð~W7Þ ¼ 2¼fRð~W7Þ[ fFð~W7Þ ¼ 1.
Since, Lð~W6Þ ¼ E, following definition 4.4.6, Lð~W7Þ ¼ E.

Again, as fEð~W8Þ[ fRð~W8Þ ¼ fFð~W8Þ; Lð~W8Þ ¼ E follows. h

Definition 4.4.7 A structure is a collection of one or more contiguous windows
which have been assigned the same label.

Example 4.4.6 In Example 4.4.5, Lð~W3Þ ¼ Lð~W4Þ ¼ Lð~W5Þ ¼ R. So, ~W3~W4~W5

together forms a structure having the same label R, as those of the involved win-
dows. The label of the ith structure is denoted by LðstructiÞ. h

Definition 4.4.8 For two consecutive structures structi and structi+1, if
LðstructiÞ 6¼ Lðstructiþ 1Þ, a segment boundary exists at the centre point Sj of the
last window ~Wj (say) of structi. Since, Sj denotes the transition between time-series
data points xj and xjþ 1, the segment boundary is placed in between these two data
points.

Example 4.4.7 In Examples 4.4.5 and 4.4.6, windows ~W3 to ~W5 in conjunction,
form a structure having the label R. Again, ~W6 to ~W8 form a structure having the
label E. Since, the labels of these two consecutive structures are not equal, a
segment boundary appears at the centre point S5, of the last window ~W5 in
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the first structure. As S5 denotes the transition between time-series data points x5
and x6, the segment boundary is placed in between these two data-points. h

4.4.2 The SSNS Algorithm

The SSNS algorithm includes four steps. In the first step, we partition the
time-series horizontally into k intervals of uniform width w as given in (4.12)

w ¼ 1
n� 1

Xn�1

i¼1
xiþ 1 � xij j ð4:12Þ

where xi and xiþ 1 for i ¼ 1 to n� 1 are consecutive points in the time-series. In
case a partition is empty, we merge it with its immediate lower partition. This
ensures that no partition is empty and thus, helps in capturing small transitions in
the time-series. It may be noted that the lower-most and upper-most partitions being
at the boundaries of the dynamic range (=k � w) of the time-series, includes at least
one point. Next three steps of segmentation are transition labelling, window
labelling and segment boundary determination. They directly follow from the
definitions introduced above and are point-wise included in Pseudo Code 4.1.

Pseudo Code 4.1: SSNS Segmentation

Input: A time-series ~X ¼ x1; x2; . . .; xn½ �, containing n real valued data points.
Output: A vector~I ¼ i1; i2; . . .; im½ �, where ij is the index or the time instant of the jth segment
boundary.

Step 1. Partitioning: Evaluate partition width, w following (4.12). Partition the entire range
½minð~XÞ;maxð~XÞ�, of the time-series ~X into k partitions, where k ¼ ðmaxð~XÞ � minð~XÞÞ=w
ðminð~XÞ and maxð~XÞ respectively denote minimum and maximum elements of the time-series).
Merge partitions containing no data points with their immediate lower partition.
Step 2. Transition labelling: For each two consecutive data points xi and xiþ 1, 1� i�ðn� 1Þ,
determine transition between xi and xiþ 1 following (4.5). Store each computed transition in a T-
SOT ~S ¼ S1; S2; . . .; Sn�1½ � where Si ¼ Trðxi; xiþ 1Þ; 8i 2 1; 2;. . .; n� 1f g.
Step 3. Window labelling: For each group of five consecutive symbols in the T-SOT~S, obtain the
windows ~Wi following (4.4) for i ¼ 3 to ðn� 3Þ. Assign the label Lð~WiÞ to the window ~Wi,
following (4.7–4.11).
Step 4. Segmentation: For two successive windows, ~Wi�1 and ~Wi, if Lð~Wi�1Þ 6¼ Lð~WiÞ, then
place a segment boundary at the centre point of ~Wi�1 (i.e., at symbol Si�1) and correspondingly
at the centre of xi�1 and xi.

A trace of the SSNS segmentation algorithm for the input time-series ~X ¼
½2; 4; 3; 4; 6; 5; 8; 9; 10; 8; 9; 7; 6; 5� has been shown in Fig. 4.1 for illustration.

4.4 Slope-Sensitive Natural Segmentation 143



Time-Series

Partitioning and Ternary
String Construction 

Windowing

Window

Labelling

Segmentation

0

4

6

8

1
0

Y

5 Symbol Sliding
Window

E

R R
F

R

R

E

E R F

E
F

F

E

X

Y

0

2

4

6

8

1
0

2

3.
5

5

6.
5

8

9.
5 

11Y

0

2

4

6

8

1
0

0

1

2

3

4

5

Y

Equal (E)

Fall
(F)

Rise (R)

SEGMENT 1 – R COUNT
MAXIMUM

SEGMENT 2 – E COUNT
MAXIMUM

SEGMENT 3 – F COUNT
MAXIMUM

Fig. 4.1 Trace of SSNS algorithm

144 4 Learning Structures in an Economic Time-Series for Forecasting …



4.5 Multi-level Clustering of Segmented Time-Blocks

After a time-series is segmented into time-blocks, we attempt to group them into
clusters based on their structural similarity. Since the segmented time-blocks are of
non-uniform length, clustering is preceded by a pre-processing step, where the
time-blocks are re-organized as a pattern of uniform length. The uniform length
patterns having varied ranges need to be normalized by additional transformation
(Z-score standardization [36]).

After pre-processing, we go for clustering the pre-processed time-blocks by
using an extension of DBSCAN clustering, where the motivation is to cluster
equally dense regions at the same level, and pass the less dense data points to the
next level of clustering in a recursive manner until the data points are less than a
prescribed threshold.

4.5.1 Pre-processing of Temporal Segments

Pre-processing is a two-step process. The first step includes transforming the
variable length segmented time-blocks into vectors of uniform (here, 10) length.
This is undertaken by the following three sub-steps.

1. Join each pair of consecutive points in a segmented time-block by a straight line,
thereby generating a piecewise linear curve.

2. Divide the entire duration of the segment into ten equal parts and mark the
corresponding time-points.

3. Determine the ordinates for the marked points on the time-axis of the curve
obtained in step 1.

The second step of pre-processing is required to normalize the range of the
time-blocks. Let there be l temporal segments in the time-series. Then a matrix M of
ð10� lÞ elements can be used to store the representation vectors of all the temporal
segments, where the ith column in M corresponds to the ith temporal segment. In
order to scale the temporal segments we use Z-score standardization as shown in
(4.13).

Mi;j ¼ Mi;j � meanðM; jÞ
stdðM; jÞ ð4:13Þ

where meanðM; jÞ and stdðM; jÞ are the mean and the standard deviation of the jth
column of matrix M respectively. Z-score standardization scales the temporal
segments to have a zero mean and a unit variance.
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4.5.2 Principles of Multi-level DBSCAN Clustering

The proposed multi-level DBSCAN clustering is a recursive extension of the
DBSCAN algorithm, where at each level of recursion we cluster the data points of
highest available density, and pass on the outliers (lower density data points) at that
level for further clustering at the next level. This is illustrated in Fig. 4.2. To
efficiently undertake the operations at a given level of recursion, we need two
additional computations. First, we require evaluating the e parameter at each level,
and next we need to construct a point information table (PIT) at that level.

The PIT stores the number of points within an e-radius of all possible points, if
the number of neighbourhood points around that point exceeds a given threshold. It
can be organized by different approaches. Given a set of l points of the form
P ¼ fp1; p2; . . .; plg, one simple approach to realize this (PIT) is to allocate an
array of pointers, where the ith element points to a linear linked list containing the
count Ni and indices of the points lying in the e-neighbourhood of the ith point pi.
The array of pointers (Fig. 4.3) only point to the linked list of ðl� mÞ points, that
satisfy the necessary criterion that the number of data points in the e-neighbourhood
of a point exceeds a pre-defined threshold. In other words, out of l points only
ðl� mÞ points satisfy the necessary criterion, and remaining m points do not satisfy
it and thus are treated as outliers at that level.

The primary purpose of the PIT is to compute the outliers in each density based
stratum. A point pi is defined as an outlier if the number of points Ni in the e-
neighbourhood of pi is less than the average of the number of neighbourhood points
of all l points in the given data set. This is given in (4.14).

outlierðpiÞ ¼ true; if Ni\
1
l

� �Xl

j¼1
Nj

¼false; otherwise:

9
>>=
>>;

ð4:14Þ

Original Dataset

Level I

Level II

Level III

Fig. 4.2 Multilevel
density-based clustering:
points of higher density are
clustered at higher levels,
transferring lower density
points for clustering at lower
levels
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Furthermore, the PIT is scanned to identify the point having highest neigh-
bourhood density as the seed for generating a new cluster. This ensures that cluster
centres are hierarchically arranged in decreasing order of density.

Determining the e parameter for each layer: Given a set of l 10-dimensional
points representing Z-score standardized time-blocks, we construct an l� l distance
matrix D, whose (i, j)th element di;j represents the Euclidean distance between the
points pi and pj. Now, to compute the e parameter for the first layer, we sort the
distances di;j in ascending order of their magnitude and take the mean of the first k
distances in the sorted list, where k is an empirically chosen parameter, typically
taken as 10% of the members in the list. The process of e parameter computation is
repeated in the same manner for each layer of data points.

The proposed multilevel DBSCAN algorithm includes the following three steps
in each layer of recursion. From a given set of data points in a layer, the algorithm
evaluates the e-parameter by the procedure introduced above.

The PIT for the given level is constructed to eliminate outliers at that level and
also to select the points with highest neighbourhood density as core points for
clustering at that level using the DBSCAN algorithm.

The outliers at a given level are defined as the input data set for clustering at the
next level. The following property indicates that no additional outliers can be
obtained after clustering at a given level.

Property 4.5.1 The clustering at each layer of similar density data points does not
produce any outliers other than those dropped from the PIT constructed for that
layer.

Proof We prove the property by the method of contradiction. Let us assume that
after clustering at a given layer, there exist additional outliers excluding those

Fig. 4.3 Structure of the point information table
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dropped from the PIT for that layer. Outliers being points with less than threshold
number of e-neighbourhood points, are dropped from the PIT. Thus, the points
considered for clustering at the layer do not include any point containing less than
the threshold number of e-neighbourhood points. Hence, all points in a given layer
are clustered. This contradicts the assumption that there exist additional outliers at a
given layer of clustering, and hence its contradiction is true. h

Pseudo Code 4.5.1: Multilevel DBSCAN Clustering

Input: An array of l 10-dimensional points, P ¼ ½p1; p2. . .; pl� and an empirically chosen
threshold value T .
Output: A vector ~C ¼ ½c1; c2; . . .; cm� of m cluster centres of 10-dimensions each.

BEGIN MAIN
D compute distance matrixðPÞ;/*following section 4.5.2*/
C  multilevel DBSCANðP;D; TÞ;
END MAIN

Procedure multilevel DBSCANðP;D;TÞ:
BEGIN
q num pointsðPÞ;/*compute point count in array P */
IF (q < T) THEN EXIT;/*Stopping criterion of recursion */

e compute eðDÞ;/*compute e following section 4.5.2*/
Initialize PIT as an array of q pointers all set to NULL;
Initialize P0 as an empty array;/* P0 will store outliers */
FOR each point pi in P do/*Construction of PIT */
BEGIN

Store the index j of all points pj lying in the e-neighbourhood of pi in the ith row of the PIT;
END FOR;
FOR each point pi in P do/*Removal of outliers*/
BEGIN

/* outlierðpiÞ is computed following equation 4.5.2 */
IF outlierðpiÞ = true, mark pi as outlier and store it in P0;
ELSE mark pi as non-outlier;

END FOR;
Cluster the non-outlier points using modified-DBSCAN and store corresponding cluster

centres in ~C;
Call multilevel DBSCANðP0;D; TÞ;

END.

4.5.3 The Multi-level DBSCAN Clustering Algorithm

The modified-DBSCAN algorithm is different from traditional DBSCAN by a
single issue only. The modification lies in core point selection. In traditional
DBSCAN, core points are selected randomly, whereas in the modified-DBSCAN
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the point with the highest neighbourhood density in the PIT is selected as the core
point for generation of an individual cluster. The modification in core point
selection is advantageous for layered clustering as it generates cluster centres in
decreasing order of density without requiring additional time-complexity (as ana-
lyzed in Sect. 4.7).

The proposed clustering algorithm has successfully been applied to TAIEX close
price time-series for the period 1990–2000 with resulting 9 (nine) cluster centres of
diverse geometry as illustrated in Fig. 4.4. These cluster centres are used in the next
stage for knowledge representation using an automaton.

4.6 Knowledge Representation Using Dynamic
Stochastic Automaton

This section provides a general method to represent the knowledge acquired from a
time-series in the form of an automaton. Here, we use the partitions of the
time-series as states in the automaton. The transition from one state to another is

P6: Right faced camel hump

P1: Near-linear rise P2: Near-linear fall P3: Exponential rise

P4: Capacitive rise P5: Bell shaped

P7: Cup and handle
shaped

P8: Peacock tail
shaped 

P9: End-point differential
sagging chain

Fig. 4.4 Primitive patterns (cluster centres) extracted from the TAIEX Time-series with their
proposed names based on similarity with real world objects
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triggered by an input symbol, representing one of m(=9 for TAIEX) possible cluster
centres, describing a fragment of the time-series. We attach three labels with each
arc of the automaton describing state transitions. They are (i) the input symbol,
(ii) probability of the transition due to the input symbol and (iii) the expected
duration of the transition, all in order. We write them as a/x, y where ‘a’ is the input
symbol, ‘x’ is the probability of transition and ‘y’ is the expected duration.

The automaton outlined above helps in determining the expected time to reach a
target state (partition) from a given starting state following the most probable
sequence of consecutive transitions. Alternatively, it can also be used to ascertain if
the probability to reach a given target state crosses a given threshold within a
user-provided time-limit. The formal definition of the automaton is given below for
convenience.

Definition 4.6.1 A Dynamic Stochastic Automaton (DSA) is defined by a
5-tuple given by

F ¼ ðQ; I;V ; d; dtÞ ð4:15Þ

where, Q = Non-empty finite set of states (partitions)
I = Non-empty finite set of input symbols, representative of primitive patterns

(cluster centres) obtained in Sect. 4.5
V = [0,1] is the valuation space
d = Probabilistic transition function d : Q� I � Q! V
dt = Temporal transition function d : Q� I � Q! R, where R is the set of real

numbers representing time required for the transition. It is required that for any
given state q and any given input symbol p, the sum of the probability of transitions
to all possible next states q0 2 Q is given by

X

q02Q
dðq; p; q0Þ ¼ 1 ð4:16Þ

We now define an extended probabilistic transition function d0 : Q� I� � Q! V
that can recognize a sequence of consecutive input symbols I� ¼\p1; p2; . . .;
pn [ by the following notation

d0ðq; p1p2. . .pn; q0Þ ¼
X

q1...qn�12Q
dðq; p1; q1Þdðq1; p2; q2Þ. . .dðqn�1; pn; q0Þ½ � ð4:17Þ

d
0
t : Q� I� � Q! R for the sequence I� ¼\p1; p2; . . .; pn [ to represent the

minimum time required for the transitions to traverse the entire sequence I� of input
symbols. This is given in (4.18).

d
0
tðq; p1p2. . .pn; q0Þ ¼ min

q1...qn�12Q
dtðq; p1; q1Þþ dtðq1; p2; q2Þþ � � � þ dtðqn�1; pn; q0Þf g

ð4:18Þ
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Note 4.6.1 It is to be noted that the proposed DSA differs from traditional
stochastic automata [13] by the following counts. First, unlike traditional stochastic
automata, the DSA has no fixed starting states and terminal states, as they are
user-defined and thus dynamically chosen, justifying the name, dynamic stochastic
automaton. Second, there is an additional term dt describing the time required for
the transition to take place on occurrence of an input symbol p 2 I to a given state
s 2 Q. h

Example 4.6.1: This example illustrates the notations used in (4.15), (4.17) and
(4.18) using the automaton shown in Fig. 4.5.

Here, Q ¼ f1; 2; 3g; I ¼ fa; bg,

dð1; a; 1Þ ¼ 0:5; dð1; a; 2Þ ¼ 0:3; dð1; a; 3Þ ¼ 0:2; dð2; a; 3Þ ¼ 1;

dð3; a; 3Þ ¼ 1; dð1; b; 1Þ ¼ 0:2; dð1; b; 3Þ ¼ 0:8; dð2; b; 1Þ ¼ 0:6;

dð2; b; 3Þ ¼ 0:4; dð3; b; 3Þ ¼ 1;

dtð1; a; 1Þ ¼ 6:2; dtð1; a; 2Þ ¼ 3; dtð1; a; 3Þ ¼ 4:8; dtð2; a; 3Þ ¼ 10;

dtð3; a; 3Þ ¼ 1:2; dtð1; b; 1Þ ¼ 5; dtð1; b; 3Þ ¼ 5:2; dtð2; b; 1Þ ¼ 12;

dtð2; b; 3Þ ¼ 7:3; dtð3; b; 3Þ ¼ 3:6:

We now illustrate the evaluation of the probability of occurrence of the sequence of
input symbols I� ¼\a; a[ at starting state 1 and terminal state 3.

d0ð1; aa; 3Þ ¼ dð1; a; 1Þdð1; a; 3Þþ dð1; a; 2Þdð2; a; 3Þþ dð1; a; 3Þdð3; a; 3Þ
¼ ð0:5� 0:2Þþ ð0:3� 1Þþ ð0:2� 1Þ ¼ ð0:1þ 0:3þ 0:2Þ ¼ 0:6

Fig. 4.5 A DSA to illustrate its parameters
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Further, we can evaluate the minimum transition time for the paths starting at state 1
and terminating at state 3 following the pattern sequence I� ¼\a; a[ by

d
0
tð1; aa; 3Þ ¼ minfdtð1; a; 1Þþ dtð1; a; 3Þ; dtð1; a; 2Þþ dtð2; a; 3Þ; dtð1; a; 3Þþ dtð3; a; 3Þg

¼ minf6:2þ 4:8; 3þ 10; 4:8þ 1:2g ¼ minf11; 13; 6g ¼ 6

4.6.1 Construction of Dynamic Stochastic
Automaton (DSA)

Construction of an automaton requires partitioning the dynamic range of the
time-series into fewer partitions, rather than large number of partitions as under-
taken during the segmentation phase. Apparently this looks a little tricky. However,
the re-partitioning scheme has a fundamental basis to ensure that the partitions,
when transformed to states in the DSA, will be utilized in most cases if they are
relatively fewer. In case the partitions obtained during segmentation are used here,
most of the states in the automaton remain non-utilized, as the vertical span of the
temporal patterns obtained in clustering is large enough to cover several partitions
obtained in the segmentation phase. After careful experiments with the TAIEX
time-series, it is observed that the temporal segments obtained by clustering can
cover up to 3–4 partitions if the dynamic range is equally partitioned into 7–10
partitions. In the illustrative time-series of Fig. 4.6a, we have partitioned it into 5
partitions.

The computation of the probability of a transition dðsi; a; sjÞ from state si to state
sj due to input symbol a where si; sj 2 Q and a 2 I, is obtained as

dðsi; a; sjÞ ¼ freq cntðsi; a; sjÞP
sk2Q freq cntðsi; a; skÞ ð4:19Þ

where freq cntðsi; a; sjÞ denotes the number of transitions from partition si to
partition sj due to the occurrence of a temporal pattern belonging to cluster a (that
acts as an input symbol).

The computation of dtðsi; a; sjÞ is obtained here by measuring the duration of all
possible transitions in the time-series with starting state si and terminating state sj
due to the occurrence of a temporal pattern belonging to cluster a. Let the possible
temporal segments falling in cluster a that appear at partition si for transition to
partition sj be a1; a2; . . .; an. Then, dtðsi; a; sjÞ is obtained as

dðsi; a; sjÞ ¼
Pn

k¼1 sðsi; a; sjÞ
n

ð4:20Þ
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where sðsi; ak; sjÞ represents the temporal length of the time-segment ak starting at
partition si and ending at partition sj.

The approach is summarized in Pseudo Code 4.4. In Fig. 4.6, we illustrate the
formation of a dynamic stochastic automaton from a segmented and clustered
synthetic time-series. In Fig. 4.6a, a segmented and partitioned time-series is
illustrated. In Fig. 4.6b, each temporal segment is replaced with its corresponding
cluster centre. The DSA generated from the time-series is given in Fig. 4.6c.

Segment -4

P
ar
tit
io
ns

Segment -3Segment -2Segment -1 Segment -5

S4
S5

S1

(a)

(b)

(c)

Fig. 4.6 Construction of DSA from a segmented, clustered time-series: a A segmented and
partitioned time-series (partitions are Z1 to Z5), b Segments are replaced by temporal patterns
(taken from those generated for TAIEX in Fig. 4.4), c DSA constructed from the labeled temporal
segments
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The computations of the probabilistic transition function of the arcs in the DSA of
Fig. 4.6c are given in Table 4.1. Since, in the synthesized time-series, for a given
pair of starting and end states and a given pattern, there is only one temporal
segment, the temporal transition function is equal to the length of the corresponding
temporal segment for each arc in the automaton.

4.6.2 Forecasting Using the Dynamic Stochastic Automaton

Forecasting the most probable sequence of transitions (MPST) at a given starting
state to reach a target state is an important problem in economic time-series pre-
diction. Such forecasting requires three inputs: (i) a completely labelled dynamic
stochastic automaton, (ii) the current state obtained from the day of prediction, and
(iii) the target state. Occasionally, the users can provide a time-limit within which
they expect the sequence of transitions to reach the target state. In case there exist
multiple sequences of transitions to reach a given target state, then the expected
duration of the most probable sequence is checked against a threshold before
recommendation of the sequence to users.

Pseudo Code 4.6.1: Computation of DSA

Input: A sequence \a1; a2; . . .; al [ of l time-segments
Output: A DSA corresponding to the given temporal segments.

BEGIN
Partition the time-series into k (=7) horizontal partitions zi and construct a state si for

partition zi for i ¼ 1 to k;
FOR each temporal segment ak do
BEGIN

IF si is the starting state and sj is the ending state of ak THEN
Insert a directed arc from state si to state sj in the automaton and label it with dðsi; a; sjÞ

and dtðsi; a; sjÞ in order following (4.19) and (4.20); END IF;
END FOR;

END.

Table 4.1 Computation of probabilistic transition function from Fig. 4.6c

Start state
(Si)

Input symbol
(p)

End state
(Sj)

freq_cnt
(Si, p, Sj)

P
freq_cnt

(Si, p, Sk)

S1 P1 S4 1 2 (1/2) = 0.5

S5 1 (1/2) = 0.5

S1 P5 S1 1 1 (1/1) = 1

S4 P8 S1 1 1 (1/1) = 1

S5 P8 S1 1 1 (1/1) = 1
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1. For a given starting state s1 and a given terminal state s2, determine the sequence
of all possible transitions p such that, d0ðs1; p; s2Þ is maximized. Let
d0ðs1; p; s2Þ ¼ dðs1; p1; s0Þ � dðs0; p2; s00Þ � dðs00; p3; s000Þ. Then the most probable
sequence of patterns is \p1; p2; p3 [ .

2. To determine the time required for the occurrence of the MPST, we add the
expected durations of each transition in p. Thus, the total time T required, is

T ¼
X

8i
tðpiÞ ð4:21Þ

where pi is a pattern in p and tðpiÞ denotes the expected duration of the state
transition due to pattern pi, In order to realize the above approach, the following
steps are carried out.

3. If tL is the allowed time-limit, we check if T � tL. For multiple MPSTs occurring
within the given time-limit, we report the sequence with the minimum expected
duration.

Example 4.8.1 Let there be a dynamic stochastic automaton as shown in Fig. 4.7.
In the automaton, we try to identify the MPST from state 1 to state 3 within a

given time limit of 12 days (say). The sequences of transitions which have an
expected duration within the time limit of 12 units are \P1;P2 [ ; \P1;P1 [
and \P1 [ respectively, as shown in Fig. 4.8. The most probable sequences of
transitions from state 1 to state 3 are \P1;P2 [ and \P1;P1 [ . However, as we
have multiple sequences of most probable transitions, all occurring within the given
time limit, we report the sequence having the least expected duration. Hence, we
report \P1;P2 [ as the most probable sequence of transitions. h

P1/0.7, 5

P1/0.3, 3

P1/1, 7

P2/1, 6

P2/1, 10

1 32

Fig. 4.7 Example of a time-labeled dynamic stochastic
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4.7 Computational Complexity

The first step of the SSNS segmentation algorithm, i.e., calculation of partition
width requires an iteration over each pair of consecutive data points in the
time-series. The partitions are stored in order, in an array. Hence, the time com-
plexity for partitioning is OðnÞ and the space complexity is Oðnþ zÞ where n is the
number of data points in the time-series and z is the number of partitions made.

Construction of the T-SOT involves iterating over each pair of consecutive data
points in the time-series and identifying the partition to which each data point
belongs. Since the array of partitions is ordered, a binary search algorithm is
employed here. Hence, computing the partition to which a data point belongs takes
Oðlog zÞ amount of time. This computation is done for n data points and hence, the
total time complexity is Oðn log zÞ: Furthermore, the windowing, window labelling
and segmentation steps together, iterate over each character in the T-SOT and place
a marker at each segment boundary. The window being of fixed length, the decision
to place a segment boundary can be taken in constant time. As the T-SOT contains
n� 1 linguistic characters, this step has a time complexity of OðnÞ. Thus, the
overall time complexity is OðnÞþOðn log zÞþOðnÞ 	 Oðn log zÞ and the space
complexity is Oðnþ zÞ:

P2/1, 6

P1/0.7, 5

1 32

a. Transition sequence: <P1, P2>
Probability=0.7, Duration=11 units

c. Transition sequence: <P1>             
Probability=0.3, Duration=3

P1/0.3, 3
1 3

P1/1, 7P1/0.7, 5

1 32

b. Transition sequence: <P1, P1>            
Probability=0.7, Duration=12 units

Fig. 4.8 Possible transitions from state 1 to state 3 within given time limit

156 4 Learning Structures in an Economic Time-Series for Forecasting …



Let there be l temporal segments obtained from the time-series. Each segment is
approximated as a 10-dimensional point in order for it to be clustered based on the
pattern that it represents. In the initialization step of the proposed multi-layered
DBSCAN clustering algorithm, a distance matrix is computed from the given
points. Given l points, such a distance matrix can be computed in Oðl2Þ time. In
each density based stratum, the first step involves tuning the value of e corre-
sponding to the maximum density clusters. This is done by taking the mean of the
least k distances from the distance matrix, where k is an empirically chosen con-
stant. Hence, the time complexity involved is Oðl2Þ.

The second step constructs the PIT, i.e., a table having l entries where the ith
entry stores the indices of points lying in the e-neighbourhood of the ith point. This
also takes Oðl2Þ time. The third step involves removal of outliers from a density
based stratum. It requires to iterate over each entry in the PIT, taking constant time
to decide if a single entry (point) is an outlier. Hence, this step can be done in OðlÞ
time. The fourth step, i.e., DBSCAN clustering of the remaining points normally
has a time complexity of Oðl2Þ. With the current modification of DBSCAN,
searching for a core point takes OðlÞ time. However, the PIT can be used to identify
the e-neighbourhood points of the core point in constant time. Thus, the total time
complexity of modified-DBSCAN is also Oðl2Þ. It is important to note that the
number of density based strata is significantly less compared to the number of
points l, to be clustered and hence, can be considered as a constant. Thus the overall
time-complexity for the proposed clustering algorithm is Oðl2ÞþOðl2ÞþOðlÞþ
Oðl2Þ 	 Oðl2Þ. Since, the distance matrix takes Oðl2Þ space, the space complexity
of the algorithm is also Oðl2Þ.

Having obtained the primitive patterns present in the time-series, the next task
involves labelling each temporal segment to a certain cluster based on its shape, and
storing the obtained knowledge in the form of a dynamic stochastic automaton.
Given z partitions of the time-series and x primitive patterns, the automaton can be
constructed in Oðz2xÞ time. The time and space complexities of the segmentation
and clustering algorithms have been summarized in Table 4.2. Also, the CPU
runtime in milliseconds is mentioned, for carrying out segmentation of a time-series
of 5474 data points as well as clustering the obtained segments. It is computed, by
executing the segmentation and clustering algorithms on an Intel Core i5 processor
machine with a CPU speed of 2.30 GHz and using MATLAB for executing the
programs.

Table 4.2 Computational and runtime complexities

Algorithm Time
complexity

Space
complexity

CPU runtime
(ms)

SSNS segmentation Oðn log zÞ Oðnþ zÞ 1872.0

Multi-layered DBSCAN
clustering

Oðl2Þ Oðl2Þ 3868.8
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4.8 Prediction Experiments and Results

This section proposes an experiment to examine the success of the proposed model
in forecasting, using a dynamic stochastic automaton constructed from the TAIEX
economic close price time-series. The time-series is first divided into two parts, the
first part to be used for knowledge and forecasting and the second part for vali-
dation. Here, the first part refers to the TAIEX close price time-series from 1st
January, 1990 to 31st December 2000 (10 years) and the second part includes the
period from 1st January, 2001 to 31st December 2001 (1 year). The experiment
involves the following steps.

Step 1. Automaton construction from the time-series: The steps used for seg-
mentation, clustering and construction of the dynamic stochastic automa-
ton introduced earlier are undertaken.

Step 2. Prediction of the most probable sequence of partitions: Steps introduced in
Sect. 4.6.2 are invoked for the prediction of the most probable sequence of
transitions (MPST) to reach a target state from a given starting state.

Step 3. Validation: In the validation phase, we construct a dynamic stochastic
automaton again for the entire span of 11 years from 1st January, 1990 to
31st December 2001. We forecast the most probable sequence of transi-
tions using the automaton constructed previously in step 1 and validate our
prediction using the automaton from the data of 11 years (1990–2001).

Here, we partition a time-series into seven equi-spaced partitions, namely,
Extremely Low (1), Very Low (2), Low (3), Medium (4), High (5), Very High
(6) and Extremely High (7). The dynamic stochastic automaton obtained from the
10 years (1990–2000) data of the TAIEX close price time-series (patterns given in
Fig. 4.4) is shown in Fig. 4.9. We carry out the prediction on every day of the first
9 months (assuming a threshold time-limit of 90 days) of the year 2001. In
Table 4.3, we show the probabilistic and duration accuracy of our approach by
matching the probability and duration of occurrence of the MPST in both training
and test phase automata. The results of certain chosen dates where the time-series
changes are most prominent have been shown in Table 4.3 Prediction accuracies
shown in the table and those obtained for the entire testing period are similar.

It is apparent from Table 4.3 that the average probabilistic prediction accuracy
obtained by the proposed technique is very high with a margin of approximately
87.71%. In addition, the average predicted duration accuracy of the MPST on any
given trading day is also very high of the order of 91.38%. Moreover, the MPST
predicted in the training phase, matches with that obtained in the test phase with an
accuracy of 93.52% over all the test cases in the experiment. As seen in Table 4.3,
from the chosen dates, 9 out of 10 MPST predictions result in an exact match. The
experimental results thus indicate that the proposed knowledge acquisition model
might help in real world stock market prediction.
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4.9 Performance Analysis

In this section, we analyze the performance of the proposed time-series segmentation
and clustering algorithms with traditional algorithms available in the literature. For
segmentation, the SSNS algorithm is compared with the Top-down [26], Bottom-up
[27], Sliding Window (SW) [25] and Feasible Space Window (FSW) [24] algo-
rithms. In order to compare the performance of different segmentation algorithms,
we define a metric called match-score. Two segment boundaries from different
segmentation algorithms are said to match if they are placed at the same time-instant.
The total number of matched segment boundaries provides the match-score of the
outputs of two algorithms provided that the time-series on which they are executed is
the same. As our objective for segmentation in this chapter is to identify points of
significant change in the slope of the time-series, we compute the match-score of
outputs obtained from different segmentation algorithms with respect to the output
obtained from a hand-crafted ground-truth segmentation of the same time-series. For
this analysis, we execute the above mentioned segmentation algorithms on a sample
time-series of 150 data points taken from the TAIEX close-price time-series. The
algorithms are coded in MATLAB and the results are summarized in Table 4.4. The
outputs of the above mentioned algorithms could not be shown here due to lack of
space and are given in [37] for convenience.

In order to analyse the performance of the proposed extension of DBSCAN, we
compare it with the traditional k-means [18], fuzzy c-means [19] and DBSCAN [14]
algorithms, using two performance indices, the sum of squared intra-cluster distance
(SSID) and sum of inter-cluster distances (SICD) [17]. Let there be m clusters with
cluster centres ðZ1; Z2; . . .; ZmÞ. Then the SSID index is computed as follows,

Fig. 4.9 Dynamic Stochastic automaton obtained from TAIEX (1990–2000) time-series
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D ¼
Xm

i¼1

X

X2Si
X � Zik k ð4:22Þ

where, Si is the set of points in the ith cluster and X � Zik k is the Euclidean distance
of the point X from its corresponding cluster centre Zi. Clearly, a low value of the
SSID index indicates a good performance of the clustering algorithm.

The SICD index is computed between cluster centres as follows,

D0 ¼
X

i6¼j
Zi � Zj

�� �� ð4:23Þ

where, i; j 2 f1; 2; ::;mg. The SICD index provides an estimation of inter-cluster
separation. Naturally, a higher value of the SICD index indicates a well-spaced
separation between individual clusters and thus a better performance of the clus-
tering algorithm. We have executed the above mentioned clustering algorithms on
the temporal segments obtained from the TAIEX close-price time-series of 1990–
2000, and summarized the results in Table 4.5.

In order to compare the relative performance of the proposed extension of
DBSCAN algorithm with the original DBSCAN, we execute both the algorithms
(in MATLAB) for clustering the temporal segments obtained from the TAIEX
close-price time-series for the period 1990–2000. The experimental results reveal
that the number of clusters detected by the DBSCAN algorithm is two, representing
the bullish (near-linear rise) and bearish (near-linear fall) temporal patterns as
shown in Fig. 4.10. On the other hand, the proposed multi-layered extension of

Table 4.4 Comparison of time-series segmentation algorithms

Algorithm Number of matched
segment boundaries
(m)

Number of segment
boundaries obtained
(S)

Percentage of segment
boundaries matched
(m/S) � 100

Top-down
[26]

7 21 33.3

Bottom-up
[27]

7 19 36.8

SW [25] 11 26 42.3

FSW [24] 9 18 50.0

SSNS 13 17 76.5

Table 4.5 Comparison of existing clustering algorithms with the proposed technique

Algorithm K-means
[18]

Fuzzy c-means
[19]

DBSCAN
[14]

Multi-layered
DBSCANPerformance

index

SSID 15.8917 11.2476 12.5371 10.6215

SICD 1186.9 1147.4 1222.2 1293.2
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DBSCAN is able to identify nine temporal patterns (as shown in Fig. 4.4). Also the
cluster centres produced are automatically arranged in decreasing order of density,
where the density of the ith cluster is defined is follows

Density ¼ Ri

Di
ð4:24Þ

In (4.24), Ri is the number of data points in the ith cluster and Di is the maximum
intra-cluster distance between any two points in the ith cluster. The densities of the
clusters obtained by executing both the algorithms on the said data set are sum-
marized in Table 4.6. The results obtained from the above experiment provide
conclusive proof of the advantage that the proposed extension of DBSCAN pro-
vides, whereby it is able to segregate clusters of variable densities and successfully
detect temporal patterns of lower density (or lesser number of occurrences) in the
data set. Since DBSCAN is not able to adapt its e parameter for clusters of variable
densities, it is able to identify only the two clusters of maximum density (bullish
and bearish patterns).

4.10 Conclusion

The merit of the chapter lies in the overall formulation of knowledge acquisition
from a time-series along with the merits of individual algorithms used in the
knowledge acquisition process. The segmentation algorithm is used to isolate
time-blocks of similar structural characteristics, i.e., positive, negative or near-zero
slopes from the rest. The clustering algorithm proposed here is an extension of the
well-known DBSCAN [14] algorithm with an aim to hierarchically cluster temporal
segments based on their data-density. DBSCAN is used as the base clustering
algorithm for its advantage of not requiring the number of clusters as an input
parameter. The merit of the extension lies in multi-level hierarchical clustering,
where each level is used to cluster points of maximum data-density available in that
level. The proposed extension is advantageous as it successfully captures clusters of
lower data-density as well. The merit of the dynamic stochastic automaton lies in its
inherent structure for knowledge representation which includes the information
about both the probability of occurrence as well as the expected duration of each

P1: Near-linear rise
(Bullish) 

P2: Near-linear fall
(Bearish) 

Fig. 4.10 Temporal patterns
obtained from TAIEX by
executing the DBSCAN
algorithm
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transition. These parameters have been successfully applied to predict the most
probable sequence of transitions (MPST) between two given states within a finite
time-limit. Experiments undertaken revealed a very high prediction accuracy of
over 90% (with a probabilistic accuracy of 87.71% and a duration accuracy of
91.38%) for prediction of the MPST as mentioned above. The proposed model can
thus be successfully used for trading and investment in stock market.

Appendix 4.1: Source Codes of the Programs

% MATLAB Source Code of the Main Program and Other Functions for
% Learning Structures in forecasting of Economic Time-Series

% Developed by Jishnu Mukhoti
% Under the guidance of Amit Konar and Diptendu Bhattacharya

%% CODE FOR SEMENTATION

%% Segmentation of Scripts

%% The script is used to load and segment a time series into time blocks.

clc; clear; close all;

%CHANGE THIS PART FOR DIFFERENT TIME SERIES

load(‘taiex data set.txt’);

clse = taiex_data_set;

%Step 0 : Filtering the time series using a Gaussian Filter for smoothing.

clse = gaussfilt([1:length(clse)]’,clse,2);

zones = horizontal_zones(clse);

Table 4.6 Cluster densities of the patterns obtained from DBSCAN and multi-layered DBSCAN
when executed on temporal segments obtained from TAIEX (1990–2000)

DBSCAN (pattern: density of pattern) Multi-layered DBSCAN (pattern: density of pattern)

P1: 17.8137 P1: 31.4546

P2: 29.8410

P3: 14.5017

P4: 11.6547

P5: 7.1405

P2: 16.4261 P6: 6.0197

P7: 4.2563

P8: 3.4682

P9: 3.2773
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%Step 1 : Divide the range of the entire time series into equi width

%partitions and find out the label (R,F,E) from each point to its next.

seq = transition_sequence(clse);

%Step 2 : Find the frequency distribution of the transitions (i.e. a region

%where the rise transition has occured more will have a higher value for

%its probability density.)

[sig1,sig2,sig3] = freq_distribution(seq);

%Step 3 : Segment the time series based on the probability distributions

%brk is a binary vector (1 = segment boundary, 0 = no segment boundary)

brk = segmentation(sig1,sig2,sig3);

%Plot the segments and the time series.

plot_segments(brk,clse);

%Preparing the training set for the clustering algorithm

num_blocks = histc(brk,1);

%Initializing the parameter set for training the clustering algorithm

param_bank = zeros(num_blocks, 10);

%start_and_end contains the starting and ending indices for each block

start_and_end = zeros(num_blocks, 2);

start_and_end(1,1) = 1;

cnt = 2;

for i = 2:length(brk)

if(brk(i) == 1)

start_and_end(cnt−1,2) = i−1;

start_and_end(cnt,1) = i;

cnt = cnt + 1;

end

end

start_and_end(cnt−1,2) = length(brk);

for i = 1:num_blocks

ser = clse(start_and_end(i,1):start_and_end(i,2));

%calculating division length

l = length(ser);

jmp = l/10;

inc = 0;

for j = 1:10

param_bank(i,j) = ser(1 + floor(inc));

inc = inc + jmp;

end

end
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%Mean normalizing the points to help in clustering

param_bank = param_bank’;

[param_bank_mn,mn,sd] = mean_normalize(param_bank);

param_bank = param_bank’;

param_bank_mn = param_bank_mn’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% TransitionSequence for Close

function [ seq ] = transition_sequence( clse )

%The function produces the sequences of rise and falls which will be used

%in determining the segments of the time series.

% 1 −> rise

% 2 −> level

% 3 −> fall

zones = horizontal_zones(clse);

seq = zeros(1,1);

% for i = 2:length(clse)

% z_prev = zone_containing_point(zones,clse(i−1));

% z_now = zone_containing_point(zones,clse(i));

% for j = 1:(abs(z_now−z_prev))

% if(z_now − z_prev > 0)

% seq = [seq, 1];

% else

% seq = [seq, 3];

% end

% end

% if(z_now − z_prev == 0)

% seq = [seq, 2];

% end

% end

for i = 2:length(clse)

z_prev = zone_containing_point(zones,clse(i−1));

z_now = zone_containing_point(zones,clse(i));

if(z_now − z_prev > 0)

seq = [seq, 1];

else

if(z_now − z_prev < 0)

seq = [seq, 3];

else

seq = [seq, 2];

end

end

end
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seq = seq (2:end);

seq = seq’;

end

%%%%%%%%%%%%%%%%%%%%%%

%% Zone Containing Points

function [ zone ] = zone_containing_point( zones, pt )

%A function to return the zone which contains a given point.

zone = 0;

for i = 1:(size(zones,1))

if(pt >= zones(i,1) && pt < zones(i,2))

zone = i;

break;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%

%% Frequency Distribution

function [ sig1, sig2, sig3 ] = freq_distribution( seq )

%The function calculates three signals based on the given sequence seq,

%which identifies the continuous frequency distribution of the occurences

%of rise fall and level transitions.

sig1 = zeros(length(seq),1);

sig2 = zeros(length(seq),1);

sig3 = zeros(length(seq),1);

for i = 3:(length(seq)−2)

window = [seq(i−2),seq(i−1),seq(i),seq(i+1),seq(i+2)];

w1 = histc(window,1);

w2 = histc(window,2);

w3 = histc(window,3);

f1 = w1/7;

f2 = w2/7;

f3 = w3/7;

sig1(i) = f1;

sig2(i) = f2;

sig3(i) = f3;

end
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% figure;

% plot([1:length(seq)]’,sig1,’g*−’);

% hold on;

% plot([1:length(seq)]’,sig2,’k*−’);

% plot([1:length(seq)]’,sig3,’r*−’);

End

%%%%%%%%%%%%%%%%%%%%%

%% GaussianFilter

function [ zfilt ] = gaussfilt( t,z,sigma)

%Apply a Gaussian filter to a time series

% Inputs: t = independent variable, z = data at points t, and

% sigma = standard deviation of Gaussian filter to be applied.

% Outputs: zfilt = filtered data.

%

% written by James Conder. Aug 22, 2013

% convolution for uniformly spaced time time vector (faster) Sep 4, 2014

n = length(z); % number of data

a = 1/(sqrt(2*pi)*sigma); % height of Gaussian

sigma2 = sigma*sigma;

% check for uniform spacing

% if so, use convolution. if not use numerical integration

uniform = false;

dt = diff(t);

dt = dt(1);

ddiff = max(abs(diff(diff(t))));

if ddiff/dt < 1.e−4

uniform = true;

end

if uniform

filter = dt*a*exp(−0.5*((t − mean(t)).^2)/(sigma2));

i = filter < dt*a*1.e−6;

filter(i) = [];

zfilt = conv(z,filter,’same’);

else

%%% get distances between points for proper weighting

w = 0*t;

w(2:end−1) = 0.5*(t(3:end)−t(1:end−2));

w(1) = t(2)−t(1);

w(end) = t(end)−t(end−1);
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%%% check if sigma smaller than data spacing

iw = find(w > 2*sigma, 1);

if *isempty(iw)

disp(‘WARNING: sigma smaller than half node spacing’)

disp(‘May lead to unstable result’)

iw = w > 2.5*sigma;

w(iw) = 2.5*sigma;

% this correction leaves some residual for spacing between 2−3sigma.

% otherwise ok.

% In general, using a Gaussian filter with sigma less than spacing is

% a bad idea anyway…

end

%%% loop over points

zfilt = 0*z; % initalize output vector

for i = 1:n

filter = a*exp(−0.5*((t − t(i)).^2)/(sigma2));

zfilt(i) = sum(w.*z.*filter);

end

%%% clean−up edges − mirror data for correction

ss = 2.4*sigma; % distance from edge that needs correcting

% left edge

tedge = min(t);

iedge = find(t < tedge + ss);

nedge = length(iedge);

for i = 1:nedge;

dist = t(iedge(i)) − tedge;

include = find( t > t(iedge(i)) + dist);

filter = a*exp(−0.5*((t(include) − t(iedge(i))).^2)/(sigma2));

zfilt(iedge(i)) = zfilt(iedge(i)) + sum(w(include).*filter.*z(in-

clude));

end

% right edge

tedge = max(t);

iedge = find(t > tedge − ss);

nedge = length(iedge);

for i = 1:nedge;

dist = tedge − t(iedge(i));

include = find( t < t(iedge(i)) − dist);

filter = a*exp(−0.5*((t(include) − t(iedge(i))).^2)/(sigma2));

zfilt(iedge(i)) = zfilt(iedge(i)) + sum(w(include).*filter.*z(in-

clude));
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end

end % uniform vs non−uniform

end

%%%%%%%%%%%%%%%%%%%%%%

%% Horizontal Zones

function [ zones ] = horizontal_zones( clse )

%Given the time series clse, the function calculates the width of the zones

%for appropriate segmentation of the time series.

%variable to store the average difference between points

diff = 0;

for i = 2:length(clse)

diff = diff + abs(clse(i) − clse(i−1));

end

w = diff/length(clse);

num_zones = floor((max(clse) − min(clse))/w);

zones = zeros(num_zones,2);

cnt = min(clse);

for i = 1:num_zones

zones(i,1) = cnt;

zones(i,2) = cnt + w;

cnt = cnt + w;

end

end

%%%%%%%%%%%%%%%%%%%%

%% Mean Normalization

function [ X_mn,mn,sd ] = mean_normalize( X )

%A function to mean normalize the data set given in X.

%col here represents the number of columns in X which is equal to the number

%of features or the number of dimensions of a point.

%row represents the number of rows or the number of col dimensional points.

col = size(X,2);

mn = mean(X);

sd = std(X);

Appendix 4.1: Source Codes of the Programs 169



X_mn = zeros(size(X));

for i = 1:col

X_mn(:,i) = (X(:,i)−mn(i))/sd(i);

end

end

%%%%%%%%%%%%%%%%%%%%%%

%% Plot Segments

function [ ] = plot_segments( brk, clse )

%The function plots the segments of the time series clse as given by the

%segmentation function

figure;

len = length(clse);

plot([1:len]’,clse,‘r−’);

hold on;

yL = get(gca,‘Ylim’);

for i = 1:len

if(brk(i) == 1)

line([i,i],yL,‘Color’,’k’);

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Segmentation

function [ brk ] = segmentation( sig1,sig2,sig3 )

%The function which returns the indices of the time series at which it has

%to be segmented.

%determining the length of the three signals

len = length(sig1);

%the brk vector contains the indices at which the time series is to be

%segmented.

brk = zeros(len+1,1);

brk(1) = 1;
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sg = [sig1(1), sig2(1), sig3(1)];

[mx, st] = max(sg);

for i = 2:len

sg = [sig1(i), sig2(i), sig3(i)];

[mx,ch] = max(sg);

if(ch == st)

continue;

else

if(ch *= 1 && st == 1 && sig1(i) == mx)

continue;

end

if(ch *= 2 && st == 2 && sig2(i) == mx)

continue;

end

if(ch *= 3 && st == 3 && sig3(i) == mx)

continue;

end

brk(i) = 1;

st = ch;

end

end

%removing the segmentations which are within the 7 day period

k = 0;

for i = 1:(len+1)

if(brk(i) == 1 && k == 0)

k = 7;

else if(brk(i) == 1 && k *= 0)

brk(i) = 0;

end

end

if(k > 0)

k = k − 1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%

%% CODE FOR CLUSTERING

%% Main Program

%%Script to find the cluster centroids in the given time−segments using a

%%non−parametric DBSCAN clustering approach.

clc; close all;
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load(‘param_bank.mat’);

dt = param_bank_mn;

cent = repeated_cluster(dt);

n = size(cent,1);

for i=1:n

figure;

plot([1:10],cent(i,:),‘k*−’);

end

idx = assign_cluster(param_bank_mn,cent);

%%%%%%%%%%%%%%%%%%%

%% Assign Cluster

function [ idx ] = assign_cluster( blocks, centroids )

%The function takes in a set of time blocks each block being a ten

%dimensional point.

num_blocks = size(blocks,1);

num_centroids = size(centroids,1);

idx = zeros(num_blocks,1);

for i = 1:num_blocks

bl = blocks(i,:);

c = centroids(1,:);

min_dist = euclid_dist(bl,c);

idx(i) = 1;

for j = 2:num_centroids

c = centroids(j,:);

e = euclid_dist(bl,c);

if e < min_dist

min_dist = e;

idx(i) = j;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%

%% Clustering

function [ processed_points ] = cluster( func, ad_list )

%A function to perform the non−parametric clustering using a depth−first
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%search or seed filling approach.

%initialising the cluster count to 1

cluster_cnt = 1;

%getting the number of points to create the hash table to store cluster

%values of processed points.

m = size(func,1);

processed_points = zeros(m,1);

%setting the threshold max for the func vector which, when encountered

%stops the processing.

[mx_idx,mx] = find_max(func);

%Creating stack data structure

stack = zeros(m,1);%an array of point indices

top = 1;%top of stack

%Stack data structure created

%loop ending criterion

while(mx_idx *= −1 && mx > 3)

%in one iteration of this while loop we are supposed to create and form

%one cluster from the data

%Pushing the index onto the stack

stack(top) = mx_idx;

top = top + 1;

%Continue while stack is not empty

while(top *= 1)

%Pop a point from the stack

pt_idx = stack(top−1);

top = top − 1;

%Continue processing on this point if this point has not been seen

%before

if func(pt_idx) *= −1

%Get the surrounding points for the current popped point

surr = ad_list(pt_idx,:);

counter = 1;

%For each point in the surroinding points, push it in the stack

%if it has not been processed.

while 1>=0

if surr(counter) == 0

break;

end

if processed_points(surr(counter)) == 0

stack(top) = surr(counter);

Appendix 4.1: Source Codes of the Programs 173



top = top + 1;

end

counter = counter + 1;

end

%Process the point

processed_points(pt_idx) = cluster_cnt;

%Removing the point which has just been processed from the

%func

func(pt_idx) = −1;%Logical deletion

end

end

%Incrementing the cluster count by 1

cluster_cnt = cluster_cnt + 1;

%Finding the max point and its index

[mx_idx,mx] = find_max(func);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Distribution Function

function [ nearby_points, ad_list ] = distribution_function( X )

%A function to find the number of nearby points given a particular point in

%the points matrix X.

%Each row in X corresponds to an n dimensional point where n is the number

%of columns.

num_points = size(X,1);

nearby_points = zeros(num_points, 1);

ad_list = zeros(num_points, num_points−1);

ad_list_index = ones(num_points,1);

r1 = find_rad_of_influence(X);

%fprintf(‘The radius chosen is : %d\n’,r1);

% r = r/3;

for i = 1:num_points

p1 = X(i,:);

for j = 1:num_points

if(j *= i)

p2 = X(j,:);

if(euclid_dist(p1,p2) < r1)

nearby_points(i) = nearby_points(i) + 1;

ad_list(i,ad_list_index(i)) = j;

ad_list_index(i) = ad_list_index(i) + 1;
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end

end

end

end

avr = mean(nearby_points);

%Removing all those points whose surroindings are relatively sparse

for i = 1:num_points

if(nearby_points(i) < avr)

nearby_points(i) = −1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%

%% Euclidean distance

function [ d ] = euclid_dist( p1, p2 )

%A function to calculate the euclidean distance between two

%multidimensional points p1 and p2.

%p1 and p2 can be a 1*n matrix where n is the dimension of the point.

n = size(p1,2);

d = 0;

for i = 1:n

d = d + (p1(i) − p2(i))^2;

end

d = sqrt(d);

end

%%%%%%%%%%%%%%%%%%%%%%%%

%% Find Centroids

function [ c ] = find_centroids( processed_points,points )

%A function to detect the centroids from the clustered points

num_clusters = max(processed_points);

dim = size(points,2);

c = zeros(num_clusters,dim);

for i = 1:num_clusters

cnt = 0;

for j = 1:length(processed_points)
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if(processed_points(j) == i)

c(i,:) = c(i,:) + points(j,:);

cnt = cnt + 1;

end

end

c(i,:) = c(i,:)/cnt;

end

end

%%%%%%%%%%%%%%%%%%%%%

%% Find Maximum

function [ idx,max ] = find_max( func )

%A function to return the index at which the maximum value of func is

%encountered.

max = 0;

max_idx = 1;

flag = 0;

for i = 1:length(func)

if(func(i) *= −1)

flag = 1;

if(func(i) > max)

max = func(i);

max_idx = i;

end

end

end

if (flag == 0)

idx = −1;

else

idx = max_idx;

end

end

%%%%%%%%%%%%%%%%%%%%%%%

%% Find Radius of influence

function [ r1,dist_vec ] = find_rad_of_influence( points )

%A function to determine the radius of influence given the set of mean

%normalized points.

num_points = size(points,1);

cnt = 1;

dist_vec = zeros(num_points^2 − num_points,1);

176 4 Learning Structures in an Economic Time-Series for Forecasting …



for i = 1:num_points

for j = 1:num_points

if i *= j

dist_vec(cnt) = euclid_dist(points(i,:),points(j,:));

cnt = cnt + 1;

end

end

end

dist_vec = sort(dist_vec);

len = length(dist_vec)/10;

p = dist_vec(1:len);

r1 = mean(p);

% sort(dist_vec);

% mean_rad = 0;

% cnt = 0;

% for i = 1:length(dist_vec)

% if(dist_vec(i)>0 && dist_vec(i)<1)

% cnt = cnt + 1;

% mean_rad = mean_rad + dist_vec(i);

% if cnt == 10

% break;

% end

% end

% end

%

% mean_rad = mean_rad/cnt;

% r = mean_rad;

%r = mean_rad/1.5;

%fprintf(‘Value of cnt : %d\n’,cnt);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%Mukhoti Clustering

function [ processed_points,c,outliers ] = mukhoti_clustering( points )

%The brand new clustering algorithm invented by yours truly.

pt = points;

[func, ad_list] = distribution_function(pt);

processed_points = cluster(func,ad_list);

c = find_centroids(processed_points,points);
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outliers = zeros(histc(func,−1),size(points,2));

cnt = 1;

for i = 1:size(points,1);

if(func(i) == −1)

outliers(cnt,:) = points(i,:);

cnt = cnt + 1;

end

end

%proc = assign_unclustered_points(c,processed_points,points);

%plot_clusters(points,processed_points);

%the final step is to find the cluster centroids and assign all the

%unassigned clusters to their centroids.

% num_clusters = max(processed_points);

end

%%%%%%%%%%%%%%%%%%%%%%

%% Purge Centroids

function [ mod_centroids ] = purge_centroids( centroids, points )

%This function processes the centroids and removes the centroids which are

%too close to each other.

r = find_rad_of_influence(points);

null_ct = ones(1,size(centroids,2));

null_ct = −null_ct;

for i = 1:size(centroids,1)

c1 = centroids(i,:);

if sum(c1 − null_ct) *= 0

for j = 1:size(centroids,1)

if j *= i

c2 = centroids(j,:);

if euclid_dist(c1,c2) < (r*2)

centroids(j,:) = null_ct;

end

end

end

end

end

mod_centroids = zeros(1,size(centroids,2));

178 4 Learning Structures in an Economic Time-Series for Forecasting …



for i = 1:size(centroids,1)

c1 = centroids(i,:);

if sum(c1 − null_ct) *= 0

mod_centroids = [mod_centroids;c1];

end

end

mod_centroids = mod_centroids(2:end,:);

end

%%%%%%%%%%%%%%%%%%%%%%

%% Repeated Clusters

function [ cent ] = repeated_cluster( points )

%Implementation of multi−layered clustering

orig_numpt = size(points,1);

[idx,c,out] = mukhoti_clustering(points);

cent = c;

num_out = size(out,1);

while num_out > (orig_numpt/10)

[idx,c,out] = mukhoti_clustering(out);

cent = [cent;c];

num_out = size(out,1);

end

%Removing the redundant centroids

cent = purge_centroids(cent,points);

end

%%%%%%%%%%%%%%%%%%%

%% CODE FOR AUTOMATON

%% Main Program

%%Main script to construct the dynamic stochastic automaton from the given

%%input parameters.

clear; close all; clc;

load(‘clse.mat’);

load(‘idx.mat’);

load(‘start_and_end.mat’);
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auto = automaton(clse,start_and_end,idx);

%%%%%%%%%%%%%%%%%%%%%%%

%% Automaton

function [ automaton, test_automaton ] = automaton( clse, start_and_end,

idx )

%Generates training and test phase dynamic stochastic automata

zones = final_partitions(clse);

zones

%FOR TAIEX

test = start_and_end(105:118,:);

start_and_end = start_and_end(1:104,:);

num_partitions = size(zones,1);

fprintf(‘Number of partitions : %d\n’,num_partitions);

num_segments = size(start_and_end,1);

fprintf(‘Number of segments : %d\n’,num_segments);

num_patterns = max(idx);

fprintf(‘Number of patterns : %d\n’,num_patterns);

automaton = zeros(num_partitions, num_partitions, num_patterns);

for i = 1:num_segments

st = start_and_end(i,1);

en = start_and_end(i,2);

st1 = clse(st);

en1 = clse(en);

pst = zone_containing_point(zones,st1);

pen = zone_containing_point(zones,en1);

if(pst == 0)

pst = pst + 1;

end

if(pen == 0)

pen = pen + 1;

end

% pst = pst + 1;

% pen = pen + 1;

pattern = idx(i);

automaton(pst,pen,pattern) = automaton(pst,pen,pattern) + 1;

end

for i = 1:num_partitions %for all start states

for j = 1:num_patterns %for all input patterns

s = sum(automaton(i,:,j));

if (s *= 0)

automaton(i,:,j) = automaton(i,:,j) ./ s;
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end

end

end

num_test_seg = size(test,1);

fprintf(‘Number of test segments : %d\n’,num_test_seg);

test_automaton = zeros(num_partitions,num_partitions,num_patterns);

for i = 1:num_test_seg

st = test(i,1);

en = test(i,2);

st1 = clse(st);

en1 = clse(en);

pst = zone_containing_point(zones,st1);

pen = zone_containing_point(zones,en1);

% pst = pst + 1;

% pen = pen + 1;

%

if(pst == 0)

pst = pst + 1;

end

if(pen == 0)

pen = pen + 1;

end

pattern = idx(i+212);

test_automaton(pst,pen,pattern) = test_automaton(pst,pen,pat-

tern) + 1;

end

for i = 1:num_partitions

for j = 1:num_patterns

s = sum(test_automaton(i,:,j));

if (s *= 0)

test_automaton(i,:,j) = test_automaton(i,:,j) ./ s;

end

end

end

end

%%%%%%%%%%%%%%%%%%%
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%% Final Partitions

function [ zones ] = final_partitions( clse )

%Dividing the time−series into 7 partitions

M = max(clse);

m = min(clse);

w = (M−m)/7;

zones = zeros(7,2);

zones(1,1) = m;

zones(1,2) = m + w;

zones(2,1) = m + w;

zones(2,2) = m + (2*w);

zones(3,1) = m + (2*w);

zones(3,2) = m + (3*w);

zones(4,1) = m + (3*w);

zones(4,2) = m + (4*w);

zones(5,1) = m + (4*w);

zones(5,2) = m + (5*w);

zones(6,1) = m + (5*w);

zones(6,2) = m + (6*w);

zones(7,1) = m + (6*w);

zones(7,2) = M;

end

%%%%%%%%%%%%%%%%%%%%

%% Zone Containing Points

function [ zone ] = zone_containing_point( zones, pt )

%A function to return the zone which contains a given point.

zone = 0;

for i = 1:(size(zones,1))

if(pt >= zones(i,1) && pt < zones(i,2))

zone = i;

break;

end

end

end

%%%%%%%%%%%%%%%%%%
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Steps to run the above program

1. Segmentation
Input: TAIEX close price file
Output: 239 � 10 matrix containing temporal segments (param_bank_mn)
Script to run: segmentation_script

2. Clustering
Input: Load the param_bank_mn.mat file.
Output: Cluster centroids (cent) and cluster labels of each temporal segment
(idx)
Script to run: main_prog

3. Dynamic Stochastic Automaton
Input: idx.mat, clse.mat, start_and_end.mat
Output: dynamic stochastic automaton in the form of a 3d matrix (auto)
Script to run: run_automaton

Exercises

1. Given the time-series, determine the segments of the series graphically using the
proposed segmentation algorithm.

Justify the results of the above segmentation steep rise, fall and their frequency
count.

[Hints: The segments are graphically obtained based on positivity, negativity
and zero values in slope of the series. Small changes in sign of slope are ignored in
Fig. 4.11b]

2. Given 3 sets of data with different density levels.

(a) By DBSCAN algorithm, cluster the data points into two clusters (Fig. 4.12).
[Hints: Only high density � points will be clustered.]
(b) What would be the response of hierarchical DBSCAN algorithm to the given

20 data.
[Hints: All the three clusters would be separated in multiple steps.]

3. In stochastic automaton, given below, find the sequence with the highest
probability of occurrences (Fig. 4.13).

[Hints: The sequences beginning at P1 and terminating at P4 are (Fig. 4.14):
The probability of sequence bc = 1�1 = 1.0 is the highest.]
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↑
y

x →

Fig. 4.12 Figure for Q2

Seg-I

Price

↑

Time(days) →

Seg-II Seg-I Seg-II Seg-III Seg-I Seg-II

1

100

50

Price

↑

Time(days) →50 150 250 350

(a)

(b)

Fig. 4.11 a, b Figure for Q1
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4. In the automaton provided in Fig. 4.15, suppose we have 4 patterns, to be
introduced in the automaton for state transition. If today’s price falls in partition
P4, what would be the next appropriate time required for the state transition?
Also what does prediction infer?

[Hints: Next state P5, appropriate time required is 5 days. The prediction infers
growth following cluster I.]

P1 P2 P3 P4

a/0.5

a/0.2
b/1.0

b/0.6

b/0.4 c/1.0

a/0.3

Fig. 4.13 Figure for Q3
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a/0.3

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

Sequence: aabbc

Sequence: aabc

Sequence: aabc
a/0.5

a/0.5

a/0.5

b/0.6

b/0.6

b/0.4 c/1.0

b/0.4 c/1.0

b/0.4 c/1.0a/0.3

a/0.2

P1 P3 P4

P1 P2 P3 P4

P1 P3 P4

Sequence: bc

Sequence: abc

Sequence: abc

a/0.5

c/1.0

a/0.3 b/0.4 c/1.0

c/1.0

b/1.0

b/1.0

(a)

(b)

Fig. 4.14 Hints for Q3
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I
III

IV

P3 P5 P2 P4
I, 0.3,4 III, 0.2,6 IV, 0.3,6

I, 0.4,5

II

(a)

(b)

Fig. 4.15 a Clustered pattern used for prediction. b The automata representing transitions from
one partition to the other with clustered patterns as input for state transition, the transition function
includes input cluster, probability of transition and appropriate number of days required for
transition in order
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Chapter 5
Grouping of First-Order Transition Rules
for Time-Series Prediction
by Fuzzy-Induced Neural Regression

Abstract In this chapter, we present a novel grouping scheme of first-order tran-
sition rules obtained from a partitioned time-series for fuzzy-induced neural
regression. The transition rules here represent precedence relationships between a
pair of partitions containing consecutive data points in the time-series. In this
regard, we propose two neural network ensemble models. The first neural model
represents a set of transition rules, each with a distinct partition in the antecedent.
During the prediction phase, a number of neural networks containing the partition
corresponding to the current time-series data point in the antecedent are triggered to
produce outputs following the pre-trained rules. Pruning of rules that do not contain
the partition corresponding to the current data point in the antecedent is performed
by a pre-selector Radial Basis Function neural network. In the first model, the
partitions present in transition rules are described by their respective mid-point
values during neural training. This might induce approximation error due to rep-
resentation of a complete band of data points by their respective partition
mid-points. In the second model, we overcome this problem by representing the
antecedent of a transition rule as a set of membership values of a data point in a
number of fuzzy sets representing the partitions. The second model does not require
selection of neural networks by pre-selector RBF neurons. Experiments undertaken
on the Sunspot time-series as well as on the TAIEX economic close-price time-
series reveal a high prediction accuracy outperforming competitive models, thus
indicating the applicability of the proposed methods to real life time-series
forecasting.

5.1 Introduction

A time-series is a discrete sequence of values obtained from a time-varying func-
tion. Generally, a time-series is one of the preferred representations for analytical
study of various natural phenomena like atmospheric temperature [1], rainfall [2],
seismic activity [3], population growth [4], economic growth [5] and the like. The
main objective behind time-series analysis is to make accurate predictions on
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possible future values of the series. The task of forecasting is difficult because the
actual factors affecting a time-series are manifold and often unknown. Hence, the
conventional procedure adopted by researchers is to develop a model which uses
values of the time-series at time instants ðt � kÞ; ðt � kþ 1Þ; . . .; t � 2; t � 1; t for
some positive integer k to make a prediction on the value of the series at time
instant tþ 1:

A large number of statistical methods for time-series modeling and prediction
exist in the literature [6–9]. Among these models the Autoregressive Integrated
Moving Average (ARIMA) [7] needs special mention. The ARIMA model com-
bines both the autoregressive model [8] and the moving average model [9] to obtain
better forecasts. It is based on three parameters, namely, p, the order of auto
regression, d, the degree of differencing and q, the order of the moving average
model. It defines the time-series value at a particular time instant as the sum of a
linear combination of earlier time-series values along with a linear combination of
earlier error terms (difference between predicted values and actual values). There
have been many other approaches to time-series modeling developed over the
years. A few well-known paradigms, which have found their way into time-series
analysis, include computational intelligence models like artificial neural networks
(ANN) [10] and fuzzy logic [11].

The artificial neural network (ANN) is one of the popular techniques of machine
learning which has been employed by researchers for developing a variety of
models for time-series prediction. In principle, the ANN is used to learn complex
non-linear functions and is primarily applied to classification problems [12] and
regression problems [13]. In quite a few works, the time-series has been modeled by
employing a regression neural network which takes k- time-lagged values cðt �
kÞ; cðt � kþ 1Þ; . . .; cðt � 2Þ; cðt � 1Þ of the time-series as input and produces the
predicted value cðtÞ of the time-series as output. A survey of early approaches
pursued in this direction can be found in [14]. With time, more sophisticated neural
models were developed to increase the accuracy of prediction on various
time-series. Some of the works worth special mention are as follows.

An ensemble of ARIMA and ANN was proposed in [10] to combine the
advantage of the linear modeling of ARIMA and the non-linear approximations of
the ANN for better forecasts. A specialized ANN architecture was developed in
[15] to improve the prediction accuracy on seasonal time-series, where the number
of input and output neurons of the network is optimally chosen based on the
duration of seasonality in the time-series. Yet another interesting work was pro-
posed in [16], where the authors designed a recursive probabilistic extension of the
well-known Levenberg-Marquardt algorithm to train recurrent neural networks for
time-series modeling. Other notable works in this field include the use of recurrent
neural network ensembles [17], hybrid Elman-NARX neural networks [18] and
interval type-2 induced fuzzy back-propagation neural networks [19].

The advent of fuzzy set theory in the field of time-series analysis came with the
works of Song and Chissom [20–22], where they formally provided the definition
of a fuzzy time-series. A given time-series is fuzzified primarily by three steps.
Firstly, the dynamic range of the time-series is divided into a number of equal or
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non-equal sized intervals called partitions, where each partition is a continuous
section of the overall range of the series. Secondly, the dynamic range of the series
is defined as the universe of discourse and each partition obtained from the first step
is represented by a fuzzy set with a corresponding fuzzy membership function
defined on the universe. Finally, each data point in the time-series is assigned a
linguistic value based on the partition to which it (the data point) belongs with the
highest membership. Multiple types of fuzzy implication rules including first-order
rules having a single antecedent and a single consequent, and higher-order rules
having multiple antecedents and a single consequent can be derived from the
sequence of fuzzified time-series data points. These fuzzy implication rules can then
be utilized for the task of prediction. A large number of interesting works [23–34]
on fuzzy time-series exist in the literature, many of which use advanced models
incorporating first and higher order fuzzy implication relations [23, 24], heuristic
functions to improve fuzzy time-series prediction [25], and multi-factor fuzzy
time-series models [26].

In the present work, we propose two ensemble neural network models where a
set of regression neural networks is used to predict the future value of a time-series.
For each pair of consecutive time-series data points cðt � 1Þ and cðtÞ, we construct
a first-order transition rule of the form Pt�1 ! Pt, where Pt�1 and Pt represent the
partitions to which the data points cðt � 1Þ and cðtÞ belong respectively. Next, in
the set S of all such obtained transition rules, we identify the rules having the
partition Pi in the antecedent and include them in a separate set Si. The idea is to
group the transition rules into sets where all the rules contained within a set have the
same antecedent. The probability of occurrence of a transition rule Pi ! Pj is
computed as the result of dividing the number of occurrences of the rule: Pi ! Pj

by the total number of occurrences of all rules: Pi ! Pk; 8 k:
In case the current time point falls in partition Pi, to predict the next possible

partition, we need to fire the exhaustive set of rules containing Pi in the antecedent.
This apparently is possible, if all these concurrently fire-able rules are realized on
different units of hardware/software. In the present settings, we planned to realize
them on neural networks. Thus for n concurrently fire-able rules having a common
antecedent Pi, we require n neural networks. The question that automatically is
raised: should we realize a single rule on a neural net? This, of course is
un-economic. We, therefore, plan to realize a set of rules, each with a distinct
partition in the antecedent, on a neural network, thereby ensuring that no two or
more rules from the set can fire concurrently.

Any traditional supervised neural network would suffice for our present purpose.
We began our study with simple feed-forward neural nets pre-trained with the
back-propagation algorithm. Here the antecedent and the consequent of the con-
currently fire-able rules are used as input and output instances of the training
patterns. Thus for training with k rules we require a set of k input-output training
instances/patterns.

It is thus apparent that a neural network learns a subset of the set of all rules
where each rule in the subset contains distinct partitions in the antecedent.
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However, it may not realize the exhaustive set of rules with all possible partitions in
the antecedent. In other words, consider a neural net realizing three rules with
partitions P2;P6 and P7 in the antecedents of these three rules. The entire set of
rules may however include all the partitions P1 through P10 in the antecedent.
Naturally, when the current partition is P3, we would not use this neural net as P3

does not appear in the antecedent of any of the rules realized by the neural network.
This calls for a pre-selector that selects the right neural network depending on the
occurrence of the partition corresponding to the current data point in the time-series
as antecedent of one rule realized by the network. We here used a Radial Basis
Function (RBF) [35] neural network to serve the purpose. The RBF network
contains a hidden layer neuron corresponding to each distinct antecedent on which
the neural network concerned is pre-trained. The neural network is triggered only
when at least one of the hidden neurons in the pre-selector RBF is fired indicating
that the current input partition occurs as the antecedent in a transition rule realized
by the neural net. This ensures that only those networks which have been trained on
rules containing the current partition as antecedent are triggered for prediction.

Although a time-series partition describes a bounded interval of a parameter (like
temperature), it is generally represented by an approximate single value, such as the
center of the interval. Such representation introduces an approximation error for all
data points lying in the interval. One approach to overcome the creeping of
approximation error is to describe each partition by a fuzzy set that takes into
account, the distance between each data point and its respective partition-center
while assigning memberships to the data points. These membership values indicate
the degree of belongingness of the data points in a given partition. In the previous
approach, we train each neural network in the ensemble with transition rules where
the antecedents and consequents represent mid-point or center values of partitions.
As the fuzzy representation for a partition, explained above, is relatively better than
its mid-point representation, we attempt to incorporate the fuzzy representation in
our neural network ensemble model. This can be done by fuzzifying the first-order
transition rules where the antecedent of each rule is replaced by a membership
function. The input instances in this case, for a neural net in the ensemble are the
fuzzy membership values of the current time-series data point in every partition.
Further, considering the effect of each partition in the antecedent of a transition rule
eliminates the requirement of a pre-selector logic.

Experiments have been carried out to check the efficacy of the proposed models
on real life chaotic time-series like the Sunspot [36] for comparison with existing
neural network based time-series models. Also, the proposed models have also been
applied on the Taiwan Stock Exchange Index (TAIEX) [37] economic close price
time-series for the period 1990–2004 for comparison with existing fuzzy time-series
models. The experiments indicate that the proposed models outperform the best
among the existing models by a relatively large margin.

The remainder of this chapter is organized as follows. Section 5.2 provides a
basic overview on fuzzy sets, the back-propagation training algorithm for neural
networks and radial basis function networks. Section 5.3 discusses the first pro-
posed model based on discrete first-order transition rules. Section 5.4 deals with the
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second proposed model applying fuzzy partitioning schemes for training.
Section 5.5 contains the experiments carried out on various time-series as well as
comparisons with other existing models. Conclusions are listed in Sect. 5.6.

5.2 Preliminaries

In this section, we discuss on some of the well-known concepts required for
understanding the rest of the chapter. Specifically, the definitions of fuzzy sets,
membership functions and time-series partitioning are provided along with a brief
description of the back-propagation training algorithm for the neural network as
well as Radial Basis Function networks.

5.2.1 Fuzzy Sets and Time-Series Partitioning

A fuzzy set is a generalization of a conventional set, where each element belongs
with a certain membership value lying in the range [0,1] unlike a conventional set
where each element belongs with a membership value which is either 0 (does not
belong to the set) or 1 (belongs to the set). A fuzzy set is formally defined in
Definition 5.1.

Definition 5.1 Given a set U as the “universe of discourse”, a fuzzy set A on the
universe U is defined as a set of 2-tuples as shown below

A ¼ ðx; lAðxÞÞjx 2 Uf g ð5:1Þ

where x is an element of the universe U and lAðxÞ 2 ½0; 1�denotes the membership
value of the element x in the fuzzy set A. If the universe of discourse U is con-
tinuous and infinite, it is not possible to define a set of discrete 2-tuples as given in
Eq. (5.1) for the fuzzy set A. In such cases, a fuzzy membership function lA :
U ! ½0; 1� is defined to map each element in the universe of discourse to its
corresponding membership value in the fuzzy set A.

Definition 5.2 A time-series is a discrete sequence of values sampled from a
temporally varying measurable entity like atmospheric temperature, rainfall, pop-
ulation growth and the like. A time-series can be considered as a vector of length n
as shown below:

~C ¼ ½cðt � ðn� 1ÞkÞ; cðt � ðn� 2ÞkÞ; . . .; cðt � 2Þ; cðt � 1Þ; cðtÞ�
¼ ½c1; c2; c3; . . .; cn�

ð5:2Þ
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where ci ¼ cðt � ðn� iÞkÞ represents the ith sample of the series and k is the
sampling interval.

Definition 5.3 Given a time-series ~C; let cmax and cmin represent the maximum and
minimum values of the time-series respectively. We define partitioning as the act of
dividing the range R = [cmin, cmax], into h non-overlapping contiguous intervals
P1;P2; . . .;Ph such that the following two conditions jointly hold:

Pi \Pj ¼ ;; 8 i 6¼ j; i; j 2 f1; 2; . . .; hg ð5:3Þ

[h

i¼1
Pi ¼ R; for integer i: ð5:4Þ

Let a partition Pi ¼ ½P�i ;Pþi � be defined as a bounded set where P�i and Pþi
represent the lower and upper bounds of the partition respectively. Clearly, a
time-series data point c(t) belongs to the partition Pi if and only if P�i � cðtÞ�Pþi .

Definition 5.4 Let cðtÞ and cðtþ 1Þ denote two consecutive data points in a
time-series ~C and let Pi and Pj be the partitions to which these data points belong.
Then we denote Pi ! Pj as a first-order transition rule that exists in the time-series
~C; with the antecedent Pi and consequent Pj. The following example demonstrates
the first-order transition rule in a time-series.

Example 5.1 Let a given time-series ~C ¼ ½3; 5; 10; 8; 3; 1; 9; 2�; be divided into five
partitions P1 ¼ ½0; 2Þ;P2 ¼ ½2; 4Þ;P3 ¼ ½4; 6Þ;P4 ¼ ½6; 8Þ;P5 ¼ ½8; 10�: Clearly,
the sequence of partitions corresponding to each data point in the time-series is
~P ¼ ½P2;P3;P5;P5;P2;P1;P5;P2�. From the sequence ~P; the first-order transition
rules obtained, are

P2 ! P3;P3 ! P5;P5 ! P5;P5 ! P2;P2 ! P1;P1 ! P5;P5 ! P2:

5.2.2 Back-Propagation Algorithm

One of the most well-known training algorithms employed to optimize the weights
of a neural network is the back-propagation algorithm. The basic principle behind
the back-propagation algorithm is to minimize a loss function by iterative modifi-
cation of the weights of the network over all the training examples. The algorithm
uses gradient descent learning on an error (energy) function of weights, where the
error function is designed to minimize the Euclidean norm of two vectors: targeted
output vector and computed output vector. Here the vectors are defined with respect
to the output signals corresponding to the neurons in the last layer. The algorithm
begins by randomly initializing the weights of a neural network and has two
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primary steps which are iteratively carried out over all the training examples until
the network performance is satisfactory:

Step 1. Forward Propagation: In this step, a training example is input in order to
obtain the output activation values from the network and compute the loss
or error metric e of the network output with respect to the desired output.

Step 2. Backward Propagation and Weight Update: This step is used to compute
the gradient @e

@w of the error (or loss) with respect to each and every weight
w in the network. Furthermore, for a weight w, the negative of the gradient
@e
@w represents the direction of decreasing loss. Hence, the weight w is
updated as follows:

wi  wi�1 � a
@ei�1
@wi�1

� �
ð5:5Þ

where wi and wi�1 represent the weight at the ith and (i−1)th iterations
respectively, ei�1 is the error at the (i−1)th iteration, @ei�1

@wi�1
is the value of the

gradient and a denotes the learning rate of the network.

5.2.3 Radial Basis Function (RBF) Networks

A Radial Basis Function (RBF) network is a 3-layer (input, hidden and output)
neural network which uses non-linear radial basis functions as activation functions
in its hidden layer. The output of the network is generally a linear combination of
the hidden layer activation values. Let the input to the network be represented as a
vector ~X ¼ ðx1; x2; . . .; xkÞ and let there be h hidden layer neurons in the network.
The output of the RBF network is then given as:

/ð~XÞ ¼
Xh

i¼1
aiq ~X � ~Ci

�� ��� � ð5:6Þ

where ~Ci represents the central vector of the ith hidden layer neuron and the norm
~X � ~Ci

�� ��; is a distance measure like the Euclidean distance between the vectors ~X

and ~Ci. Intuitively, each hidden layer neuron outputs the similarity between the
input vector and its own central vector. Hence, a commonly used radial basis
function is the Gaussian function as given below

q ~X � ~Ci

�� ��� � ¼ e�b ~X�~Cik kð Þ2 ð5:7Þ

where b is a positive constant. Due to the dependence of the activation function on
the distance between the input vector and a hidden neuron’s central vector, the
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function is radially symmetric about the central vector of the neuron. In this chapter,
we use RBF neurons as pre-selectors to determine the neural networks to be trig-
gered based on the transition rules on which the networks have been pre-trained.

5.3 First-Order Transition Rule Based NN Model

In this section, we propose a neural network ensemble model trained on first-order
transition rules obtained from a given time-series. Let S be the set of all first-order
transition rules and let Si denote the set of rules having the partition Pi in the
antecedent. Further, let pðPj=PiÞ indicate the probability of occurrence of Pj as the
next partition, given that Pi is the current partition. Clearly, the value of pðPj=PiÞ is
computed as given below:

pðPj=PiÞ ¼ countðPi ! PjÞP
8k

countðPi ! PkÞ ð5:8Þ

where countðPi ! PjÞ represents the number of occurrences of the transition rule
Pi ! Pj. The set Si can then be represented as follows:

Si ¼ Pi ! PkjpðPk=PiÞ[ 0f g: ð5:9Þ

Given the current partition Pi; in order to make a prediction for the next partition,
it is desirable to consider the weighted contribution of all the transition rules having
Pi in the antecedent. This can be best achieved by designing a model that allows for
the simultaneous firing of all the rules in the set Si. In order to realize such a model,
we use an ensemble of feed-forward neural networks which satisfies the following
conditions:

Condition 1: Given the current input partition Pi; each neural network in the
ensemble can fire at most a single transition rule having Pi in the antecedent.

Condition 2: All the transition rules having partition Pi in the antecedent must be
fired by the ensemble. In other words, all the rules contained in the set Si must be
fired.

Condition 3: No two neural networks in the ensemble can fire the same tran-
sition rule, i.e., for any two rules Pi ! Pa and Pi ! Pb fired simultaneously,
Pa 6¼ Pb:

The above mentioned conditions can be satisfied by imposing certain constraints
on the training sets of the neural networks. A few observations that are evident from
the above conditions are given as follows:

196 5 Grouping of First-Order Transition Rules …



Theorem 5.1 For any neural network NNi in the ensemble, its training set Ti
should not contain multiple transition rules having the same partition in the
antecedent.

Proof We prove this theorem by the method of contradiction. Let the training set
Ti contain two transition rules Pa ! Pb and Pa ! Pc having the same partition Pa

in the antecedent. If the current input partition is Pa;following Condition 1, any one
of the rules Pa ! Pb or Pa ! Pc will be fired by the network NNi. Without any loss
of generality, let us arbitrarily assume that the fired rule is Pa ! Pb. Hence, the rule
Pa ! Pc is not fired. By Condition 2, we can say that the rule Pa ! Pc is fired by
some other neural network NNj in the ensemble. However, the decision to fire
Pa ! Pb is completely arbitrary and the rule Pa ! Pb could have been fired as
well, violating Condition 3. Hence, we arrive at a contradiction and our initial
assumption was incorrect. The training set Ti does not contain multiple rules having
the same partition in the antecedent. h

Theorem 5.2 For any two neural networks NNi and NNj in the ensemble having
training sets Ti and Tj respectively, the training sets are disjoint, i.e., Ti \ Tj ¼ ;.

Proof We prove this theorem by the method of contradiction. Let us assume that
the training sets Ti and Tjof the two neural networks NNi and NNj contain the same
transition rule Pa ! Pb. Hence, when the current input partition is Pa;both the
networks NNi and NNj fire the same rule Pa ! Pb as, from Theorem 5.1, they have
no other rule in their training sets with Pa in the antecedent. This however, violates
Condition 3 mentioned above thereby contradicting our initial assumption that the
two training sets have a transition rule which is common. Thus, all the training sets
are completely disjoint with respect to one another. h

Bearing in mind the above conditions, we group the set So transition rules into
training sets using the following steps:

Step 1. The set S is divided into groups or subsets of transition rules, where all
the rules in a group have the same partition in the antecedent. Let the subset of rules
having Pi in the antecedent be denoted by Si following Eq. (5.8). Clearly, the
number of such subsets is equal to the total number of distinct partitions occurring
in the antecedent of the transition rules.

Step 2. The transition rules in each subset are ordered (following any arbitrary
order). Now, the training set for the first neural net in the ensemble is constructed by
collecting the transition rules which occur in the first position in each subset, the
training set for the second neural net is constructed by collecting the transition rules
occurring in the second position in each subset and so on. The algorithm for the
construction of training sets is formally presented in Pseudo Code 5.1. Also, for
better comprehension, an illustrative example of the same is provided in
Example 5.2.
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Pseudo Code 5.1: Training Set Construction Algorithm
Input: A set S of all first-order transition rules obtained from a time-series.
Output: A sequence of training sets T1; T2; . . .;Tv where the ith training set Ti
contains the transition rules on which the ith neural network NNi is trained.
BEGIN
Let k be the number of distinct partitions occurring in the antecedent of the tran-
sition rules in S;
Group the transition-rules in S into k arrays S1; S2; . . .; Sk such that the array Si; i 2
f1; 2; . . .; kg contains only the rules having partition Pi in the antecedent;
j 1;//denotes the training set number

WHILE construction of training sets is not complete, DO

BEGIN
Initialize Tj  ;; //Tj is initially an empty set

FOR each array Si; i 2 f1; 2; . . .; kg DO
BEGIN

Let Px ! Py be the first rule (if any) in the array Si;
Tj  Tj [fPx ! Pyg;//The rule is added to the training set
Remove the rule Px ! Pyfrom the array Si;

END FOR;
IF all the arrays S1; S2; . . .; Sk are empty, THEN

Break from WHILE loop; //Training set construction is complete

END IF;

j jþ 1;// Training set Tj has been constructed, moving to construction of Tjþ 1

END WHILE;
END

Example 5.2 Let the transition rules obtained from the time-series be represented as
the set S as given below:

S ¼ fP1 ! P1;P1 ! P2;P2 ! P1;P2 ! P2;P2 ! P3;P3 ! P1;P3 ! P3g:
ð5:10Þ

First, we group the rules in S according to the common antecedents. Hence, we
obtain three ordered subsets of S, i.e., S1 ¼ fP1 ! P1;P1 ! P2g; S2 ¼ fP2 !
P1;P2 ! P2;P2 ! P3g and S3 ¼ fP3 ! P1;P3 ! P3g: For the construction of the
first training set T1; we collect the first transition rules in each set S1; S2 and S3:
Hence, the training set T1 is constructed as follows:
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T1 ¼ fP1 ! P1;P2 ! P1;P3 ! P1g: ð5:11Þ

The training sets T2 and T3 contain the second and third transition rules in S1; S2
and S3 and are given as follows:

T2 ¼ fP1 ! P2;P2 ! P2;P3 ! P3g ð5:12Þ

T3 ¼ fP2 ! P3g: ð5:13Þ

It should be noted that the training set T3 contains only a single transition rule as
there are no rules left in the sets S1 and S3 after the construction of the training sets
T1 and T2: h

Having constructed the training sets, we are ready to train the neural nets in the
ensemble using the back-propagation algorithm. It should be noted that the training
sets contain transition rules, where both the antecedent and consequent of each rule
represents a partition label like P1. However, our current task demands a compu-
tational model whose expected input is the current time-series data point and the
desired output is the next or future time-series data point, both of which are real
numbers. This requires us to use regression neural networks in the ensemble whose
input and output values are both real numbers. Hence, in order to appropriately
convert the training set to fit our needs, we replace each partition label Pi with its
corresponding partition mid-value mi. With this modification to the training sets in
place, we are able to train the neural networks in the ensemble.

During the prediction phase, let the partition containing the current time-series
data point (input to the system) be Pi. It may so happen, that a neural network in the
ensemble has not been trained on a rule having Pi in the antecedent. Clearly, it is
undesirable to use such a network for prediction as that may lead to erroneous
results. In order to deal with this problem, we use a set of RBF neurons as
pre-selectors for triggering appropriate neural networks in the ensemble based on
the given input. Let the total number of partitions be h. We then construct h RBF
neurons, one for each partition. The output activation value qi for the ith RBF
neuron is given as follows:

qi ¼ e�b x2�m2
ij jð Þ ð5:14Þ

where x is the input to the RBF neuron, mi is the mid-point value of the ith partition
Pi and b is an empirically chosen constant. Intuitively, the ith RBF neuron outputs
the similarity between the input and the mid-value of the ith partition Pi. Given the
current input partition Pc; our objective is to trigger only those neural nets which
have been trained on at least one rule having Pc in the antecedent. In other words, a
neural network NNj is enabled, if the current input partition Pc is present in the
antecedent of any one of the training set rules for NNj. Hence, the enable signal for
NNj is obtained by a logical OR operation of the outputs of the RBF neurons which
correspond to the partitions occurring in the antecedent of the training set rules for
NNj. The operands for logical OR being binary, we have to apply a simple
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thresholding technique to the outputs of the RBF neurons to convert them to binary
values. An illustrative example of the pre-selection technique is given in Example
5.3.

Example 5.3 Let us consider the transition rules given in Eq. (5.10) of Example 5.2.
There are three partitions in the rules, i.e., P1;P2 and P3. We construct three RBF
neurons RBF1;RBF2 and RBF3 corresponding to the partitions P1;P2 and P3

respectively. Now, the training set T1 ¼ fP1 ! P1;P2 ! P1;P3 ! P1g for the
neural net NN1 contains all the three partitions P1;P2 and P3 in the antecedents of
its transition rules. Hence, the enable signal for NN1 is obtained by a logical OR of
the outputs of RBF1;RBF2 and RBF3: Similarly, the neural net NN2 is also enabled
by a logical OR of the outputs of RBF1;RBF2 and RBF3: However, the training set
T3 ¼ fP2 ! P3g for the neural net NN3 contains only the partition P2 in the
antecedent. Hence, the enable signal for NN3 can be directly obtained from the
output of RBF2: h

The final prediction c0ðtþ 1Þ for the next time-series data point, given the current
data point cðtÞ; is computed as the weighted sum of the individual outputs obtained
from the neural nets which are triggered by the pre-selector RBF neurons. Let there
be v selected neural nets and let their respective outputs be o1; o2; . . .; ov lying in the
partitions Po1;Po2; . . .;Pov respectively. The final output of the ensemble is then
given as follows:

c0ðtþ 1Þ ¼
Xv

i¼1
oi � p Poi=Pcð Þð Þ ð5:15Þ

where Pc is the partition containing the current time-series data point cðtÞ and
p Poi=Pcð Þ is the probability of occurrence of Poi as the next partition, given that the
current partition is Pc: A schematic block diagram of the steps in our proposed
approach is illustrated in Fig. 5.1. The architecture of the ensemble corresponding
to the set of transition rules given in Example 5.2 is shown in Fig. 5.2. It should be
noted that in our chapter, we have designed each neural network in the ensemble
with a single hidden layer having 10 hidden neurons as shown in Fig. 5.3.

Partitioning and 
Extraction of first-

order transition 
rules 

Training Set 
Construction

Neural Network 
Training and RBF 

Pre-selector 
construction 

Trained
Model 

Time -
Series

INPUT TRAINING PHASE PREDICTION

Fig. 5.1 Schematic block diagram of the steps proposed in the neural network ensemble model
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5.4 Fuzzy Rule Based NN Model

In this section, we propose a variation in the training scheme of the neural nets from
the previous model. It should be noted that a time-series data point cannot be
wholly represented by a partition. A partition is a certain continuous portion of the

Fig. 5.2 Architecture of the ensemble corresponding to Example 5.1, where m1, m2 and m3 are
the mid-values of the partitions P1, P2 and P3 respectively, the given input lies in partition P1,
hence, RBF1 is fired and the corresponding rules in NN1 and NN2 are fired. The fired paths and
rules are shown in bold

Fig. 5.3 Neural network architecture for the first-order transition rule based NN model, c(t) is the
input time-series value and c’(t + 1) is the predicted future value by the neural network
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dynamic range of the time-series. The best way to represent a partition is to consider
its mid-point. Hence, by approximating a data point lying in a partition with its
corresponding mid-point value, we intentionally delve into some approximation
error which grows with the width of the partition itself. One way to avoid this error
is to consider each partition as a fuzzy set, with the dynamic range of the time-series
representing the universe of discourse. Clearly, each partition is then associated
with a judiciously chosen membership function and every time-series data point
will have some membership value lying in the set [0,1], for a partition.

We want to design a membership function with the peak corresponding to the
center of the partition and a gradual fall-off on either side of the peak with a value
almost close to 0 towards the bounds of the partition. The membership value need
not however necessarily be 0 at the boundaries of the partition. One typical function
which satisfies this requirement is the Gaussian membership function as shown in
Fig. 5.4. We use these membership values to train the neural networks in this
model. The advantage of this approach is the exploitation of the inherent fuzziness
involved in the task of assigning a partition to a time-series data point and using it
for better prediction results.

Let the ith partition be pi ¼ ½li; ui�;and let the mid-point of the partition be mi.
We define the standard deviation for the Gaussian membership function as
ri ¼ ðui � miÞ ¼ ðmi � liÞ. With the above terms defined, the membership function
corresponding to the ith partition is given in Eq. (5.16) and illustrated in Fig. 5.4.

liðxÞ ¼ e
�ðx�miÞ2

2r2
i ð5:16Þ

Fig. 5.4 Membership function li(x) corresponding to the partition pi, li, and ui are the lower and
upper bounds of the partition pi and mi is the corresponding mid-point of the partition
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Let there be k partitions in the time-series. For each first-order transition rule of
the form pi ! pj; (pi and pj represent partitions) a new rule of the form
ðl1ðmiÞ; l2ðmiÞ; . . .;lkðmiÞÞ ! mj is created, where mi and mj are the mid-points of
partitions pi and pj respectively and llðmiÞ; l 2 f1; 2; . . .; kg; are the membership
values of mi in each partition of the time-series. The modified rules are used to train
the neural network. A schematic of the proposed model is shown in Fig. 5.5.
Detailed steps of the approach are given as follows.

Step 1. Partitioning: This is the same as the discrete rule based model discussed in
Sect. 5.3.

Step 2. First-order transition rule construction: This is the same as the discrete
rule based model discussed in Sect. 5.3.

Step 3. Neural network training: As discussed in Sect. 5.3, let the training set
T obtained for a neural network be defined as T ¼ ðpiq; pjqÞjq 2

�

f1; 2; . . .; rgg; i.e., a set of r 2-tuples where the first and second elements of
each tuple represent respectively, the antecedent and consequent of a
first-order transition rule. For the proposed extension, the training set T is
modified as follows.

T ¼ ððl1ðmiqÞ; l2ðmiqÞ; . . .; lkðmiqÞÞ;mjqÞjq 2 f1; 2; . . .; rg
� � ð5:17Þ

where miq and mjq are the mid-points of the partitions piq and pjq
respectively and llðxÞ is the membership value of x in the fuzzy set,
representing the degree of closeness of x with the centre of the lth partition.
The architecture of the neural networks is shown in Fig. 5.6.

Step 4. Predicting the next time-series data point: This is the same as the discrete
rule based model discussed in Sect. 5.3.

wm

wm

w1

w1

prm
prm

NN1
NN1

NNmNNm

c(t)
c(t)

pr1
pr1

c’(t+1)
c’(t+1)

1

1

m

i i
i

m

i
i

w pr

w

=

=

∑

∑2 ( ( ))c tμ

( ( ))k c tμ

1 ( ( ))c tμ

Fig. 5.5 Schematic diagram of the fuzzy rule based neural network model (considering k
partitions), c(t) is the input time-series data point, liðcðtÞÞ denotes the membership value of c(t) in
the ith partition, NNi is the ith neural network producing the prediction pri attached with weight wi

and c’(t+1) represents the predicted time-series value
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5.5 Experiments and Results

In this section, we present the results obtained from two experiments carried out to
test the prediction efficacy of the proposed models. In the first experiment, we apply
our models to the well-known Sunspot time-series data from November 1834 to
June 2001 for comparison with existing neural time-series prediction models in the
literature. In the second experiment, we use the TAIEX economic close-price
time-series for prediction in the field of trading and investment as well as for
comparison with existing fuzzy time-series models. Both the experiments are
performed using MATLAB on an Intel Core i7 processor with a clock speed of
2.3 GHz and 8 GB of RAM. The details of each experiment are provided in the
following sub-sections.

5.5.1 Experiment 1: Sunspot Time-Series Prediction

The sunspot time-series data is used to record solar activity and is a classic example
of a real-life chaotic time-series. Due to the effect of solar activity on various
aspects of human life like the climate and weather, prediction of the sunspot
time-series has become an important and critical challenge for many researchers. In
this chapter, we use the smoothed sunspot time-series data from the World Data
Center for sunspot index. The time-series from the period of November 1834 to

Fig. 5.6 Neural network architecture for the fuzzy transition rule based model, input layer
neurons correspond to the membership value of a time-series data point c(t) in each of the k
partitions
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June 2001 has 2000 data-points which is divided into two equal parts of 1000 points
each. The first half is used for training the models and the second half is used for
testing. The time-series is scaled to the range [0, 1]. The following steps are carried
out for the experiment:

Step 1. Partitioning, First-Order Rule Extraction And Neural Network Training: In
this step, we first partition the training phase time-series into 20 partitions. We
experimentally choose the value 20 based on best prediction results. The first-order
transition rules extracted from the partitioned time-series along with the probability
of occurrence of each rule is given in the transition matrix shown in Table 5.1. It
should be noted that the entry corresponding to the cell (Pi, Pj) contains the
probability of occurrence of the first-order transition Pi ! Pj.

Following the extraction of first-order transition rules, they are grouped into
training sets, each representing a mapping of distinct antecedents to consequents.
The groups of transition rules used to train each neural network is shown in
Table 5.2. It should be noted that groups with less than 6 transition rules are
ignored for training purposes.

The bunched first-order transition rules are further processed to yield training
sets for the two proposed neural network ensembles according to Sects. 5.3 and 5.4.
The networks are trained and we use the trained ensembles of both the proposed
models to make predictions on the test phase time-series.

Step 2. Prediction on Test-Phase Time-Series: In this step, we apply the trained
models to make predictions on the test phase Sunspot time-series. Figs. 5.7 and 5.8
illustrate the predictions made by the first-order rule based NN model and the fuzzy
rule based NN model respectively on the test phase sunspot series. In order to
quantify the prediction accuracy, we use three well-known error metrics, i.e., the
mean square error (MSE), the root mean square error (RMSE) and the normalized
mean square error (NMSE). Let ctestðtÞdenote the value of the test-period
time-series at the time-instant t and let c0ðtÞ be the predicted time-series value for
the same time-instant. The above mentioned error metrics can be defined by the
following equations:

MSE ¼
PN

t¼1
ðctestðtÞ � c0ðtÞÞ2

N
ð5:18Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

t¼1
ðctestðtÞ � c0ðtÞÞ2

N

vuuut
ð5:19Þ
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NMSE ¼
PN

t¼1
ðctestðtÞ � c0ðtÞÞ2

PN

t¼1
ðctestðtÞ � �cðtÞÞ2
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Fig. 5.7 Prediction of sunspot time-series using first-order transition rule based neural network
model
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Fig. 5.8 Prediction of sunspot time-series using fuzzy rule based neural network model
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where N is the total number of data points in the test phase time-series and �cðtÞ is
the average of all N data points. In Table 5.3, we present a comparison in the
prediction performance of the proposed approaches with respect to other existing
neural models in the literature.

It is evident from Table 5.3 that the proposed models outperform other com-
petitive models existing in the literature by a relatively large margin. Furthermore,
among the two proposed methods, the second method which uses fuzzified
first-order transition rules for training, leads to comparatively better prediction
performance. This is primarily because of the fact that fuzzy representation of
time-series data points lowers approximation errors in comparison to discrete
quantization of data points with respect to respective partition mid-points. It can
thus be concluded that the proposed models with their high prediction accuracy can
be efficiently utilized for prediction of chaotic time-series.

5.5.2 Experiment 2: TAIEX Close-Price Prediction

In this experiment we apply the proposed models for prediction of the TAIEX close
price time-series for the period 1990–2004. For each year, the time-series is divided
into two periods: (i) the training period from January to October and (ii) the testing
period from November to December. The following steps are carried out for the
experiments:

Step 1. Training Phase: Partitioning, First-order rule extraction and neural net-
work training. Following Sects. 5.3 and 5.4, the training period time-series is first
partitioned. For partitioning, we have experimentally chosen 40 equi-spaced par-
titions as that yields the best prediction results. The first-order transition rules thus
extracted from the time-series for each year is then segregated into training sets for
the neural networks and modified into mid-point to mid-point mappings for the
discrete rule based model and into membership values to mid-point mappings for

Table 5.3 Comparison of prediction errors of existing methods in the literature with the proposed
methods on the sunspot time-series

Model Prediction error

MSE RMSE NMSE

Koskela et al. [39] 9.79E−02

Ma et al. [38] 1.29E−02 2.80E−03

Smith et al. [17] 2.32E−04 1.52E−02 9.46E−04

Ardalani-Farsa et al. [18] 1.4078E−4 0.0119 5.9041E−04

Proposed method 1 0.843E−04 0.0071 4.09E-04
Proposed method 2 0.094E−04 8.7472E−04 3.0315E-04
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Table 5.5 Comparison of proposed models with existing methods for the period 1999–2004

Years methods 1999 2000 2001 2002 2003 2004 Average

1. Huarng et al. [25]. (Using
NASDAQ)

NA 158.7 136.49 95.15 65.51 73.57 105.88

2. Huarng et al. [25]. (Using Dow
Jones)

NA 165.8 138.25 93.73 72.95 73.49 108.84

3. Huarng et al. [25]. (Using M1b) NA 160.19 133.26 97.1 75.23 82.01 111.36

4. Huarng et al. [25]. (Using
NASDAQ and M1b)

NA 157.64 131.98 93.48 65.51 73.49 104.42

5. Huarng et al. [25]. (Using Dow
Jones and M1b)

NA 155.51 128.44 97.15 70.76 73.48 105.07

6. Huarng et al. [25]. (Using
NASDAQ,Dow Jones and M1b)

NA 154.42 124.02 95.73 70.76 72.35 103.46

7. Chen et al. [30, 31, 32] 120 176 148 101 74 84 117.4

8.U_R Model [31, 32] 164 420 1070 116 329 146 374.2

9.U_NN Model [31, 32] 107 309 259 78 57 60 145.0

10.U_NN_FTS Model [31, 32, 33] 109 255 130 84 56 116 125.0

11.U_NN_FTS_S Model [31, 32,
33]

109 152 130 84 56 116 107.8

12.B_R Model [31, 32] 103 154 120 77 54 85 98.8

13.B_NN Model [31, 32] 112 274 131 69 52 61 116.4

14.B_NN_FTS Model [31, 32] 108 259 133 85 58 67 118.3

15.B_NN_FTS_S Model [31, 32] 112 131 130 80 58 67 96.4

16. Chen and Chen [27]. (Using
Dow Jones)

115.47 127.51 121.98 74.65 66.02 58.89 94.09

17. Chen and Chen [27]. (Using
NASDAQ)

119.32 129.87 123.12 71.01 65.14 61.94 95.07

18. Chen and Chen [27]. (Using
M1b)

120.01 129.87 117.61 85.85 63.1 67.29 97.29

19. Chen and Chen [27]. (Using
NASDAQ and Dow Jones)

116.64 123.62 123.85 71.98 58.06 57.73 91.98

20. Chen and Chen [27]. (Using
Dow Jones and M1b)

116.59 127.71 115.33 77.96 60.32 65.86 93.96

21. Chen and Chen [27]. (Using
NASDAQ and M1b)

114.87 128.37 123.15 74.05 67.83 65.09 95.56

22. Chen and Chen [27]. (Using
NASDAQ, Dow Jones and M1b)

112.47 131.04 117.86 77.38 60.65 65.09 94.08

23. Karnik-Mendel [34] induced
stock prediction

116.60 128.46 120.62 78.60 66.80 68.48 96.59

24. Chen et al. [26]. (Using
NASDAQ, Dow Jones and M1b)

101.47 122.88 114.47 67.17 52.49 52.84 85.22

25. Chen and Kao [28] 87.67 125.34 114.57 76.86 54.29 58.17 86.14

26. Cai et al. [29] 102.22 131.53 112.59 60.33 51.54 50.33 84.75

27. Proposed method 1 91.27 120.16 108.63 59.18 46.88 91.62 86.29

28. Proposed method 2 87.03 102.04 99.49 61.25 39.14 70.11 76.51
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the fuzzy rule based model. The neural networks are trained using the back prop-
agation algorithm on the training sets obtained above.
Step 2. Testing Phase: Prediction on test series. In the test phase, the trained neural
networks of both the proposed models are used to make predictions on the
time-series of the testing period for each year (1990–2004). In order to measure the
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Fig. 5.9 RMSE Error values for Cai et al. [29] and the two proposed models for the years 1990–
1999
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Fig. 5.10 RMSE Error values for Cai et al. [29] and the two proposed models for the years 1990–
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prediction error of the models, we use the RMSE error metric as defined in
Eq. (5.19). A comparative study of the proposed models with various existing
models in the literature has been performed. For the period, 1990–1999, the pro-
posed models are compared with conventional models [23], weighted models [23],
Chen and Chen’s model [27], Chen et. al’s model [26], Chen and Kao’s model [28]
and Cai et al’s model [29]. The results of all the above mentioned models are
obtained from [29] and are shown in Table 5.4. For the period 1999–2004, the
proposed models are compared with methods specified in [25–34] and the results
are summarized in Table 5.5. The minimum RMSE values for each year have been
shown in bold. Figs. 5.9 and 5.10 illustrate the variations in the RMSE values
graphically over the years 1990–1999 and 1999–2004 respectively, for the pro-
posed models along with the next best model [29].

As is evident from Tables 5.4 and 5.5, the proposed models clearly outperform
the other existing models in the literature. The fuzzy rule-based neural network
model outperforms the next best existing model by 9.25% for the period 1990–1999
and by 9.72% for the period 1999–2004. The results indicate that the proposed
models can be effectively utilized in financial prediction.

5.6 Conclusion

In this chapter, we presented a novel grouping scheme of first-order transition rules
obtained from a partitioned time-series for the purpose of fuzzy-induced neural
network based prediction. In this direction, we have proposed two models. The first
model uses first-order transition rules segregated into groups representing injective
mappings from antecedents to consequents of a rule. Each rule in a group thus
obtained possesses a distinct antecedent and each such group is used to train a
separate neural network in the ensemble. This helps in realizing the simultaneous
and concurrent firing of multiple rules during prediction. Furthermore, the indi-
vidual predictions of the networks are weighted according to the probability of
occurrence of their corresponding transition rules and the weighted sum thus
obtained is treated as the final predicted value of the model. This helps in taking the
recurrence of transition rules into account while making forecasts, thereby
increasing prediction accuracy.

The second model proposed modifies and extends the training scheme of the
first, by considering each partition of the time-series as a fuzzy set to identify the
membership of a data point in its respective partition. The advantage of such an
approach lies in utilizing the inherent fuzziness involved in identifying the partition
to which a time-series data point belongs, thereby reducing the approximation error
induced due to quantization of a time-series data point with respect to its partition
mid-point value. The first-order transition rules are thus converted into fuzzy
first-order rules and segregated into training sets following the grouping scheme as
mentioned above.
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Extensive experiments carried out on real life chaotic time-series like the sunspot
[36] as well as on economic time-series like the TAIEX [37] reveal a high pre-
diction accuracy for both the proposed models. Further, it is also observed that the
performance of the fuzzy rule based neural network ensemble is comparatively
better than its predecessor in both the experiments carried out. Prediction perfor-
mance can possibly be further increased by approaches like optimized partitioning,
higher order transition rules for training and chronological weight assignment of
transition rules. Such approaches form a future scope for work in this regard. Thus,
with the high forecast accuracy and low prediction error of the proposed models
compared to other existing models in the literature, we can conclude that the said
models can be effectively utilized for real-life time-series forecasting applications.

Exercises

1. Let a time-series be partitioned into seven disjoint partitions: P1, P2, P3, … P7.
The rules acquired from the time-series include S1[ S2 [ S3, where,

S1 ¼ fP3 ! P5; P4 ! P3; P5 ! P2g
S2 ¼ fP3 ! P4; P4 ! P6; P5 ! P4g
S3 ¼ fP4 ! P7; P5 ! P1; P2 ! P3g

we realize three sets: S1, S2, and S3 disjointly on neural nets. Suppose for input
being P4, the prediction rule is obtained as

Neural Net2 (NN2)

P3 → P5

P4 → P3

P5 → P2

P3 → P5

P4 → P3

P5 → P2

P3 → P5

P4 → P3

P5 → P2

Neural Net1 (NN1)

Neural Net3 (NN3)

P4
∑

Predicted 
outcome

Neural Net2 (NN2)

P3 → P5

P4 → P3

P5 → P2

P3 → P5

P4 → P3

P5 → P2

P3 → P5

P4 → P3

P5 → P2

Neural Net1 (NN1)

Neural Net3 (NN3)

P4
∑

Predicted 
outcome

Neural Net2 (NN2)

P3 → P5

P4 → P3

P5 → P2

P3 → P4

P4 → P6

P5 → P4

P4 → P7

P5 → P1

P2 → P3

Neural Net1 (NN1)

Neural Net3 (NN3)

P4
∑

Predicted 
outcome

Fig. 5.11 Problem 1
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ExpectedValue of Predicted Stock� Price

¼ Mid value of Partition P3 � ProbðP3=P4Þ
þ Mid value of Partition P6 � ProbðP6=P4Þ
þ Mid value of Partition P7 � ProbðP7=P4Þ

Let the mid values of partitions P3, P6, and P7 are 1K, 2K and 3K respectively.
Let ProbðP3=P4Þ ¼ ProbðP6=P4Þ ¼ ProbðP7=P4Þ ¼ 0:33, Evaluate expected
value of predicted stock-price.

2. In Q. 1, if today’s price falls in partition P4, what efficient relation would you
suggest for time-efficient prediction? Fig. 5.11

P3 → P4

P4 → P6

P5 →

P4 → P7

P5 → P1

P2 → P3

P3 → P5

P4 → P3

P5 → P2

∑

RBF for P3

RBF for P4

RBF for P5

RBF for P2

OR OR OR

BPNN1 BPNN2 BPNN3

p(P3/P4)
p(P3/P4)

p(P3/P4)

C(tn)

Fig. 5.12 Problem 3
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[Hints: Since P4 occurs in the left of the rules: P4! P3, P4! P6, P4 ! P7, to
efficiently predict the next partition, we need to realize the last three rule on 3
different neural nets. Thus the three neural nets will be triggered with input = P4,
to produce their resulting response].

3. Suppose, we have three sets of disjoint rules: S1, S2, and S3 as given in Q2.
These set of rules are realized on three feed forward neural nets. We would like
to trigger a neural net, if the partition appearing at the left of!operator falls in a
rule in the neural net. The occurrence of the left symbol (partition) can be tested
using Radial Basis Function (RBF) neural net.
Design the architecture of a system, where RBF neurons select a feed forward
structure depending on the occurrence of a partition in the left side of !
operator. The predicted price may be evaluated by the formulation in problem.
[Hints: The architecture is given below. In the given architecture, RBF neuron
select the appropriate neural nets containing the supplied partition at the left side
of! operator. The selected neural nets are fired to produce the right hand side
of the rules referred to above. The product of the mid-value of the inferred
partition for the proposed neural nets is collected and the expectation of the
targeted close price is evaluated.] Fig. 5.12

Appendix 5.1: Source Codes of the Programs

% MATLAB Source Code of the Main Program and Other Functions for Time-%Series
Prediction by Fuzzy-induced Neural Regression

% Developed by Jishnu Mukhoti

% Under the guidance of Amit Konar and Diptendu Bhattacharya

%% Main 0

function [ partitions ] = main_0( time_series, num_part )

%UNTITLED6 Summary of this function goes here

% Detailed explanation goes here

partitions = partition(time_series,num_part);

end

%%%%%%%%%%%%%%%%%%%%

%% Main 1

function [ rules ] = main_1( time_series, partitions )

%Given a time-series and number of partitions provides the transition rules

using sub

%functions.
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%plot_partitions(time_series,partitions);

rules = find_transition_rules(time_series, partitions);

end

%%%%%%%%%%%%%%%%%%

%% Main 2

function [ refined_training_set1, refined_train-

ing_set2, rule_prob ] = main_2( rules, partitions )

%A main function to prepare the training set and refine them for the neural

%net training.

training_set = create_training_set(rules)

refined_training_set1 = refine_training_set_part_1(training_set,parti-

tions);

refined_training_set2 = refine_training_set_part_2(refined_training_set1,-

partitions);

rule_prob = rule_probability(rules);

end

%%%%%%%%%%%%%%%%%%

%% Create training set

function [ res ] = create_training_set( rules )

%From the extracted rules of the time-series, this function produces the

%training set to train the neural networks.

r2 = rules;

num_part = size(rules,1);

%Count of neural networks required to train based on the given rules

nn_count = 1;

flag = 0;

while flag == 0

index = 1;

flag = 1;

for i = 1:num_part

for j = 1:num_part

if (r2(i,j) *= 0)

res(index,1,nn_count) = i;

res(index,2,nn_count) = j;

r2(i,j) = 0;

index = index + 1;

flag = 0;
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break;

end

end

end

nn_count = nn_count + 1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Create training set part 2

function [ ts ] = create_training_set_part2( train_series, partitions )

%UNTITLED2 Summary of this function goes here

% Detailed explanation goes here

l = length(train_series);

num_part = size(partitions,1);

ts = zeros(l-1, num_part+1);

for i = 1:l-1

mv = gauss_mf(partitions,train_series(i));

ts(i,1:end-1) = mv;

ts(i,end) = train_series(i+1);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%

%% Error Matrices

function [ rms, ms, nms ] = error_metrics( actual, pred )

%Function to compute the MSE, RMSE and NMSE errors.

rms = rmse(actual, pred);

ms = rms^2;

nms = nmse(pred, actual);

end

%%%%%%%%%%%%%%%%%%%%%

%% Find partitions

function [ res ] = find_transition_rules( series, partitions )

% Finds the transition rules given the time-series and its partitions
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num_part = size(partitions,1);

len = length(series);

res = zeros(num_part,num_part);

for i = 1:len-1

prev_part = part_data_pt(partitions,series(i));

next_part = part_data_pt(partitions,series(i+1));

res(prev_part,next_part) = res(prev_part,next_part) + 1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%% Gaussian Membership Functions

function [ mem_val ] = gauss_mf( partitions, point )

%A function to take a point and return the membership values in all the

%membership functions.

num_part = size(partitions,1);

mem_val = zeros(num_part,1);

for i = 1:num_part

mean = (partitions(i,1) + partitions(i,2))/2;

sig = partitions(i,2) - mean;

mem_val(i) = gaussmf(point,[sig mean]);

end

end

%%%%%%%%%%%%%%%%%%%%%

% lorenz - Program to compute the trajectories of the Lorenz

% equations using the adaptive Runge-Kutta method.

clear; help lorenz;

%* Set initial state x,y,z and parameters r,sigma,b

state = input(‘Enter the initial position [x y z]: ’);

r = input(‘Enter the parameter r: ’);

sigma = 10.; % Parameter sigma

b = 8./3.; % Parameter b

param = [r sigma b]; % Vector of parameters passed to rka

tau = 1; % Initial guess for the timestep

err = 1.e-3; % Error tolerance

%* Loop over the desired number of steps

time = 0;
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nstep = input(‘Enter number of steps: ’);

for istep=1:nstep

%* Record values for plotting

x = state(1); y = state(2); z = state(3);

tplot(istep) = time; tauplot(istep) = tau;

xplot(istep) = x; yplot(istep) = y; zplot(istep) = z;

if( rem(istep,50) < 1 )

fprintf(‘Finished %g steps out of %g\n’,istep,nstep);

end

%* Find new state using adaptive Runge-Kutta

[state, time, tau] = rka(state,time,tau,err,’lorzrk’,param);

end

%* Print max and min time step returned by rka

fprintf(‘Adaptive time step: Max = %g, Min = %g \n’, …

max(tauplot(2:nstep)), min(tauplot(2:nstep)));

%* Graph the time series x(t)

figure(1); clf; % Clear figure 1 window and bring forward

plot(tplot,xplot,’-’)

xlabel(‘Time’); ylabel(‘x(t)’)

title(‘Lorenz model time series’)

pause(1) % Pause 1 second

%* Graph the x,y,z phase space trajectory

figure(2); clf; % Clear figure 2 window and bring forward

% Mark the location of the three steady states

x_ss(1) = 0; y_ss(1) = 0; z_ss(1) = 0;

x_ss(2) = sqrt(b*(r-1)); y_ss(2) = x_ss(2); z_ss(2) = r-1;

x_ss(3) = -sqrt(b*(r-1)); y_ss(3) = x_ss(3); z_ss(3) = r-1;

plot3(xplot,yplot,zplot,’-’,x_ss,y_ss,z_ss,’*’)

view([30 20]); % Rotate to get a better view

grid; % Add a grid to aid perspective

xlabel(‘x’); ylabel(‘y’); zlabel(‘z’);

title(‘Lorenz model phase space’);

%%%%%%%%%%%%%%%%%%%%%%%%%%

%% NMSE Calculation

function [ err ] = nmse( vec1, vec2 )

%Function to compute the normalized mean square error.
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v = abs(vec1 - vec2);

v = v.^2;

s1 = sum(v);

s2 = sum(abs(vec1 - mean(vec2)));

err = s1/s2;

end

%%%%%%%%%%%%%%%%%%%%%%%%

%% Script to create, execute and test the neural net model.

%

% Creating the data sets and partitioning it into sets of 1000 data points %

%

clear; close all; clc;

load ’sunspot.txt’;

data = sunspot(:,4);

run = ceil(size(data)/1000);

data_sets = zeros(length(data),run);

j = 1;

% for i = 1:run

% data_sets(:,i) = data(j:j+999);

% j = j + 1000;

% end

data_sets(:,1) = data;

%% Training neural net and predicting for each test run of the data %%

num_part = 20;

rmse_val = zeros(run,1);

%TODO: Convert the second 1 to run !!!!

for i = 1:1

%Separate the series into training and testing periods

dt = data_sets(:,i);

l = floor(0.5*length(dt));

train_series = dt(1:l);

test_series = dt(l+1:end);

partitions = main_0(dt,num_part);

plot_partitions(train_series, partitions);

rules = main_1(train_series, partitions);

[rts1, rts2, rule_prob] = main_2(rules, partitions);

fprintf(‘Training the neural networks for part 1\n’);

nets1 = train_neural_nets(rts1);

% fprintf(‘Training the neural networks for part 2\n’);

Appendix 5.1: Source Codes of the Programs 221



% nets2 = train_neural_nets2(rts2);

%Prediction phase

pred11 = zeros(length(dt)-l,1);

pred12 = zeros(length(dt)-l,1);

%pred2 = zeros(200,1);

fprintf(‘Running test cases ………………\n’);

for j = l:(length(dt)-1)

fprintf(‘——————Iteration %d—————————————————\n’,j-l+1);

inp = dt(j);

[out11,out12] = prediction(inp,rule_prob,nets1,partitions);

%out2 = prediction2(inp,rule_prob,nets2,partitions);

pred11(j-l+1) = out11;

pred12(j-l+1) = out12;

%pred2(j-799) = out2;

end

rmse_val(i) = rmse(test_series, pred11);

%Plot the predictions

figure;

plot((1:(length(dt)-l))’,test_series,’k*-’);

hold on;

plot((1:(length(dt)-l))’,pred11,’r*-’);

%plot((1:100)’,pred12,’b*-’);

%plot((1:200)’,pred2,’b*-’);

end

%%%%%%%%%%%%%%%%%%%%%%%

%% Loading data and preparing the training set %%

close all; clear; clc;

load ’data.txt’;

run = ceil(size(data)/1000);

data_sets = zeros(length(data),run);

j = 1;

% for i = 1:run

% data_sets(:,i) = data(j:j+999);

% j = j + 1000;

% end

data_sets(:,1) = data;

%% Train the neural network %%

num_part = 40;

rmse_val = zeros(run,1);
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for i = 1:run

%Separate the series into training and testing periods

dt = data_sets(:,i);

l = floor(0.8*length(dt));

train_series = dt(1:l);

test_series = dt(l+1:end);

partitions = main_0(dt,num_part);

ts = create_training_set_part2(train_series, partitions);

net = train_part2(ts);

%Prediction phase

preds = zeros(length(dt)-l,1);

for j = l:(length(dt)-1)

fprintf(‘——————Iteration %d—————————————————\n’,j-l+1);

inp = dt(j);

preds(j-l+1) = predict_part2(net,inp,partitions);

end

%Calculate rmse and plot%

rmse_val(i) = rmse(test_series, preds);

figure;

plot((1:(length(dt)-l))’,test_series,’k*-’);

hold on;

plot((1:(length(dt)-l))’,preds,’r*-’);

end

%%%%%%%%%%%%%%%%%%%

%% Part data partition

function [ res ] = part_data_pt( partitions, point )

%A function to find the partition to which a data point belongs.

res = 0;

num_part = size(partitions, 1);

for i = 1:num_part

if ((point >= partitions(i,1)) && (point <= partitions(i,2)))

res = i;

break;

end

end
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end

%%%%%%%%%%%%%%%%%%%%

%% Partitioning

function [ res ] = partition( series, num_part )

%A function to partition the given time series into the number of

%partitions specified as a parameter

mx = max(series);

mn = min(series);

diff = mx-mn;

part_width = diff/num_part;

res = zeros(num_part,2);

temp = mn;

for i = 1:num_part

res(i,1) = temp;

temp = temp + part_width;

res(i,2) = temp;

end

end

%%%%%%%%%%%%%%%%

%% Plotting partitions

function [ ] = plot_partitions( series, partitions )

%Plots the time-series and its partitions

plot([1:length(series)]’,series,’k*-’);

hold on;

for i = 1:(size(partitions,1))

line([1,length(series)],[partitions(i,1),partitions(i,1)]);

end

n = size(partitions,1);

line([1,length(series)],[partitions(n,2),partitions(n,2)]);

end

%%%%%%%%%%%%%
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%

% Given a time-series data point, the function uses the trained neural nets

%% to make a future prediction.

function [ s1,s2 ] = prediction( point, rule_prob, nets, partitions )

nn_count = size(nets,2);

prev_part = part_data_pt(partitions,point);

num_part = size(partitions,1);

s = 0;

preds = zeros(nn_count,1);

preds2 = zeros(nn_count,1);

probs = zeros(nn_count,1);

% fprintf (‘———————————————————————————————————————————————————————\n’);

% fprintf(‘Input given: %f\n’,point);

% fprintf(‘Input partition: %d\n’,prev_part);

for i = 1:nn_count

%fprintf (‘Output for neural network %d\n’,i);

pred = nets(i).net(point);

preds2(i) = pred;

if (pred > partitions(num_part,2))

pred = partitions(num_part,2);

end

if (pred < partitions(1,1))

pred = partitions(num_part,1);

end

%fprintf(‘Prediction: %f\n’,pred);

next_part = part_data_pt(partitions,pred);

%fprintf(‘Output partition: %d\n’,next_part);

prob = rule_prob(prev_part, next_part);

%fprintf(‘Probability of transition: %f\n’,prob);

%s = s + (pred * prob);

%fprintf(‘current value of overall prediction: %f\n’, s);

preds(i) = pred;

probs(i) = prob;

end

%Process the prob vector%

mx = sum(probs);

if mx *= 0

probs = probs/mx;

else
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for i = 1:nn_count

probs(i) = 1/nn_count;

end

end

% for i = 1:nn_count

% fprintf (‘Output for neural network %d\n’,i);

% fprintf(‘Prediction: %f\n’,preds(i));

% fprintf(‘Probability of transition: %f\n’,probs(i));

% end

s1 = preds .* probs;

s1 = sum(s1);

s2 = mean(preds2);

% fprintf (‘Value of overall prediction by weightage : %f\n’, s1);

% fprintf(‘Value of overall prediction by simple average: %f\n’, s2);

%pause(1);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Given a time-series data point, the function uses the trained neural nets

%% to make a future prediction.

function [ s1, s2 ] = prediction2( point, rule_prob, nets, partitions )

%Given a time-series data point, the function uses the trained neural nets

%to make a future prediction.

nn_count = size(nets,2);

prev_part = part_data_pt(partitions,point);

num_part = size(partitions,1);

preds = zeros(nn_count,1);

preds2 = zeros(nn_count,1);

probs = zeros(nn_count,1);

fprintf (‘————————————————————————————————————————————————————————\n’);

fprintf(‘Input given: %f\n’,point);

fprintf(‘Input partition: %d\n’,prev_part);

for i = 1:nn_count

fprintf (‘Output for neural network %d\n’,i);

mv = gauss_mf(partitions,point);

pred = nets(i).net(mv);

preds2(i) = pred;
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if (pred > partitions(num_part,2))

pred = partitions(num_part,2);

end

if (pred < partitions(1,1))

pred = partitions(num_part,1);

end

%fprintf (‘Prediction by neural net 2 : %lf\n’,pred);

next_part = part_data_pt(partitions,pred);

prob = rule_prob(prev_part, next_part);

preds(i) = pred;

probs(i) = prob;

end

%Process the prob vector%

mx = sum(probs);

if mx *= 0

probs = probs/mx;

else

for i = 1:nn_count

probs(i) = 1/nn_count;

end

end

for i = 1:nn_count

fprintf (‘Output for neural network %d\n’,i);

fprintf(‘Prediction: %f\n’,preds(i));

fprintf(‘Probability of transition: %f\n’,probs(i));

end

s1 = preds .* probs;

s1 = sum(s1);

s2 = mean(preds2);

fprintf (‘Value of overall prediction by weightage : %f\n’, s1);

fprintf(‘Value of overall prediction by simple average: %f\n’, s2);

%pause(1);

end

%%%%%%%%%%%%%%%%%%%%%

%% Prediction part2

function [ res ] = predict_part2( net, point, partitions )

%UNTITLED4 Summary of this function goes here
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% Detailed explanation goes here

mv = gauss_mf(partitions, point);

res = net(mv);

end

%%%%%%%%%%%%%%%%%%%

% Function refines the training set to form mid value to mid value mapping.

function [ res ] = refine_training_set_part_1( training_set, partitions )

num_part = size(partitions,1);

mid_vals = zeros(num_part, 1);

for i = 1:num_part

mid_vals(i) = (partitions(i,1) + partitions(i,2))/2;

end

nn_count = size(training_set,3);

rows = size(training_set,1);

res = zeros(size(training_set));

for i = 1:nn_count

train = training_set(:,:,i);

for j = 1:rows

if train(j,1) *= 0

prev = train(j,1);

next = train(j,2);

train(j,1) = mid_vals(prev);

train(j,2) = mid_vals(next);

end

end

res(:,:,i) = train;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%

%A function to produce a training set for training a neural net using fuzzy

%membership values of the input time-series value.

function [ res ] = refine_training_set_part_2( ref_training_set, parti-

tions )

nn_count = size(ref_training_set,3);

rows = size(ref_training_set,1);
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num_part = size(partitions,1);

res = zeros(rows,num_part+1,nn_count);

for i = 1:nn_count

tr = ref_training_set(:,:,i);

for j = 1:rows

if tr(j,1) *= 0

res(j,1:end-1,i) = (gauss_mf(partitions,tr(j,1)))’;

res(j,end,i) = tr(j,2);

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%

%Find the rmse of vec1 and vec2

function [ res ] = rmse( vec1, vec2 )

v = abs(vec1 - vec2);

v = v.^2;

m = mean(v);

res = sqrt(m);

end

%%%%%%%%%%%%%%%%%%%%%%%%%

%A function to convert the rule matrix to a transition probability matrix.

function [ res ] = rule_probability( rules )

num_part = size(rules,1);

s = sum(rules,2);

res = zeros(size(rules));

for i = 1:num_part

if s(i) *= 0

res(i,:) = rules(i,:)/s(i);

else

res(i,:) = 0;

end

end

end
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%%%%%%%%%%%%%%%%%%%%

%A function to train the neural networks on the given data.

function [ a ] = train_neural_nets( refined_training_set )

nn_count = size(refined_training_set,3);

r = size(refined_training_set,1);

nn_rc = 0;

for i = 1:nn_count

tr = refined_training_set(:,:,i);

idx = 1;

while idx <= r

if tr(idx,1) == 0

break;

end

idx = idx + 1;

end

if idx >= 5

nn_rc = nn_rc + 1;

end

end

nn_count = nn_rc;

for i = 1:nn_count

%Prepare the training data

tr = refined_training_set(:,:,i);

idx = 1;

while idx <= r

if tr(idx,1) == 0

break;

end

idx = idx +1;

end

tr = tr(1:idx-1,:);

%Code for neural net

a(i).net = feedforwardnet(10);

a(i).net = train(a(i).net,(tr(:,1))’,(tr(:,2))’);

end

end

%%%%%%%%%%%%%%%%%%

%A function to train the neural networks on the given data.
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function [ a ] = train_neural_nets2( refined_training_set )

nn_count = size(refined_training_set,3);

r = size(refined_training_set,1);

num_part = size(refined_training_set,2) - 1;

nn_rc = 0;

for i = 1:nn_count

tr = refined_training_set(:,:,i);

idx = 1;

while idx <= r

s = sum(tr(idx,1:end-1));

if s == 0

break;

end

idx = idx + 1;

end

if idx >= 5

nn_rc = nn_rc + 1;

end

end

nn_count = nn_rc;

for i = 1:nn_count

%Prepare the training data

tr = refined_training_set(:,:,i);

idx = 1;

while idx <= r

s = sum(tr(idx,1:end-1));

if s == 0

break;

end

idx = idx +1;

end

tr = tr(1:idx-1,:);

%Code for neural net

a(i).net = feedforwardnet(num_part+10);

a(i).net = train(a(i).net,(tr(:,1:end-1))’,(tr(:,end))’);

end

end

%%%%%%%%%%%%%%%%%

%% Training Part 2 for training data set
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function [ net ] = train_part2( ts )

%UNTITLED3 Summary of this function goes here

% Detailed explanation goes here

num_part = size(ts,2) - 1;

net = feedforwardnet(num_part + 10);

net = train(net, (ts(:,1:end-1))’,(ts(:,end))’);

end

%%%%%%%%%%%%%%%%%%%%
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Chapter 6
Conclusions

This is the concluding chapter of the book. It self-reviews the book and examines
the possible scope of future research directions in the research arena covering
time-series forecasting.

6.1 Conclusions

The book deals with two distinct problems of time-series prediction. The first
problem refers to predicting the next time-point value of a time-series from its
current and preceding values. It primarily deals with uncertainty management in the
prediction process using fuzzy and neural techniques. Several models of fuzzy and
neural techniques are available in the literature. However, our present concern is to
deal with uncertainty within a partition and across partitions of a time-series. The
within partition uncertainty is represented by a set of Gaussian type-1 membership
functions (MFs), which together is represented by an interval type-2 fuzzy set. The
time-series lying across partitions are represented by distinct interval type-2 fuzzy
sets. In Chap. 2, we solved the uncertainty management problem in time-series
prediction by using prediction rules with single antecedent and single consequent,
and secondary factor is used to select the right rule for fuzzy reasoning and
prediction.

Like Chaps. 2, 3 also deals with prediction of the next time-point in a
time-series, where the secondary factor is used as part of the antecedent in the
prediction rule. Such formulation reduces the complexity to select the firing rule
induced by secondary factor, however at the cost of additional reasoning com-
plexity. In addition, the chapter demonstrated special situations, when there exists
only one contiguous region of data points in a partition rather than bunches of
regions. The single region of contiguous data points in a partition has been modeled
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with type-1fuzzy sets. Thus in Chap. 3 we introduce a mixed type-1/type-2 rea-
soning in antecedent/consequent of the prediction rules. An automatic approach to
adaptive tuning of membership functions is undertaken here to imbibe the pre-
diction results with the current trend.

Chapters 4 and 5 are concerned with learning a time-series moves by two
alternative approaches. In Chap. 4, we propose a clustering based approach for
learning time-series moves, while in Chap. 5 we learn the moves by a number of
neural networks, each engaged in prediction of the time-series by concurrently
activating all possible rules having the common antecedent. Both the techniques
presented in Chaps. 4 and 5 are novel in the context of time-series prediction. The
novelty in Chap. 4 lies in all the three basic steps, including segmentation, clus-
tering and knowledge representation using dynamic stochastic automaton. On the
other hand, novelty in Chap. 5 primarily lies in structural organization of the neural
network to fire multiple rules with common antecedent simultaneously.

All the four major chapters covered in the book are complete in themselves,
covering problem description, analysis, and methodology and performance analysis
with existing works. Parameter variations and system validation has also been
undertaken in Chaps. 2 and 3.

6.2 Future Research Directions

The study undertaken in the book is primarily concerned with prediction of economic
time-series. The theory can be extended for other time-series as well. For example, the
segmentation algorithm developed in Chap. 4 is relevant for the economic time-series
only, as it considers rise/fall and zero slopes only to identify fewer structures for a
selected economic time-series, which of course varies for a different economic
time-series. These structures are semantically important for economic time-series
only. To explore structures hidden in other time-series, the segmentation algorithm
should be equipped with relevant information of the subjective domain of the series
concerned. For instance, to segment electroencephalograph (EEG) time series, we
need to extract certain short duration signals, representing specific brain activity, such
asmotor imagery about left or right hand, dreaming, smartmovement related planning
and error detection in one’s activity by himself. Each of these activities has special
wave shapes, segmentation ofwhich is very relevant for an EEG signal. The clustering
algorithm used in Chap. 4 can be replaced and or augmented by more sophisticated
means to improve qualitative clustering and computational overhead.

In addition, the interval type-2 fuzzy set based reasoning used can be replaced by
more sophisticated General type-2 fuzzy Set induced reasoning. The uncertainty
involved within and across partitions here can be represented by General Type-2
Fuzzy Sets, which would help better reasoning results and thus better prediction.
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Fragmented, 107, 134
Fragments, 107
Framework, 106
Frequency, 55, 112, 134
Fuzzification, 14
Fuzzy, 189
Fuzzy c-means clustering, 21
Fuzzy decoding, 19
Fuzzy implication relations, 41
Fuzzy logic, 4
Fuzzy logical relationship groups (FLRG), 25
Fuzzy logical relationships (FLR), 24
Fuzzy logic implications (FLI), 62
Fuzzy modeling, 41
Fuzzy production rule, 12, 41
Fuzzy reasoning, 19
Fuzzy Reasoning, 22, 235
Fuzzy rule based NN model, 201
Fuzzy techniques, 106
Fuzzy Time-Series, 15
Fuzzy time-series, 22
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G
Gaussian, 122
Gaussian characteristics, 3
Gaussian function, 195
Gaussian membership function, 20
Generalized regression neural network

(GRNN), 10
Generation, 121
Genetic algorithm, 106
Genre, 106
Geometry, 134
Global maximum, 49
Gradient, 134, 194
Gradient descent learning, 194
Gradual fall-off, 202
Graphically, 59
Gravity, 42
Greedy approach, 136
Gross domestic product (GDP), 1
Groups, 197

H
Hand-crafted, 159
Hardware, 191
Hedge funds, 2
Heuristic functions, 191
Heuristic model, 106
Heuristics, 7
Hierarchical clustering, 133
Hindrances, 41, 67
Historical time-series data, 2
Holidays, 122
Hybrid Elman-NARX neural networks, 190
Hybrid fuzzy time series, 27
Hypothesis, 66
Hzorth parameters, 41

I
Identically, 43
Identification, 46
Implication, 47, 109, 122
Implication relation, 41
Implication rules, 191
Incrementally, 127
Index, 67
Inference, 46, 107, 112
Inference generation, 14
Inference generation mechanisms, 14
Infinite, 193
Influence, 122
Influencing factors, 106
Inherent, 106
Inherent fuzziness, 202
Initialization, 157

Injective mappings, 213
Insufficient, 127
Integer, 65
Intentionally, 127
Interpretation, 43
Intersection, 42
Interval, 43, 108, 191
Intervals (partitions), 41
Interval Type-2 Fuzzy Set (IT2FS), 28, 106
Intricately, 65
Investment, 135
Isosceles triangles, 61
Isosceles triangular, 111
Iterated, 120
Iteration, 156
Iterative modification, 194

J
Judiciously, 202
Justification, 65

K
Karnik-Mendel, 107
Karnik-Mendel algorithm, 45
K-means, 159

L
Lagrange’s multiplier method, 9
Levenberg-Marquardt algorithm, 190
Linear combination, 190
Linear Support Vector Machine (LSVM), 6
Linguistic values, 19
Linguistic variables, 116
Literature, 133, 136, 190, 235
Logical OR, 200
Logic of fuzzy sets, 41
Lower bound, 140
Lower membership function (LMF), 44, 108

M
Machine learning, 133, 190
Macro/micro economic, 46
Main factor time series (MFTS), 44, 107
Mamdani (Min-type) implication, 22
Mamdani implication relation, 13
Markov models, 24
Match-score, 135, 159
Matrix, 206
Maxima, 112
Mean square error (MSE), 206
Measurements, 46
Mechanism, 59
MEMBERSHIP, 16
Membership functions (MFs), 19, 41, 107, 235
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Membership values, 189
Merge partitions, 143
Merits, 135
Meta-heuristic algorithm, 120
Methodology, 236
Metric, 68
MFVTS, 108
Mid-point, 189
Minimize, 59
Mixed model, 109
Moving average, 4
Multi-Factored Time-Series, 26
Multi-factor fuzzy time-series models, 191
Mutation, 120

N
NASDAQ, 107
Negative, 134
Neighbours, 133, 134
Neural network, 106, 189
Neural regression, 189
Non-deterministic, 41
Non-Gaussian, 41
Non-Gaussian signal, 3
Non-linear, 41
Non-linearity, 4
Nonlinear mapping, 41
Non-linear oscillators, 41
Non-linear regression, 41
Non-overlapping, 140
Non-overlapping contiguous intervals, 194
Non-parametric, 134
Non-stationarity, 3
Non-stationary, 41
Non-uniform, 133
Normalized mean square error (NMSE), 206
Normalized weights, 46
Novel grouping, 189

O
Optimal selection, 59
Optimization, 111
Optimized extreme learning, 10
Overhead, 59, 120

P
Parallel, 112
Parameters, 111
Partial auto-correlation (PAC), 4
Partition, 133, 200
Partitioned, 189
Partitioning of Fuzzy Time-Series, 17
Patterns, 191
Period, 149

Phenomena, 189
Plateau, 139
Policies, 61
Population growth, 1, 41
Population vectors, 127
Positive, 134
Potential, 106
Precedence, 189
Predict, 134, 191
Predicted, 62
Prediction, 40, 45, 62, 106, 107, 120, 133,

189–191, 204
Premise, 106
Pre-Processing, 145
Pre-selector, 192
Pre-selector logic, 192
Presumed, 106
Pre-trained, 192
Pre-trained rules, 189
Primitive fuzzy, 106
Primitive patterns, 157
Probabilities, 57
Probability, 112, 133, 191
Procedure, 62, 190
Processes, 41
Production, 106
Propositional logic, 106
Propositions, 106
Pruning, 189
Pseudo code, 111, 139, 197

Q
Qualitative clustering, 236
Qualitative prediction, 62
Quantization, 209

R
Radial Basis, 189
Radial basis function (RBF), 189, 192, 195
Radial basis function neural net (RBF NN), 7
Radius, 134
Rainfall, 1, 41, 133
Randomly, 120
Real numbers, 49, 199
Real quantity, 107
Reasoning, 43, 106, 107
Reasoning procedure, 116
Recognize, 150
Recombination, 127
Recurrent neural networks, 190
Recursion, 136
Recursive, 137, 146
Recursive probabilistic extension, 190
Reduce, 43
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Regression analysis, 106
Regression neural network, 190
Relational algebra, 106
Relational mappings, 112
Relative performance, 67, 122
Re-organized, 145
Risk, 109
Root mean square, 106
Root mean square error (RMSE), 42, 110, 206
Rule, 106, 133

S
Sample, 41, 105
Sample points, 108
Schematic block diagram, 200
Searching, 157
Seasonal time-series, 190
Secondary factor, 105, 235
Secondary Factor Time Series (SFTS), 44
Secondary Factor Variation Series (SFVS), 113
Secondary indices, 106
Segmentation, 133, 236
Seismic activity, 189
Selectors, 196
Sensitive, 110
Sequence, 135
SFVTS, 108
Sigmoid function, 7
Significance, 67
Simplicity, 134
Simulation, 43, 107
Slices, 134
Slicing, 140
Sliding window, 136
Slope-Sensitive Natural Segmentation (SSNS),

139
Software, 191
Splitting, 136
Squared intra-cluster distance (SSID), 135
Standard time-series, 106
State-transitions, 133, 135
Statistical, 66
Statistical methods, 190
Stepwise Feasible Space Window (SFSW), 136
Stock index, 127
Stock market time-series, 8
Stock prices, 42
Straight line, 112
Strategy, 61, 67
Stratum, 157
Stray data, 53
Structure, 59, 134
Subsequent, 61
Subsets, 197

Successive, 134
Summarized, 157
Sum of inter-cluster distances (SICD), 135
Sunspot, 189, 192
Sunspot time-series, 204
Supervised, 191
Supervised learning, 5
Switch point, 109
Synthesized, 154

T
TAIEX data, 15
Taiwan Stock Exchange Index (TAIEX), 44,

107, 135
Target state, 150
Target vector, 128
Techniques, 135
Temperature, 140
Temporal pattern, 152
Terminologies, 137
Threshold, 136, 145, 146, 200
Time-blocks, 133
Time-invariant, 41
Time-invariant models, 41
Time-series, 1, 59, 133, 189, 235
Time-valued, 133
Time-valued function, 1, 105
Time-variant fuzzy time-series, 23
Top-down, 136
Traces, 106
Track, 62
Traded price, 107
Trading, 158
Traditional algorithms, 159
Traditional IT2FS, 106
Training instances, 5
Training period, 55
Transform, 122
Transformation, 55
Transition, 133, 158
Transition rules, 189, 191
Trial solutions, 120
Triangular/Gaussian membership functions

(MFs), 43
Triggered, 189, 192
Triggering, 199
Truth values, 12
Tuple, 44, 108
Type-2 fuzzy logic, 28

U
Unaccountable, 46
Uncertainty/imprecision, 41
Uncertainty, 45, 106, 235, 236
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Uncertainty management, 235
Uncertainty Management by Fuzzy Sets, 12
Un-economic, 191
Uniform, 143
Uniform intervals, 105
Union, 42
Universe of discourse, 108
University enrollment for students, 41
Unpredictable, 134
Upper bound, 140
Upper Membership Function (UMF), 44, 108

V
Validation, 107, 158, 236

Variance, 111, 145
Variation, 113
Variation Time Series (VTS), 44, 108
Vector, 193

W
Weighted sum, 112
Weight Update, 195

Z
Zero slope, 134, 137
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